
MATH 501 Homework 8

Qilin Ye, March 26, 2021

Pseudocode Implementation

1 M = input("Number of iterations: ");

2 A = [2,-1,0;1,6,-2;4,-3,8];

3 b = [2 -4 5];

4 x = [0; 0; 0];

5 u = [0; 0; 0];

6 n = size(x,1);

7 Iteration = zeros(M,1);

8 Jacobi_Method_Approximation = zeros(M,n);

9

10 for k = 1:M

11 for i = 1:n

12 d = 1 / A(i,i);

13 b(i) = d * b(i);

14 for j = 1:n

15 A(i,j) = d * A(i,j);

16 end

17 u(i) = b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:n) *

x(i+1:n);

18 end

19 for i = 1:n

20 x(i) = u(i);

21 end

22 Iteration(k) = k;

23 Jacobi_Method_Approximation(k,1:n) = x';

24 end

25

26 disp(' ');

27 disp(table(Iteration, Jacobi_Method_Approximation));

1 %Gauss-Seidel

2 M = input("Number of iterations: ");

3 A = [2,-1,0;1,6,-2;4,-3,8];

4 b = [2 -4 5];

5 x = [0; 0; 0];

6 n = size(x,1);

7

8 Iteration = zeros(M,1);

9 Gauss_Siedel_Approximation = zeros(M,n);

10

11 for k = 1:M

12 for i = 1:n

13 x(i) = (b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:n)

* x(i+1:n)) / A(i,i);

14 end

15 Iteration(k) = k;

16 Gauss_Siedel_Approximation(k,1:n) = x';

17 end

18 disp(' ');

19 disp(table(Iteration, Gauss_Siedel_Approximation));
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Textbook Problems

4.4.44 Let A be an m × n matrix. We interpret A as a linear map from Rn with ∥ ⋅ ∥1 to Rm with ∥ ⋅ ∥∞. What is
∥A∥ under these circumstances?

Solution

Claim: ∥A∥ defined this way is simply max{∣ai,j ∣ ∶ ai,j ∈ A}. Indeed, ∥Ax∥∞ only cares about the entry
that has the largest absolute value. Let it be the kth component of Ax, say. Let x ∈ Rn be any vector
with ∥x∥1 = 1. By definition, we want to find the supremum of the absolute value of

(Ax)k = [ak,1 ⋯ ak,n] [x1 ⋯ xn]
T
,

where
∥x∥1 = 1 Ô⇒

n

∑
i=1
∣xi∣ = 1.

If we assume ∣ak,ℓ∣ > ∣ak,ℓ′ ∣ for all ℓ′ ≠ ℓ, it immediately follows that

−∣ak,ℓ∣ ⩽
n

∑
i=1

ak,ixi ⩽ ∣ak,ℓ∣.

Furthermore, one of the inequalities is always obtained by setting xi ∶= δi,ℓ. Therefore ∥A∥ is indeed
given by the biggest possible ∣ai,j ∣.

4.4.47 Let ∥ ⋅ ∥ be a norm on Rn and let A be an n × n matrix. Put ∥x∥′ ∶= ∥Ax∥. What are the precise conditions
on A to ensure that ∥ ⋅ ∥′ is also a norm?

Solution

Claim: ∥ ⋅ ∥′ is a norm if and only if A is invertible.
For Ô⇒ , if ∥ ⋅ ∥′ is a norm, then it is non-degenerate. Hence if x ≠ 0 then ∥x∥′ = ∥Ax∥ ≠ 0. By the
non-degeneracy of ∥ ⋅ ∥ we know Ax ≠ 0, and thus A needs to be invertible.
For ⇐Ô , assume A is invertible. By above, we see ∥ ⋅∥′ is indeed non-degenerate as x ≠ 0 Ô⇒ ∥Ax∥ =
∥x∥′ ≠ 0. Absolute homogeneity follows directly from that of ∥ ⋅ ∥:

∥λx∥′ = ∥λAx∥ = ∣λ∣∥Ax∥ = ∣λ∣∥x∥′

and triangle inequality as well:

∥x + y∥′ = ∥A(x + y)∥ = ∥Ax +Ay∥ ⩽ ∥Ax∥ + ∥Ay∥ = ∥x∥′ + ∥y∥′.

4.4.52 Prove that if A is nonsingular then there exists δ > 0 with the property that A + E is nonsingular for all
matrices E satisfying ∥E∥ < δ.

