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4.4.1 Show that the norms ∥x∥∞, ∥x∥2, ∥x∥1 satisfy the postulates that define a norm.

Proof. Assuming the vector space is Rn (since proof for Cn or ℓp spaces will be slightly different). Non-
degeneracy of all three norms are all trivial. Absolute homogeneity follows from the following:

∥λx∥1 =
n

∑
i=1
∣λxi∣ = λ

n

∑
i=1
∣xi∣ = λ∥x∥1,

∥λx∥2 = (
n

∑
i=1
∣λxi∣2)

1/2

= (λ2
n

∑
i=1
∣xi∣2)

1/2

= λ(
n

∑
i=1
∣xi∣2)

1/2

= λ∥x∥1/2, and

∥λx∥∞ = max
1⩽i⩽n

∣λxi∣ = λmax
1⩽i⩽n

∣xi∣ = λ∥x∥∞.

For subadditivity of ∥ ⋅ ∥1, notice that

∥u∥1 + ∥v∥1 =
n

∑
i=1
∣ui + vi∣ ⩾

n

∑
i=1
(∣ui∣ + ∣vi∣) =

n

∑
i=1
∣ui∣ +

n

∑
i=1
∣vi∣ = ∥u∥1 + ∥v∥1.

For subadditivity of ∥ ⋅ ∥2, it suffices to show (∥u∥2 + ∥v∥2)2 ⩾ ∥u + v∥22. Indeed,

∥u + v∥22 =
n

∑
i=1
∣ui + vi∣2 =

n

∑
i=1
∣ui∣2 +

n

∑
i=1
∣vi∣2 +

n

∑
i=1

2∣ui∣∣vi∣

= ∥u∥22 + ∥v∥22 + 2
n

∑
i=1
∣ui∣∣vi∣

⩽ ∥u∥22 + ∥v∥22 + 2
√
∑n

i=1∣ui∣2
√
∑n

i=1∣vi∣2

= (∥u∥2 + ∥v∥2)2.

The red step comes from Cauchy-Scuwarz inequality, which requires a nontrivial proof. A proof of Cauchy-
Schwarz has been included on the next page.
For subadditivity of ∥ ⋅ ∥∞, we have

∥u + v∥∞ = max
1⩽i⩽n

∣ui + vi∣ ⩽ max
1⩽i⩽n

(∣ui∣ + ∣vi∣) = max
1⩽i⩽n

∣ui∣ + max
1⩽i⩽n

∣vi∣ = ∥u∥∞ + ∥v∥∞.

Therefore ∥ ⋅ ∥∞, ∥ ⋅ ∥1, and ∥ ⋅ ∥2 are all well-defined norms.
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Proof of Cauchy-Schwarz. We begin by defining an inner product ⟨⋅, ⋅⟩ ∶ Rn ×Rn → R⩾0 by

⟨x, y⟩ ∶=
n

∑
i=1

xiyi.

Notice that ⟨⋅, ⋅⟩ is linear with respect to either argument, i.e.,

⟨x, y1 + λy2⟩ = ⟨x, y1⟩ + λ ⟨x, y2⟩ and ⟨x1 + λx2, y⟩ = ⟨x1, y⟩ + λ ⟨x2, y⟩

and ⟨x, y⟩ = ⟨y, x⟩. Also notice that our previously defined ∥x∥2 =
√
⟨x,x⟩. (Indeed, ∥ ⋅ ∥2 is induced by

the inner product.) Notice that ∥x∥2 ⩾ 0 implies ⟨x,x⟩ ⩾ 0 for all x ∈ Rn, including u + λv for λ ∈ R.
Thus,

⟨u + λv, u + λv⟩ = λ2 ⟨v, v⟩ + 2λ ⟨u, v⟩ + ⟨u,u⟩ ,

a quadratic polynomial of λ that has a nonpositive discriminant (since ⟨⋅, ⋅⟩ ⩾ 0 and it can have at most
one distinct root). Therefore,

(2 ⟨u, v⟩)2 − 4 ⋅ ⟨u,u⟩ ⟨v, v⟩ ⩽ 0 Ô⇒ ⟨u, v⟩2 ⩽ ∥u∥2∥v∥2 Ô⇒ ⟨u, v⟩ ⩽ ∥u∥∥v∥.

We’ve therefore proven Cauchy-Schwarz inequality for norms over R.

