

MATH 501 Homework 7

Qilin Ye

March 19, 2021

4.4.1 Show that the norms $\|x\|_\infty, \|x\|_2, \|x\|_1$ satisfy the postulates that define a norm.

Proof. Assuming the vector space is \mathbb{R}^n (since proof for \mathbb{C}^n or ℓ^p spaces will be slightly different). Non-degeneracy of all three norms are all trivial. Absolute homogeneity follows from the following:

$$\begin{aligned}\|\lambda x\|_1 &= \sum_{i=1}^n |\lambda x_i| = \lambda \sum_{i=1}^n |x_i| = \lambda \|x\|_1, \\ \|\lambda x\|_2 &= \left(\sum_{i=1}^n |\lambda x_i|^2 \right)^{1/2} = \left(\lambda^2 \sum_{i=1}^n |x_i|^2 \right)^{1/2} = \lambda \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2} = \lambda \|x\|_2, \text{ and} \\ \|\lambda x\|_\infty &= \max_{1 \leq i \leq n} |\lambda x_i| = \lambda \max_{1 \leq i \leq n} |x_i| = \lambda \|x\|_\infty.\end{aligned}$$

For subadditivity of $\|\cdot\|_1$, notice that

$$\|u\|_1 + \|v\|_1 = \sum_{i=1}^n |u_i + v_i| \geq \sum_{i=1}^n (|u_i| + |v_i|) = \sum_{i=1}^n |u_i| + \sum_{i=1}^n |v_i| = \|u\|_1 + \|v\|_1.$$

For subadditivity of $\|\cdot\|_2$, it suffices to show $(\|u\|_2 + \|v\|_2)^2 \geq \|u + v\|_2^2$. Indeed,

$$\begin{aligned}\|u + v\|_2^2 &= \sum_{i=1}^n |u_i + v_i|^2 = \sum_{i=1}^n |u_i|^2 + \sum_{i=1}^n |v_i|^2 + \sum_{i=1}^n 2|u_i||v_i| \\ &= \|u\|_2^2 + \|v\|_2^2 + 2 \sum_{i=1}^n |u_i||v_i| \\ &\leq \|u\|_2^2 + \|v\|_2^2 + 2 \sqrt{\sum_{i=1}^n |u_i|^2} \sqrt{\sum_{i=1}^n |v_i|^2} \\ &= (\|u\|_2 + \|v\|_2)^2.\end{aligned}$$

The red step comes from Cauchy-Schwarz inequality, which requires a nontrivial proof. A proof of Cauchy-Schwarz has been included on the next page.

For subadditivity of $\|\cdot\|_\infty$, we have

$$\|u + v\|_\infty = \max_{1 \leq i \leq n} |u_i + v_i| \leq \max_{1 \leq i \leq n} (|u_i| + |v_i|) = \max_{1 \leq i \leq n} |u_i| + \max_{1 \leq i \leq n} |v_i| = \|u\|_\infty + \|v\|_\infty.$$

Therefore $\|\cdot\|_\infty, \|\cdot\|_1$, and $\|\cdot\|_2$ are all well-defined norms. □

Proof of Cauchy-Schwarz. We begin by defining an inner product $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ by

$$\langle x, y \rangle := \sum_{i=1}^n x_i y_i.$$

Notice that $\langle \cdot, \cdot \rangle$ is linear with respect to either argument, i.e.,

$$\langle x, y_1 + \lambda y_2 \rangle = \langle x, y_1 \rangle + \lambda \langle x, y_2 \rangle \quad \text{and} \quad \langle x_1 + \lambda x_2, y \rangle = \langle x_1, y \rangle + \lambda \langle x_2, y \rangle$$