Proof. First notice that the determinant is a continuous function from GL(n,R) → R (or, equivalently,
from Rn×n → R):

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

aσ(i),i.
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(Indeed, we can append the row vectors of A to obtain (a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . . , an,1, an,n) ∈ Rn×n.)
For notational clarity, given â ∈ Rn×n as defined above, we denote âi,j by the (i, j) entry of A.
Suppose A is nonsingular, i.e., det(A) ≠ 0. By the continuity of det(⋅), there exists an open neighborhood
U of â such that ∣det(B) − det(A)∣ < ∣det(A)∣/2 for all B ∈ U . Therefore all B ∈ U are also invertible!
It remains to show that we can find a δ. Indeed, we can define Cn×n by

ci,j = inf
b̂∉U

∣âi,j − b̂i,j ∣
2

.

It follows immediately that C ∈ U and so is any matrix C ′ that is entry-wise absolutely bounded by C,
i.e., if ∣c′i,j ∣ ⩽ ci,j for all i, j. Therefore, if we define δ ∶= ∥C∥, the claim follows.

4.4.55 Prove that if A is nonsingular, then there is a singular matrix with distance ∥A−1∥−1 of A.

4.5.1 Prove that the set of invertible n × n matrices is an open set in the set of all n × n matrices. Thus, if A is
invertible, then there is a positive ϵ such that every matrix B satisfying ∥A −B∥ < ϵ is also invertible.

Proof. This has been shown in Exercise 4.4.52.

4.5.2 Prove that if A is invertible and ∥B −A∥ < ∥A−1∥−1 then B is invertible.

Proof. By assumption, ∥B−A∥∥A−1∥ < 1, and so by Theorem 4.5.1, I −(B−A)(A−1) = −BA−1 is invertible.
Then it follows that B must be invertible.

4.5.8 Prove that if ∥A∥ < 1 then

(I +A)−1 = I −A +A2 −A3 + . . . .

Proof. This directly follows from Theorem 4.5.1 by noticing ∥ −A∥ = ∥A∥ < 1 and that

(−A)k = (−1)kAk.

4.5.14 Prove that if inf
λ∈R
∥I − λA∥ < 1 then ∥A∥ is invertible.

Proof. By assumption, there exists some λ1 ∈ R such that ∥I − λ1A∥ < 1. Notice that

I − λ1A = I − (λ1I)A.

Theorem 4.5.2 gives the invertibility of both λ1I and A (so we are done).

4.5.20 Show that the sequence of functions xn(t) = tn on [0,1] has properties ∥xn∥∞ = 1 and ∥xn∥1 → 0 as n→ 0.

Proof. The L∞ is clear as ∥xn∥∞ = ∣x(1)∣ = 1 for all n. On the other hand,

∥xn∥1 = ∫
1

0
∣tn∣ dt = ∫

1

0
tn dt = 1

n + 1
→ 0 as n→∞.

This shows that convergence in L∞ does not imply that in L1.

4.5.21 Prove that if ∥AB − I∥ < 1 then 2B − BAB is a better approximation of A−1 than B in the sense that
A(2B −BAB) is closer to I.

Proof. Recall from Theorem 4.5.1 that

(AB)−1 =
∞
∑
k=0
(I −AB)k Ô⇒ I = AB

∞
∑
k=0
(I −AB)k.
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It follows that
I −A(2B −BAB) = I −AB −AB(I −AB) = AB

∞
∑
k=2
(I −AB)k.

By the submultiplicativity of ∥ ⋅ ∥, we have

∥I −A(2B −BAB)∥ = ∥AB
∞
∑
k=2
(I −AB)k∥ ⩽ ∥I −AB∥∥AB

∞
∑
k=1
(I −AB)k∥

where the last ∥ ⋅ ∥ on the RHS is nothing but ∥I −AB∥. Since ∥I −AB∥ ⩽ 1 we conclude that

∥I −A(AB −BAB)∥ ⩽ ∥I −AB∥2 < ∥I −AB∥.

4.5.31 Prove that if p is a polynomial without constant term such that

∥I − p(A)∥ < 1

then A is invertible.

Proof. Obvious. We can write p(A) ∶= A ⋅ q(A) thanks to the absence of constant term. Then Theorem
4.5.2 gives the claim.
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