4.4.2 Show that ∥x∥∞ ⩽ ∥x∥2 ⩽ ∥x∥1 for x ∈ Rn and that there are nontrivial examples that attain the equalities.

Proof. Clearly ∥x∥∞ ⩽ ∥x∥p for any p, as

∥x∥p∞ = max
1⩽i⩽n

∣xi∣p ⩽
n

∑
i=1
∣xi∣p = ∥x∥pp.

Instead of showing ∥x∥2 ⩽ ∥x∥1, I’d like to show ∥x∥q ⩽ ∥x∥p whenever p ⩽ q.

(1) If ∥x∥p = 1, then
n

∑
i=1
∣xi∣p = 1 which implies each individual ∣xi∣p ⩽ 1, and so ∣xi∣ ⩽ 1. Then,

∥x∥q =
n

∑
i=1
∣xi∣q ⩽

n

∑
i=1
∣xi∣p = 1.

(2) If ∥x∥p ≠ 1, we can first normalize it to y ∶= x/∥x∥p so that ∥y∥ = 1. Then,

∥x∥q = ∥ (∥x∥p)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∈R+

y∥q = ∥x∥p∥y∥q ⩽ ∥x∥p by (1).

Therefore ∥x∥q ⩽ ∥x∥p for all p ⩽ q, and of course ∥x∥2 ⩽ ∥x∥1 is just one special case. The equalities can be
easily obtained if we set x to be any standard basis for Rn, for example (1,0, . . . ), in which case all three
norms evaluate to 1.

4.4.3 Show that ∥x∥1 ⩽ n∥x∥∞ and ∥x∥2 ⩽
√
n∥x∥∞ for x ∈ Rn.

Proof. The first one is immediate since

∥x∥1 =
n

∑
i=1
∣xi∣ ⩽ n(max

1⩽i⩽n
∣xi∣) = n∥x∥∞.

2



MATH 501 Homework 7 YQL

The second one is analogous. Since both sides are nonnegative it suffices to prove ∥x∥22 ⩽ n∥x∥2∞. Indeed,

∥x∥22 =
n

∑
i=1
∣xi∣2 ⩽ n(max

1⩽i⩽n
∣xi∣2) = n∥x∥2∞.

4.4.7 Determine if the following define norms on Rn.

(a) max{∣x2∣, . . . , ∣xn∣}. No. (1,0, . . . ) ≠ 0 but this expression evaluates to 0.

(b)
n

∑
i=1
∣xi∣3. No: subaddtivity is not satisfied. Consider (1, . . . ,1) which evaluates to n. (2, . . . ,2), however,

evaluates to 8n > n + n.

(c) (∑n
i=1
√
∣xi∣)

2
. No. Consider (0,1), (1,1) ∈ R2. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(4,0)↦ (2 + 0)2 = 4

(0,4)↦ (0 + 2)2 = 4
but (4,0) + (0,4) = (4,4)↦ (2 + 2)2 = 16 > 4 + 4.

(d) max{∣x1 −x2∣, ∣x1 +x2∣, ∣x3∣, ∣x4∣, . . . , ∣xn∣}. Yes, this is a norm. Define f ∶ Rn ×Rn → R⩾0 by f(x) ∶= the
max function described in this problem. Clearly the codomain is R⩾0 by construction.

(1) Non-degeneracy: f(x) ⩾ 0 since absolute values are nonnegative. If f(x) = 0 then x3 = ⋅ ⋅ ⋅ = xn = 0
and ∣x1 − x2∣ = ∣x1 + x2∣ = 0. This means x1 = x2 = 0 as well and thus x = 0.

(2) Absolute homogeneity: this follows directly from the fact that ∣λv∣ = ∣λ∣∣v∣.

(3) Subadditivity:

f(x + y) =max{∣x1 + y1 − x2 − y2∣, ∣x1 + y1 + x2 + y2∣, ∣x3 + y3∣, . . . , ∣xn + yn∣}

⩽max{∣x1 − x2∣ + ∣y1 − y2∣, ∣x1 + x2∣ + ∣y1 + y2∣, ∣x3∣ + ∣y3∣, . . .}

⩽max{∣x1 − x2∣, ∣x1 + x2∣, ∣x3∣, . . .} +max{∣y1 − y2∣, ∣y1 + y2∣, ∣y3∣, . . .}

= f(x) + f(y).

Therefore, weird as it sounds, f actually defines a norm on Rn.

(e)
n

∑
i=1

2−i∣xi∣. This is yet another norm. Like above, non-degeneracy and absolute homogeneity are clear.

