MATH 501 Homework 8

Qilin Ye, March 26, 2021

Pseudocode Implementation

1 M = input("Number of iterations: "); 1  %Gauss-Seidel

2 A= [2,-1,0;1,6,-2;4,-3,8]; 2 M = input("Number of iteratiomns: ");
3 b= [2-45]; 3 A= [2,-1,0;1,6,-2;4,-3,8];

1 x = [0; 0; 0]; 1 b =[2-45];

5 u = [0; 0; 0]; 5 x = [0; 0; 0];

6 n = size(x,1); 6 n = size(x,1);

7 Iteration = zeros(M,1); 7

8 Jacobi_Method_Approximation = zeros(M,n); 8 Iteration = zeros(M,1);

9 9  Gauss_Siedel_Approximation = zeros(M,n);

@

10 for k = 1:M 10

11 for i = 1:n 11 for k = 1:M

12 d=1/A@i,i); 12 for i = 1:n

13 b(i) = d * b(i); 13 x(1) = (b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:n)

14 for j = 1:n * x(i+1:n)) / A(i,1);

15 A(i,j) =d * A(i,j); 14 end

16 end 15 Iteration(k) = k;

17 u(i) = b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1l:n) =* 16 Gauss_Siedel_Approximation(k,1:n) = x';
x(i+1:n); 17 end

18 end 18 disp(' ");

19 for i = 1:n 19 disp(table(Iteration, Gauss_Siedel_Approximation));

20 x(1) = u(d);

21 end

22 Iteration(k) = k; [ [ ] Command Window

23 Jacobi_Method_Approximation(k,1:n) = x'; Number of iterations: 13

24 =58 Iteration Gauss_Siedel_Approximation

26 disp(' ');

. . X . . 1 1 —-0.83333 -0.1875
27 disp(table(Iteration, Jacobi_Method_Approximation)) ; 5 0.58333 _0.82639 0.023438
3 0.58681 -0.75666 0.047852
4 0.62167 -0.75433 0.031291
. 5 0.62284 -0.76004 0.028566
. gemmand Window 6 0.61998  -0.76047  0.029833
Number of iterations: 13 ® 7 0.61976 -0.76002 0.030113
8 0.61999 -0.75996 0.030019
Iteration Jacobi_Method_Approximation 9 0.62002 -0.76 0.029991
10 0.62 -0.76 0.029998
11 0.62 -0.76 0.030001
1 1 -0.66667 0.625 12 0.62 -0.76 0.03
2 0.66667 -0.625 -0.125 13 0.62 -0.76 0.03
3 0.6875  -0.81944  0.057292 f

4 0.59028 -0.76215 -0.026042

5 0.61892 -0.77373 0.044054

6 0.61314 -0.75514 0.025391

7 0.62243 -0.76039 0.035256

8 0.6198 -0.75865 0.028637

9 0.62067 -0.76042 0.030603

10 0.61979 -0.75991 0.029505

11 0.62004 -0.76013 0.030139

12 0.61994 -0.75996 0.029929

13 0.62002 -0.76001 0.030047
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Textbook Problems

4.4.44 Let A be an m x n matrix. We interpret A as a linear map from R™ with |- [|; to R™ with | - |s. What is

| A under these circumstances?

Solution

Claim: ||A| defined this way is simply max{|a; ;| : a; j € A}. Indeed, ||Az| o only cares about the entry
that has the largest absolute value. Let it be the k' component of Az, say. Let 2 ¢ R" be any vector

with |21 = 1. By definition, we want to find the supremum of the absolute value of

(Ax)k:[ak,l ak,n][xl xn]T7

where

lz)1=1 = |y = 1.
i=1

If we assume |ak¢| > |ak,¢| for all £/ # £, it immediately follows that
n
—lak,el € akiw; < lagl.
i=1

Furthermore, one of the inequalities is always obtained by setting x; := d; o. Therefore |A| is indeed

given by the biggest possible |a; j|. O

4.4.47 Let || - || be a norm on R™ and let A be an n x n matrix. Put |z’ := |Ax||. What are the precise conditions

on A to ensure that || - ||" is also a norm?

Solution

Claim: |+ |" is a norm if and only if A is invertible.

For =, if | -|’ is a norm, then it is non-degenerate. Hence if x # 0 then |z|" = |Ax| # 0. By the
non-degeneracy of | - | we know Az # 0, and thus A needs to be invertible.

