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Pseudocode Implementation

1 % Power method, needs phi();
2

3 A = [6,5,-5;2,6,-2;2,5,-1];
4 x = [-1,1,1]';
5 n = size(A);
6 n = n(1);
7

8 for k = 1:25
9 y = A*x;

10 r = phi(y) / phi(x);
11 x = y / abs(max(y));
12 end
13 clearvars -except r x k
14

15 % --------------------------------
16

17 % Inverse power method
18

19 A = [6,5,-5;2,6,-2;2,5,-1];
20 x = [3,7,-13]';
21 n = size(A);
22 n = n(1);
23

24 [L, U] = LU_Decomp(A);
25

26 for k = 1:11
27 y = Iterate(U,L,x);
28 x = y / max(abs(y));
29 r = phi(y) / phi(x);
30 end
31 clearvars -except r x k

1 function y = phi(x)
2 y = x(2);
3 end
4 %Directly from HW5
5 function [L, U] = LU_Decomp(A)
6 n = size(A);
7 n = n(1);
8 L = zeros(n);
9 U = zeros(n);

10 for k = 1:n
11 L(k,k) = 1;
12 for j = k:n
13 A_kj_Old = A(k,j);
14 for s = 1:k-1
15 A_kj_Old = A_kj_Old - L(k,s) * U(s,j);
16 end
17 U(k,j) = A_kj_Old;
18 end
19
20 for i = k+1:n
21 A_ik_Old = A(i,k);
22 for s = 1:k-1
23 A_ik_Old = A_ik_Old - L(i,s) * U(s,k);
24 end
25 L(i,k) = A_ik_Old / U(k,k);
26 end
27 end
28 end
29
30 function x = Iterate(U,L,b)
31 n = size(U);
32 n = n(1);
33 z = zeros(n);
34 for i=1:n
35 b_i_Old = b(i);
36 for j = 1:i-1
37 b_i_Old = b_i_Old - L(i,j) * z(j);
38 end
39 z(i) = b_i_Old;
40 end
41 x = zeros(n,1);
42 for i = 0:n-1
43 z_i_Old = z(n-i);
44 for j = n+1-i:n
45 z_i_Old = z_i_Old - U(n-i,j) * x(j);
46 end
47 x(n-i) = z_i_Old / U(n-i,n-i);
48 end
49 end

1



MATH 501 Homework 9 YQL

Textbook Problems

4.6.1 Prove that if A is diagonally dominant and if Q is chosen as in the Jacobi method, then

ρ(I −Q−1A) < 1.

Proof. If Q simply consists of the diagonal entries of A then Q−1 acts on ai,j by ai.j ↦ ai,j/ai,i. It follows
that the diagonal entries of Q−1A are all 1 and, since the ratios between entries in the same row remain
unchanged, by A’s diagonal dominance

(Q−1A)i,i = 1 =
∣ai,i∣
∣ai,i∣

> (∑
j≠i
∣ai,j ∣)/∣ai,i∣ =∑

j≠i

∣ai,j ∣
∣ai,i∣

=∑
j≠i
∣(Q−1A)i,j ∣

and so Q−1A is also diagonal dominant. It follows that ∥I −Q−1A∥∞ < 1, and ρ(I −Q−1A) ⩽ ∥I −Q−1A∥∞
by definition of infimum.

4.6.5 Let ∥ ⋅ ∥ be a norm on Rn. Let S be an n × n nonsingular matrix. Define ∥x∥′ = ∥Sx∥. Prove that ∥ ⋅ ∥′ is a
norm.

Proof. Non-degeneracy is clear as x ≠ 0⇒ Sx ≠ 0⇒ ∥Sx∥ > 0 and ∥Sx∥ = 0 ⇐⇒ Sx = 0 ⇐⇒ x = 0.
Absolute homogeneity:

∥λx∥′ = ∥S(λx)∥ = ∥λ(Sx)∥ = ∣λ∣∥Sx∥ = ∣λ∣∥x∥′.

For triangle inequality:

∥x + y∥′ = ∥S(x + y)∥ = ∥Sx + Sy∥ ⩽ ∥Sx∥ + ∥Sy∥ = ∥x∥′ + ∥y∥′.

4.6.6 Let ∥ ⋅ ∥ be a subordinate matrix norm and let S be a nonsingular matrix. Define ∥A∥′ = ∥SAS−1∥. Show that
∥ ⋅ ∥′ is a subordinate matrix norm.

Proof. ∥A∥′ = ∥SAS−1∥ = sup
∥x∥=1

∥SAS−1x∥ = sup
∥Sx∥=1

∥SAx∥ = sup
∥x∥′=1

∥Ax∥′, where the second step takes advan-

tage of the fact SS−1x = x and the third uses the result from 4.6.5.

4.6.10 Which of the norm axioms are satisfied by the spectral radius function ρ and which are not?

Solution

Non-degeneracy is not satisfied: the eigenvalues of the nonzero matrix
⎡⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎦
are both 0 so ρ(⋅) = 0.