It remains to show aubadditivity. Indeed,
n

∑
i=1

2−i∣xi + yi∣ ⩽
n

∑
i=1

2−i(∣xi∣ + ∣yi∣)

=
n

∑
i=1

2−i∣xi∣ +
n

∑
i=1

2−i∣yi∣.

4.4.8 Define ∥A∥ ∶=
n

∑
i=1

n

∑
j=1
∣aij ∣. Show that this is a matrix norm. Show that it is not subordinate to any vector

norm. Does it satisfy ∥I∥ = 1 and ∥AB∥ ⩽ ∥A∥∥B∥?

Proof. Notice that ∥A∥ is very similar to the ∥ ⋅ ∥1 on Rn×n. Therefore all three postulate immediately
follow. However, ∥A∥ is not subordnated, as ∥I∥ = n > 1 for n > 1. It does, however, satisfy (10). If A and
B have only nonnegative entries, then

∥AB∥ =
n

∑
i=1

n

∑
j=1
∣(ab)ij ∣ =

n

∑
i=1

n

∑
j=1

n

∑
k=1

aikbkj =
n

∑
i=1

⎛
⎝

n

∑
j=1

aij∥B∥
⎞
⎠
= ∥A∥∥B∥.
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On the other hand, if there is any negative entry in the ith row of A or the jth column of B, then

∣(ab)ij ∣ = ∣
n

∑
k=1

aikbkj∣ ⩽
n

∑
k=1
∣aikbkj ∣ =

n

∑
k=1
∣aik ∣∣bkj ∣,

and so in this case ∥AB∥ ⩽ ∥A∥∥B∥. Either way, (10) holds.

4.4.11 Show that the matrix norm ∥A∥1 subordinate to ∥x∥1 (x ∈ Rn) is

∥A∥1 = max
1⩽j⩽n

n

∑
i=1
∣aij ∣.

Proof. Let A be given. Let the j̃th column be the one with largest 1-norm. Let Ai denote the ith column
of A. Then,

∥A∥1 = sup
∥x∥1=1

∥Ax∥1 = sup
∥x∥1=1

∥
n

∑
i=1

xiAi∥
1

⩽ sup
∥x∥1=1

n

∑
i=1
∥xiAi∥1 = sup

∥x∥1=1

n

∑
i=1
∣xi∣∥Ai∥1

⩽ sup
∥x∥1=1

n

∑
i=1
∣xi∣∥Aj̃∥1 = ∥Aj̃∥1 sup

∥x∥1=1

n

∑
i=1
∣xi∣

= ∥Aj̃∥1.

The other direction is much easier: simply consider x̃ ∈ Rn with x̃i = δi,j̃ , i.e., 1 for the j̃th entry and 0

otherwise. Then ∥Ax̃∥1 = ∥Aj̃∥1 and the ⩾ follows from definition of supremum.

4.4.23 Prove that if ∥ ⋅ ∥ is a norm on a vector space, and if we define ∥x∥′ ∶= α∥x∥ with a fixed α > 0, then ∥ ⋅ ∥′ also
defines a norm.

Proof. Non-degeneracy is trivial. So is absolute homogeneity since ∥λx∥′ = α∥λx∥ = ∣λ∣α∥x∥ = ∣λ∣∥x∥′. For
triangle inequality,

∥x + y∥′ = α∥x + y∥ ⩽ α(∥x∥ + ∥y∥) = α∥x∥ + α∥y∥ = ∥x∥′ + ∥y∥′.

4.4.24 If the construction in the preceeding problem is applied to a subordinate matrix norm, is the resulting norm
also a subordinate matrix norm?

Solution

Yes.
Nonnegativity is trivial. Now suppose ∥A∥′ = 0. Clearly if A = 0 then ∥A∥′ = 0. For the converse,
if ∥A∥′ = 0 but A is not the zero matrix, then some column of A needs to be nonzero (not all 0’s).
Consider v = (0, . . . ,0,1/α,0, . . . )T where the 1/α corresponds to that column. Then ∥v∥′ = 1 and
Av ≠ 0, contradiction.
Absolute homogeneity is also clear: ∥λA∥′ = sup

∥x∥′=1
∥λAx∥′ = ∣λ∣ sup

∥x∥′=1
∥Ax∥′ = ∣λ∣∥A∥′.
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For triangle inequality:

∥A +B∥′ = sup
∥x∥′=1

∥(A +B)x∥′ = sup
∥x∥′=1

∥Ax +Bx∥′

⩽ sup
∥x∥′=1

(∥Ax∥′ + ∥Bx∥′) ⩽ sup
∥x∥′=1

∥Ax∥′ + sup
∥x∥′=1

∥Bx∥′

= ∥A∥′ + ∥B∥′.

