

MATH 501 Homework 8

Qilin Ye, March 26, 2021

Pseudocode Implementation

```

1 M = input("Number of iterations: ");
2 A = [2,-1,0;1,6,-2;4,-3,8];
3 b = [2 -4 5];
4 x = [0; 0; 0];
5 u = [0; 0; 0];
6 n = size(x,1);
7 Iteration = zeros(M,1);
8 Jacobi_Method_Approximation = zeros(M,n);
9
10 for k = 1:M
11     for i = 1:n
12         d = 1 / A(i,i);
13         b(i) = d * b(i);
14         for j = 1:n
15             A(i,j) = d * A(i,j);
16         end
17         u(i) = b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:n) *
18             x(i+1:n);
19     end
20     for i = 1:n
21         x(i) = u(i);
22     end
23     Iteration(k) = k;
24     Jacobi_Method_Approximation(k,1:n) = x';
25 end
26 disp(' ');
27 disp(table(Iteration, Jacobi_Method_Approximation));

```

Command Window			
Number of iterations: 13			
Iteration	Jacobi_Method_Approximation		
1	1	-0.66667	0.625
2	0.66667	-0.625	-0.125
3	0.6875	-0.81944	0.057292
4	0.59028	-0.76215	-0.026042
5	0.61892	-0.77373	0.044054
6	0.61314	-0.75514	0.025391
7	0.62243	-0.76039	0.035256
8	0.6198	-0.75865	0.028637
9	0.62067	-0.76042	0.030603
10	0.61979	-0.75991	0.029505
11	0.62004	-0.76013	0.030139
12	0.61994	-0.75996	0.029929
13	0.62002	-0.76001	0.030047

```

1 %Gauss-Seidel
2 M = input("Number of iterations: ");
3 A = [2,-1,0;1,6,-2;4,-3,8];
4 b = [2 -4 5];
5 x = [0; 0; 0];
6 n = size(x,1);
7
8 Iteration = zeros(M,1);
9 Gauss_Siedel_Approximation = zeros(M,n);
10
11 for k = 1:M
12     for i = 1:n
13         x(i) = (b(i) - A(i,1:i-1) * x(1:i-1) - A(i,i+1:n) *
14             x(i+1:n)) / A(i,i);
15     end
16     Iteration(k) = k;
17     Gauss_Siedel_Approximation(k,1:n) = x';
18 end
19 disp(' ');
20 disp(table(Iteration, Gauss_Siedel_Approximation));

```

Command Window			
Number of iterations: 13			
Iteration	Gauss_Siedel_Approximation		
1	1	-0.83333	-0.1875
2	0.58333	-0.82639	0.023438
3	0.58681	-0.75666	0.047852
4	0.62167	-0.75433	0.031291
5	0.62284	-0.76004	0.028566
6	0.61998	-0.76047	0.029833
7	0.61976	-0.76002	0.030113
8	0.61999	-0.75996	0.030019
9	0.62002	-0.76	0.029991
10	0.62	-0.76	0.029998
11	0.62	-0.76	0.030001
12	0.62	-0.76	0.03
13	0.62	-0.76	0.03

Textbook Problems

4.4.44 Let A be an $m \times n$ matrix. We interpret A as a linear map from \mathbb{R}^n with $\|\cdot\|_1$ to \mathbb{R}^m with $\|\cdot\|_\infty$. What is $\|A\|$ under these circumstances?

Solution

Claim: $\|A\|$ defined this way is simply $\max\{|a_{i,j}| : a_{i,j} \in A\}$. Indeed, $\|Ax\|_\infty$ only cares about the entry that has the largest absolute value. Let it be the k^{th} component of Ax , say. Let $x \in \mathbb{R}^n$ be any vector with $\|x\|_1 = 1$. By definition, we want to find the supremum of the absolute value of

$$(Ax)_k = \begin{bmatrix} a_{k,1} & \cdots & a_{k,n} \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T,$$

where

$$\|x\|_1 = 1 \implies \sum_{i=1}^n |x_i| = 1.$$

If we assume $|a_{k,\ell}| > |a_{k,\ell'}|$ for all $\ell' \neq \ell$, it immediately follows that

$$-|a_{k,\ell}| \leq \sum_{i=1}^n a_{k,i} x_i \leq |a_{k,\ell}|.$$

Furthermore, one of the inequalities is always obtained by setting $x_i := \delta_{i,\ell}$. Therefore $\|A\|$ is indeed given by the biggest possible $|a_{i,j}|$. \square

4.4.47 Let $\|\cdot\|$ be a norm on \mathbb{R}^n and let A be an $n \times n$ matrix. Put $\|x\|' := \|Ax\|$. What are the precise conditions on A to ensure that $\|\cdot\|'$ is also a norm?

Solution

Claim: $\|\cdot\|'$ is a norm if and only if A is invertible.

For \implies , if $\|\cdot\|'$ is a norm, then it is non-degenerate. Hence if $x \neq 0$ then $\|x\|' = \|Ax\| \neq 0$. By the non-degeneracy of $\|\cdot\|$ we know $Ax \neq 0$, and thus A needs to be invertible.