For <=, assume A is invertible. By above, we see |-||’ is indeed non-degenerate as x + 0 = ||Az| =

|z]" # 0. Absolute homogeneity follows directly from that of || - ||:
[Az]” = [AAz| = A Az] = [A]|2]"
and triangle inequality as well:

lz+yl" = [A(z + )] = [Az + Ay| < [ Az| + | Ayl = =]+ [y]" B

4.4.52 Prove that if A is nonsingular then there exists § > 0 with the property that A + E is nonsingular for all
matrices E satisfying | E| < 6.
Proof. First notice that the determinant is a continuous function from GL(n,R) - R (or, equivalently,

from R™™ - R):
n
det(A) = Z sgn(o) Hag(i),i.
i=1

geS,
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(Indeed, we can append the row vectors of A to obtain (a1 1,...,01,n,021,---,02n,---,0n1,0nn) € R™*™)
For notational clarity, given a e R™" as defined above, we denote a; ; by the (i, ) entry of A.

Suppose A is nonsingular, i.e., det(A) # 0. By the continuity of det(-), there exists an open neighborhood
U of a such that |det(B) — det(A)| < |[det(A)|/2 for all B € U. Therefore all B € U are also invertible!

It remains to show that we can find a §. Indeed, we can define C,, «, by

T
¢ = inf i m|.
beU 2

It follows immediately that C € U and so is any matrix C’ that is entry-wise absolutely bounded by C,

i.e., if |c} ;| < ¢y for all i, j. Therefore, if we define ¢ := |C||, the claim follows. O

4.4.55 Prove that if A is nonsingular, then there is a singular matrix with distance ||A™'|™! of A.

4.5.1 Prove that the set of invertible n x n matrices is an open set in the set of all n x n matrices. Thus, if A is

invertible, then there is a positive € such that every matrix B satisfying ||A - B| < € is also invertible.

Proof. This has been shown in Exercise 4.4.52. O
4.5.2 Prove that if A is invertible and |B - A| < |A™!||"! then B is invertible.

Proof. By assumption, |B-Al||A7| < 1, and so by Theorem 4.5.1, I - (B-A)(A™!) = ~-BA™! is invertible.

Then it follows that B must be invertible. O
4.5.8 Prove that if |A| <1 then

(T+A) P =T-A+ A2 - A%+ ...
Proof. This directly follows from Theorem 4.5.1 by noticing | — A| = ||A| < 1 and that
(~A)F = (~1)~ 4" O

4.5.14 Prove that if irelﬂf{; [ —AA|| <1 then | A] is invertible.

Proof. By assumption, there exists some A; € R such that |I - A\ A| < 1. Notice that
I-MA=1- (MDA

Theorem 4.5.2 gives the invertibility of both A1 I and A (so we are done). O
4.5.20 Show that the sequence of functions z,,(¢) =t on [0, 1] has properties ||z, |« =1 and |z, |1 = 0 as n - 0.

Proof. The L* is clear as |2y |leo = [2(1)| = 1 for all n. On the other hand,

1 1 1
Hfﬂn\|1=/ |t”|dt=[ t"dt = —— - 0 as n — oo.
0 0 n+1

This shows that convergence in L* does not imply that in L!. O

4.5.21 Prove that if |AB - I| < 1 then 2B — BAB is a better approximation of A™! than B in the sense that
A(2B - BAB) is closer to I.

Proof. Recall from Theorem 4.5.1 that

(AB)™! = i([ - AB)" = I=AB i([— AB)*.
k=0 k=0
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It follows that

I-A(2B-BAB)=1-AB-AB(I - AB) = AB i(I—AB)’“.
k=2
By the submultiplicativity of | - |, we have
|1 - A(2B - BAB)| = ||AB ki([ - AB)Y| <1 - AB||aB 2(1 - AB)
where the last |« | on the RHS is nothing but |I - AB|. Since |I — AB|| <1 we conclude that
IT - A(AB - BAB)| <|I-AB|*<|I- AB]. O

4.5.31 Prove that if p is a polynomial without constant term such that
I -p(A)] <1

then A is invertible.

Proof. Obvious. We can write p(A) := A-q(A) thanks to the absence of constant term. Then Theorem

4.5.2 gives the claim.

O