Absolute homogeneity is not satisfied: suppose λi is the maximal eigenvalue of A with Axi = λix. We
then have

(−A)xi = −(Axi) = −λixi ≠ ∣−1∣ ⋅ λixi.

Triangle inequality is not satisfied, either. Consider A =
⎡⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎦
. Clearly ρ(A) =

ρ(B) = 0 but A +B =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
which has ρ(⋅) = 1.

4.6.16 Prove that if A is nonsingular then AA∗ is positive definite.

Proof. A∗ is also nonsingular. Thus, for x ≠ 0, A∗x ≠ 0 and x∗AA∗x = (A∗x)∗(A∗x) =
√
∥A∗x∥ > 0.

4.6.18 Prove that if A is positive definite, then so are A2,A3, . . . as well as A−1,A−2, . . . .
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Proof. If A is positive definite then its eigenvalues are strictly positive. Notice that if Ax = λx then
Akx = Ak−1(Ax) = Ak−1λx = ⋅ ⋅ ⋅ = λkx. Thus all eigenvalues of Ak are also positive, and this implies the
positive definiteness of Ak: for an eigenvector x corresponding to eigenvalue λ > 0 of B, we have

x∗Bx = x∗(λx) = λ(x∗x) > 0,

and the result for more general x’s (i.e., linear combination of eigenvectors) follow from linearity of matrix
operation. For powers of A−1, simply notice that the eigenvalues of A−1 are 1/λi’s.

5.1.1 Let A be an n × n matrix with P ’s column being its linearly independent eigenvectors. What is P −1AP?

Solution

P −1AP = P −1(PΛP −1)P = Λ = diag(λ1, . . . , λn).

5.1.3 In the power method, let rk = φ(x(k+1))/φ(x(k)). We know that lim
k→∞

rk = λ1. Show that the relative errors
obey

rk − λ1

λ1
= (λ2

λ1
)
k

ck

where {ck} is convergent.

Proof. Since

rk =
φ(x(k+1))
φ(x(k))

= λk+1
1 (φ(u(1)) + φ(ϵ(k+1)))
λk
1(φ(u(1)) + φ(ϵ(k)))

= λ1
φ(u(1)) + φ(ϵ(k+1))
φ(u(1)) + φ(ϵ(k))

,

we have

rk − λ1

λ1
= φ(u(1)) + φ(ϵ(k+1))

φ(u(1)) + φ(ϵ(k))
− 1 = φ(ϵ(k+1)) − φ(ϵ(k))

φ(u(1)) + φ(ϵ(k))

= φ[(λ2/λ1)k+1u(2) − (λ2/λ1)ku(2) + ⋅ ⋅ ⋅ + (λn/λ1)k+1u(n) − (λn/λ1)ku(n)]
φ(u(1) + ϵ(k))

= φ[(λ2/λ1)k(λ2/λ1 − 1)u(2) + . . . ]
φ(u(1) + ϵ(k))

= (λ2

λ1
)
k φ[(λ2/λ1 − 1)u(2) + (λ3/λ2)k(λ3/λ1 − 1)u(3) + . . . ]

φ(u(1) + ϵ(k))

= (λ2

λ1
)
k φ(λ2/λ1 − 1)u(2)

φ(u(1))
.

5.1.4 Show that rk+1−λ = (c+δk)(rk−λ1) where ∣c∣ < 1 and lim
n→∞

δk = 0 so that the Aitken acceleration is applicable.

Proof. First we compute rk+1 − λ1:

rk+1 − λ1 =
φ(x(k+2)) − λ1φ(x(k+1))

φ(x(k+1))
= φ(x(k+2) − λ1x

(k+1))
φ(x(k+1)

=
φ [λk+1

1 (a1u(1) + ϵ(k+2)) − λk+2
1 (a1u(1) + ϵ(k+1))]

φ(λk+1
1 (a1u(1) + ϵ(k+1)))

= λk+2
1 φ(ϵ(k+2) − ϵ(k−1))

λk+1
1 φ(a1u(1) + ϵ(k+1))

= λ1
φ(ϵ(k+2) − ϵ(k+1))
φ(a1u(1) + ϵ(k+1))

.

Therefore
rk+1 − λ1

rk − λ1
= φ(a1u(1) + ϵ(k))

φ(ϵ(k+1) − ϵ(k))
⋅ φ(ϵ

(k+2) − ϵ(k−1))
φ(a1u(1) + ϵ(k+1))

which indeed converges to a constant as a constant with absolute value < 1 as k →∞.
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5.1.9 What can you prove about Aitken acceleration if the sequence {rn} satisfies only the hypothesis ∣rn+1 − r∣ ⩽
c∣rn − r∣ with 0 < c < 0.2?

Solution

The faster convergence by Aitken acceleration still holds as certainly any sequence bounded by
(−0.2,0.2) can be written as an = c′ + δn for some fixed c′ and δn → 0.
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