Therefore this new norm is still subordinated.

If, on the other hand, the question is asking us to simply multiply everthing obtained from ∥ ⋅ ∥ by α, then
this does not define a norm in general, because if this is the case, then ∥I∥′ = α∥I∥ = α = 1 if and only if α = 1.
I am not sure which one the problem actually refers to, so I listed both.

4.4.29 Prove that if A has a nontrivial fixed point then ∥A∥ ⩾ 1 for any subordinate matrix norm.

Proof. Suppose Ax = x for some x ≠ 0. Normalizing x to x̃ ∶= x/∥x∥ we see that

Ax̃ = x̃ Ô⇒ ∥Ax̃∥ = ∥x̃∥ = 1 Ô⇒ ∥A∥ = sup
∥x∥=1

∥Ax∥ ⩾ ∥Ax̃∥ = 1.

4.4.34 For any n×n matrix A, define the Frobenius norm to be ∥A∥F ∶= (
n

∑
i=1

n

∑
j=1

a2ij)
1/2

. Show that this defines a

norm on the vector space of all n × n matrices. What about ∥A∥ ∶= max
1⩽i,j⩽n

∣aij ∣?

Proof (Frobenius). To see that ∥A∥F defines a norm, simply notice that ∥A∥F is the same as the 2-norm of
a super long vector in Rn×n ∶ (a11, . . . , a1n, a21, . . . , ann)T . Therefore ∥A∥F automatically satisfies all three
postulates.
However, the Frobenius norm is not subordinated. For example, Ix = x for all x, so if ∥⋅∥F were subordinate,
one would have ∥I∥F = sup

∥x∥=1
∥Ix∥ = sup

∥x∥=1
∥x∥ = 1, while in reality ∥I∥F =

√
n and n can > 1.

Proof (max norm). Non-degeneracy and absolute homogeneity are trivial. For triangle inequality,

max
1⩽i,j⩽n

∣aij + bij ∣ ⩽ max
1⩽i,j⩽n

(∣aij ∣ + ∣bij ∣) ⩽ max
1⩽i,j⩽n

∣aij ∣ + max
1⩽ĩ,j̃⩽n

∣bij ∣.

This norm, unfortunately, is not subordinated, either. For if it were, then

∥AB∥ = sup
∥x∥=1

∥ABx∥ ⩽ sup
∥x∥=1

[∥A∥∥Bx∥] ⩽ sup
∥x∥=1

[∥A∥∥B∥∥x∥] = ∥A∥∥B∥.

However, notice that if we let A = B =
⎡⎢⎢⎢⎢⎣

1 1

1 1

⎤⎥⎥⎥⎥⎦
then AB =

⎡⎢⎢⎢⎢⎣

2 2

2 2

⎤⎥⎥⎥⎥⎦
. Then ∥A∥ = ∥B∥ = 1 but ∥AB∥ = 2.

4.4.37 Prove that for each x ∈ Rn,

lim
p→∞
∥x∥p = ∥x∥∞.

Remark: the same equation holds for x ∈ ℓq or Lq, q ⩾ 1.
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Proof. On one hand, since each ∣xi∣ is bounded by the largest one, i.e., max
1⩽i⩽n

∣xi∣,

(
n

∑
i=1
∥xi∥p)

1/p
⩽ (n ⋅ max

1⩽i⩽n
∣xi∣p)

1/p
= n1/p max

1⩽i⩽n
∣xi∣ = n1/p∥x∥∞.

On the other hand, since
n

∑
i=1

includes the largest one and other ∣xi∣’s are also nonnegative,

(
n

∑
i=1
∣xi∣p)

1/p
⩾ (max

1⩽i⩽n
∣xi∣p)

1/p
= max

1⩽i⩽n
∣xi∣ = ∥x∥∞.

Since p1/p = exp((1/p) log(p)) and L’Hôpital’s rule gives

lim
p→∞

log(p)
p
= lim

p→∞

1/p
1
= 0,

we know lim
p→∞

p1/p = e0 = 1. Therefore, by squeeze theorem, lim
p→∞
∥x∥p = ∥x∥∞.

End of Homework 7
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