For \impliedby , assume A is invertible. By above, we see $\|\cdot\|'$ is indeed non-degenerate as $x \neq 0 \implies \|Ax\| = \|x\|' \neq 0$. Absolute homogeneity follows directly from that of $\|\cdot\|$:

$$\|\lambda x\|' = \|\lambda Ax\| = |\lambda| \|Ax\| = |\lambda| \|x\|'$$

and triangle inequality as well:

$$\|x + y\|' = \|A(x + y)\| = \|Ax + Ay\| \leq \|Ax\| + \|Ay\| = \|x\|' + \|y\|'. \quad \square$$

4.4.52 Prove that if A is nonsingular then there exists $\delta > 0$ with the property that $A + E$ is nonsingular for all matrices E satisfying $\|E\| < \delta$.

Proof. First notice that the determinant is a continuous function from $\text{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}$ (or, equivalently, from $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$):

$$\det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i}.$$

(Indeed, we can append the row vectors of A to obtain $(a_{1,1}, \dots, a_{1,n}, a_{2,1}, \dots, a_{2,n}, \dots, a_{n,1}, a_{n,n}) \in \mathbb{R}^{n \times n}$.) For notational clarity, given $\hat{a} \in \mathbb{R}^{n \times n}$ as defined above, we denote $\hat{a}_{i,j}$ by the (i, j) entry of A . Suppose A is nonsingular, i.e., $\det(A) \neq 0$. By the continuity of $\det(\cdot)$, there exists an open neighborhood U of \hat{a} such that $|\det(B) - \det(A)| < |\det(A)|/2$ for all $B \in U$. Therefore all $B \in U$ are also invertible! It remains to show that we can find a δ . Indeed, we can define $C_{n \times n}$ by

$$c_{i,j} = \inf_{\hat{b} \in U} \frac{|\hat{a}_{i,j} - \hat{b}_{i,j}|}{2}.$$

It follows immediately that $C \in U$ and so is any matrix C' that is entry-wise absolutely bounded by C , i.e., if $|c'_{i,j}| \leq c_{i,j}$ for all i, j . Therefore, if we define $\delta := \|C\|$, the claim follows. \square

4.4.55 Prove that if A is nonsingular, then there is a singular matrix with distance $\|A^{-1}\|^{-1}$ of A .

4.5.1 Prove that the set of invertible $n \times n$ matrices is an open set in the set of all $n \times n$ matrices. Thus, if A is invertible, then there is a positive ϵ such that every matrix B satisfying $\|A - B\| < \epsilon$ is also invertible.

Proof. This has been shown in Exercise 4.4.52. \square

4.5.2 Prove that if A is invertible and $\|B - A\| < \|A^{-1}\|^{-1}$ then B is invertible.

Proof. By assumption, $\|B - A\| \|A^{-1}\| < 1$, and so by Theorem 4.5.1, $I - (B - A)(A^{-1}) = -BA^{-1}$ is invertible. Then it follows that B must be invertible. \square

4.5.8 Prove that if $\|A\| < 1$ then

$$(I + A)^{-1} = I - A + A^2 - A^3 + \dots$$

Proof. This directly follows from Theorem 4.5.1 by noticing $\| - A \| = \|A\| < 1$ and that

$$(-A)^k = (-1)^k A^k.$$

4.5.14 Prove that if $\inf_{\lambda \in \mathbb{R}} \|I - \lambda A\| < 1$ then $\|A\|$ is invertible.

Proof. By assumption, there exists some $\lambda_1 \in \mathbb{R}$ such that $\|I - \lambda_1 A\| < 1$. Notice that

$$I - \lambda_1 A = I - (\lambda_1 I)A.$$

Theorem 4.5.2 gives the invertibility of both $\lambda_1 I$ and A (so we are done). \square

4.5.20 Show that the sequence of functions $x_n(t) = t^n$ on $[0, 1]$ has properties $\|x_n\|_\infty = 1$ and $\|x_n\|_1 \rightarrow 0$ as $n \rightarrow 0$.

Proof. The L^∞ is clear as $\|x_n\|_\infty = |x(1)| = 1$ for all n . On the other hand,

$$\|x_n\|_1 = \int_0^1 |t^n| dt = \int_0^1 t^n dt = \frac{1}{n+1} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

This shows that convergence in L^∞ does not imply that in L^1 . \square

4.5.21 Prove that if $\|AB - I\| < 1$ then $2B - BAB$ is a better approximation of A^{-1} than B in the sense that $A(2B - BAB)$ is closer to I .

Proof. Recall from Theorem 4.5.1 that

$$(AB)^{-1} = \sum_{k=0}^{\infty} (I - AB)^k \implies I = AB \sum_{k=0}^{\infty} (I - AB)^k.$$

It follows that

$$I - A(2B - BAB) = I - AB - AB(I - AB) = AB \sum_{k=2}^{\infty} (I - AB)^k.$$

By the submultiplicativity of $\|\cdot\|$, we have

$$\|I - A(2B - BAB)\| = \left\| AB \sum_{k=2}^{\infty} (I - AB)^k \right\| \leq \|I - AB\| \left\| AB \sum_{k=1}^{\infty} (I - AB)^k \right\|$$

where the last $\|\cdot\|$ on the RHS is nothing but $\|I - AB\|$. Since $\|I - AB\| \leq 1$ we conclude that

$$\|I - A(AB - BAB)\| \leq \|I - AB\|^2 < \|I - AB\|. \quad \square$$

4.5.31 Prove that if p is a polynomial without constant term such that

$$\|I - p(A)\| < 1$$

then A is invertible.

Proof. Obvious. We can write $p(A) := A \cdot q(A)$ thanks to the absence of constant term. Then Theorem 4.5.2 gives the claim. \square