and $\langle x, y \rangle = \langle y, x \rangle$. Also notice that our previously defined $\|x\|_2 = \sqrt{\langle x, x \rangle}$. (Indeed, $\|\cdot\|_2$ is induced by the inner product.) Notice that $\|x\|_2 \geq 0$ implies $\langle x, x \rangle \geq 0$ for all $x \in \mathbb{R}^n$, including $u + \lambda v$ for $\lambda \in \mathbb{R}$. Thus,

$$\langle u + \lambda v, u + \lambda v \rangle = \lambda^2 \langle v, v \rangle + 2\lambda \langle u, v \rangle + \langle u, u \rangle,$$

a quadratic polynomial of λ that has a nonpositive discriminant (since $\langle \cdot, \cdot \rangle \geq 0$ and it can have at most one distinct root). Therefore,

$$(2 \langle u, v \rangle)^2 - 4 \cdot \langle u, u \rangle \langle v, v \rangle \leq 0 \implies \langle u, v \rangle^2 \leq \|u\|^2 \|v\|^2 \implies \langle u, v \rangle \leq \|u\| \|v\|.$$

We've therefore proven Cauchy-Schwarz inequality for norms over \mathbb{R} . \square

4.4.2 Show that $\|x\|_\infty \leq \|x\|_2 \leq \|x\|_1$ for $x \in \mathbb{R}^n$ and that there are nontrivial examples that attain the equalities.

Proof. Clearly $\|x\|_\infty \leq \|x\|_p$ for any p , as

$$\|x\|_\infty^p = \max_{1 \leq i \leq n} |x_i|^p \leq \sum_{i=1}^n |x_i|^p = \|x\|_p^p.$$

Instead of showing $\|x\|_2 \leq \|x\|_1$, I'd like to show $\|x\|_q \leq \|x\|_p$ whenever $p \leq q$.

(1) If $\|x\|_p = 1$, then $\sum_{i=1}^n |x_i|^p = 1$ which implies each individual $|x_i|^p \leq 1$, and so $|x_i| \leq 1$. Then,

$$\|x\|_q = \left(\sum_{i=1}^n |x_i|^q \right)^{1/q} \leq \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} = 1.$$

(2) If $\|x\|_p \neq 1$, we can first normalize it to $y := x/\|x\|_p$ so that $\|y\| = 1$. Then,

$$\|x\|_q = \left\| \underbrace{(\|x\|_p) y}_{} \right\|_q = \|x\|_p \|y\|_q \leq \|x\|_p \text{ by (1).}$$

Therefore $\|x\|_q \leq \|x\|_p$ for all $p \leq q$, and of course $\|x\|_2 \leq \|x\|_1$ is just one special case. The equalities can be easily obtained if we set x to be any standard basis for \mathbb{R}^n , for example $(1, 0, \dots)$, in which case all three norms evaluate to 1. \square

4.4.3 Show that $\|x\|_1 \leq n\|x\|_\infty$ and $\|x\|_2 \leq \sqrt{n}\|x\|_\infty$ for $x \in \mathbb{R}^n$.

Proof. The first one is immediate since

$$\|x\|_1 = \sum_{i=1}^n |x_i| \leq n \left(\max_{1 \leq i \leq n} |x_i| \right) = n\|x\|_\infty.$$

The second one is analogous. Since both sides are nonnegative it suffices to prove $\|x\|_2^2 \leq n\|x\|_\infty^2$. Indeed,

$$\|x\|_2^2 = \sum_{i=1}^n |x_i|^2 \leq n \left(\max_{1 \leq i \leq n} |x_i|^2 \right) = n\|x\|_\infty^2. \quad \square$$

4.4.7 Determine if the following define norms on \mathbb{R}^n .

(a) $\max\{|x_2|, \dots, |x_n|\}$. **No.** $(1, 0, \dots) \neq 0$ but this expression evaluates to 0.

(b) $\sum_{i=1}^n |x_i|^3$. **No:** subadditivity is not satisfied. Consider $(1, \dots, 1)$ which evaluates to n . $(2, \dots, 2)$, however, evaluates to $8n > n + n$.

(c) $\left(\sum_{i=1}^n \sqrt{|x_i|} \right)^2$. **No.** Consider $(0, 1), (1, 1) \in \mathbb{R}^2$. Then

$$\begin{cases} (4, 0) \mapsto (2+0)^2 = 4 \\ (0, 4) \mapsto (0+2)^2 = 4 \end{cases} \quad \text{but } (4, 0) + (0, 4) = (4, 4) \mapsto (2+2)^2 = 16 > 4+4.$$

(d) $\max\{|x_1 - x_2|, |x_1 + x_2|, |x_3|, |x_4|, \dots, |x_n|\}$. **Yes, this is a norm.** Define $f: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ by $f(x) :=$ the max function described in this problem. Clearly the codomain is $\mathbb{R}_{\geq 0}$ by construction.

- (1) Non-degeneracy: $f(x) \geq 0$ since absolute values are nonnegative. If $f(x) = 0$ then $x_3 = \dots = x_n = 0$ and $|x_1 - x_2| = |x_1 + x_2| = 0$. This means $x_1 = x_2 = 0$ as well and thus $x = 0$.
- (2) Absolute homogeneity: this follows directly from the fact that $|\lambda v| = |\lambda| |v|$.
- (3) Subadditivity:

$$\begin{aligned} f(x+y) &= \max\{|x_1 + y_1 - x_2 - y_2|, |x_1 + y_1 + x_2 + y_2|, |x_3 + y_3|, \dots, |x_n + y_n|\} \\ &\leq \max\{|x_1 - x_2| + |y_1 - y_2|, |x_1 + x_2| + |y_1 + y_2|, |x_3| + |y_3|, \dots\} \\ &\leq \max\{|x_1 - x_2|, |x_1 + x_2|, |x_3|, \dots\} + \max\{|y_1 - y_2|, |y_1 + y_2|, |y_3|, \dots\} \\ &= f(x) + f(y). \end{aligned}$$

Therefore, weird as it sounds, f actually defines a norm on \mathbb{R}^n .

(e) $\sum_{i=1}^n 2^{-i} |x_i|$. **This is yet another norm.** Like above, non-degeneracy and absolute homogeneity are clear.

It remains to show subadditivity. Indeed,

$$\begin{aligned} \sum_{i=1}^n 2^{-i} |x_i + y_i| &\leq \sum_{i=1}^n 2^{-i} (|x_i| + |y_i|) \\ &= \sum_{i=1}^n 2^{-i} |x_i| + \sum_{i=1}^n 2^{-i} |y_i|. \end{aligned}$$

4.4.8 Define $\|A\| := \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|$. Show that this is a matrix norm. Show that it is not subordinate to any vector norm. Does it satisfy $\|I\| = 1$ and $\|AB\| \leq \|A\| \|B\|$?

Proof. Notice that $\|A\|$ is very similar to the $\|\cdot\|_1$ on $\mathbb{R}^{n \times n}$. Therefore all three postulates immediately follow. However, $\|A\|$ is not subordinated, as $\|I\| = n > 1$ for $n > 1$. It does, however, satisfy (10). If A and B have only nonnegative entries, then

$$\|AB\| = \sum_{i=1}^n \sum_{j=1}^n |(ab)_{ij}| = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n a_{ik} b_{kj} = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} \|B\| \right) = \|A\| \|B\|.$$

On the other hand, if there is any negative entry in the i^{th} row of A or the j^{th} column of B , then

$$|(ab)_{ij}| = \left| \sum_{k=1}^n a_{ik}b_{kj} \right| \leq \sum_{k=1}^n |a_{ik}b_{kj}| = \sum_{k=1}^n |a_{ik}||b_{kj}|,$$

and so in this case $\|AB\| \leq \|A\|\|B\|$. Either way, (10) holds. \square

4.4.11 Show that the matrix norm $\|A\|_1$ subordinate to $\|x\|_1$ ($x \in \mathbb{R}^n$) is

$$\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|.$$

Proof. Let A be given. Let the \tilde{j}^{th} column be the one with largest 1-norm. Let A_i denote the i^{th} column of A . Then,

$$\begin{aligned} \|A\|_1 &= \sup_{\|x\|_1=1} \|Ax\|_1 = \sup_{\|x\|_1=1} \left\| \sum_{i=1}^n x_i A_i \right\|_1 \\ &\leq \sup_{\|x\|_1=1} \sum_{i=1}^n \|x_i A_i\|_1 = \sup_{\|x\|_1=1} \sum_{i=1}^n |x_i| \|A_i\|_1 \\ &\leq \sup_{\|x\|_1=1} \sum_{i=1}^n |x_i| \|A_{\tilde{j}}\|_1 = \|A_{\tilde{j}}\|_1 \sup_{\|x\|_1=1} \sum_{i=1}^n |x_i| \\ &= \|A_{\tilde{j}}\|_1. \end{aligned}$$

The other direction is much easier: simply consider $\tilde{x} \in \mathbb{R}^n$ with $\tilde{x}_i = \delta_{i,\tilde{j}}$, i.e., 1 for the \tilde{j}^{th} entry and 0 otherwise. Then $\|A\tilde{x}\|_1 = \|A_{\tilde{j}}\|_1$ and the \geq follows from definition of supremum. \square

4.4.23 Prove that if $\|\cdot\|$ is a norm on a vector space, and if we define $\|x\|' := \alpha\|x\|$ with a fixed $\alpha > 0$, then $\|\cdot\|'$ also defines a norm.

Proof. Non-degeneracy is trivial. So is absolute homogeneity since $\|\lambda x\|' = \alpha\|\lambda x\| = |\lambda|\alpha\|x\| = |\lambda|\|x\|'$. For triangle inequality,

$$\|x + y\|' = \alpha\|x + y\| \leq \alpha(\|x\| + \|y\|) = \alpha\|x\| + \alpha\|y\| = \|x\|' + \|y\|'. \quad \square$$

4.4.24 If the construction in the preceding problem is applied to a subordinate matrix norm, is the resulting norm also a subordinate matrix norm?

Solution

Yes.

Nonnegativity is trivial. Now suppose $\|A\|' = 0$. Clearly if $A = 0$ then $\|A\|' = 0$. For the converse, if $\|A\|' = 0$ but A is not the zero matrix, then some column of A needs to be nonzero (not all 0's). Consider $v = (0, \dots, 0, 1/\alpha, 0, \dots)^T$ where the $1/\alpha$ corresponds to that column. Then $\|v\|' = 1$ and $Av \neq 0$, contradiction.

Absolute homogeneity is also clear: $\|\lambda A\|' = \sup_{\|x\|'=1} \|\lambda Ax\|' = |\lambda| \sup_{\|x\|'=1} \|Ax\|' = |\lambda|\|A\|'$.

For triangle inequality:

$$\begin{aligned}
 \|A + B\|' &= \sup_{\|x\|'=1} \|(A + B)x\|' = \sup_{\|x\|'=1} \|Ax + Bx\|' \\
 &\leq \sup_{\|x\|'=1} (\|Ax\|' + \|Bx\|') \leq \sup_{\|x\|'=1} \|Ax\|' + \sup_{\|x\|'=1} \|Bx\|' \\
 &= \|A\|' + \|B\|'.
 \end{aligned}$$

Therefore this new norm is still subordinated. \square

If, on the other hand, the question is asking us to simply multiply everthing obtained from $\|\cdot\|$ by α , then this does **not** define a norm in general, because if this is the case, then $\|I\|' = \alpha\|I\| = \alpha = 1$ if and only if $\alpha = 1$. I am not sure which one the problem actually refers to, so I listed both.

4.4.29 Prove that if A has a nontrivial fixed point then $\|A\| \geq 1$ for any subordinate matrix norm.

Proof. Suppose $Ax = x$ for some $x \neq 0$. Normalizing x to $\tilde{x} := x/\|x\|$ we see that

$$A\tilde{x} = \tilde{x} \implies \|A\tilde{x}\| = \|\tilde{x}\| = 1 \implies \|A\| = \sup_{\|x\|=1} \|Ax\| \geq \|A\tilde{x}\| = 1. \quad \square$$

4.4.34 For any $n \times n$ matrix A , define the **Frobenius norm** to be $\|A\|_F := \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 \right)^{1/2}$. Show that this defines a norm on the vector space of all $n \times n$ matrices. What about $\|A\| := \max_{1 \leq i, j \leq n} |a_{ij}|$?

Proof (Frobenius). To see that $\|A\|_F$ defines a norm, simply notice that $\|A\|_F$ is the same as the 2-norm of a super long vector in $\mathbb{R}^{n \times n} : (a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{nn})^T$. Therefore $\|A\|_F$ automatically satisfies all three postulates.

However, the Frobenius norm is not subordinated. For example, $Ix = x$ for all x , so if $\|\cdot\|_F$ were subordinate, one would have $\|I\|_F = \sup_{\|x\|=1} \|Ix\| = \sup_{\|x\|=1} \|x\| = 1$, while in reality $\|I\|_F = \sqrt{n}$ and n can > 1 . \square

Proof (max norm). Non-degeneracy and absolute homogeneity are trivial. For triangle inequality,

$$\max_{1 \leq i, j \leq n} |a_{ij} + b_{ij}| \leq \max_{1 \leq i, j \leq n} (|a_{ij}| + |b_{ij}|) \leq \max_{1 \leq i, j \leq n} |a_{ij}| + \max_{1 \leq i, j \leq n} |b_{ij}|.$$

This norm, unfortunately, is not subordinated, either. For if it were, then

$$\|AB\| = \sup_{\|x\|=1} \|ABx\| \leq \sup_{\|x\|=1} [\|A\|\|Bx\|] \leq \sup_{\|x\|=1} [\|A\|\|B\|\|x\|] = \|A\|\|B\|.$$

However, notice that if we let $A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ then $AB = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. Then $\|A\| = \|B\| = 1$ but $\|AB\| = 2$. \square

4.4.37 Prove that for each $x \in \mathbb{R}^n$,

$$\lim_{p \rightarrow \infty} \|x\|_p = \|x\|_\infty.$$

Remark: the same equation holds for $x \in \ell^q$ or L^q , $q \geq 1$.

Proof. On one hand, since each $|x_i|$ is bounded by the largest one, i.e., $\max_{1 \leq i \leq n} |x_i|$,

$$\left(\sum_{i=1}^n \|x_i\|^p \right)^{1/p} \leq \left(n \cdot \max_{1 \leq i \leq n} |x_i|^p \right)^{1/p} = n^{1/p} \max_{1 \leq i \leq n} |x_i| = n^{1/p} \|x\|_\infty.$$

On the other hand, since $\sum_{i=1}^n$ includes the largest one and other $|x_i|$'s are also nonnegative,

$$\left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \geq \left(\max_{1 \leq i \leq n} |x_i|^p \right)^{1/p} = \max_{1 \leq i \leq n} |x_i| = \|x\|_\infty.$$

Since $p^{1/p} = \exp((1/p) \log(p))$ and L'Hôpital's rule gives

$$\lim_{p \rightarrow \infty} \frac{\log(p)}{p} = \lim_{p \rightarrow \infty} \frac{1/p}{1} = 0,$$

we know $\lim_{p \rightarrow \infty} p^{1/p} = e^0 = 1$. Therefore, by squeeze theorem, $\lim_{p \rightarrow \infty} \|x\|_p = \|x\|_\infty$. \square

 End of Homework 7