

MATH 501 Homework 9

Qilin Ye

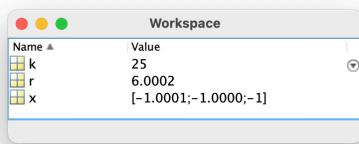
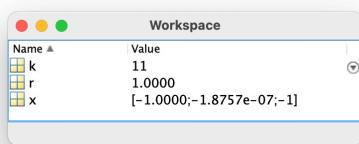
April 3, 2021

Pseudocode Implementation

```

1  % Power method, needs phi();
2
3  A = [6,5,-5;2,6,-2;2,5,-1];
4  x = [-1,1,1]';
5  n = size(A);
6  n = n(1);
7
8  for k = 1:25
9    y = A*x;
10   r = phi(y) / phi(x);
11   x = y / abs(max(y));
12 end
13 clearvars -except r x k
14
15 % -----
16
17 % Inverse power method
18
19 A = [6,5,-5;2,6,-2;2,5,-1];
20 x = [3,7,-13]';
21 n = size(A);
22 n = n(1);
23
24 [L, U] = LU_Decom(A);
25
26 for k = 1:11
27   y = Iterate(U,L,x);
28   x = y / max(abs(y));
29   r = phi(y) / phi(x);
30 end
31 clearvars -except r x k

```



```

1  function y = phi(x)
2    y = x(2);
3  end
4  %Directly from HW5
5  function [L, U] = LU_Decom(A)
6
7  n = size(A);
8  n = n(1);
9  L = zeros(n);
10 U = zeros(n);
11 for k = 1:n
12   L(k,k) = 1;
13   for j = k:n
14     A_kj_Old = A(k,j);
15     for s = 1:k-1
16       A_kj_Old = A_kj_Old - L(k,s) * U(s,j);
17     end
18     U(k,j) = A_kj_Old;
19   end
20
21   for i = k+1:n
22     A_ik_Old = A(i,k);
23     for s = 1:k-1
24       A_ik_Old = A_ik_Old - L(i,s) * U(s,k);
25     end
26     L(i,k) = A_ik_Old / U(k,k);
27   end
28 end
29
30 function x = Iterate(U,L,b)
31
32  n = size(U);
33  n = n(1);
34  z = zeros(n);
35  for i=1:n
36    b_i_Old = b(i);
37    for j = 1:i-1
38      b_i_Old = b_i_Old - L(i,j) * z(j);
39    end
40    z(i) = b_i_Old;
41  end
42  x = zeros(n,1);
43  for i = 0:n-1
44    z_i_Old = z(n-i);
45    for j = n+1-i:n
46      z_i_Old = z_i_Old - U(n-i,j) * x(j);
47    end
48    x(n-i) = z_i_Old / U(n-i,n-i);
49  end

```

Textbook Problems

4.6.1 Prove that if A is diagonally dominant and if Q is chosen as in the Jacobi method, then

$$\rho(I - Q^{-1}A) < 1.$$

Proof. If Q simply consists of the diagonal entries of A then Q^{-1} acts on $a_{i,j}$ by $a_{i,j} \mapsto a_{i,j}/a_{i,i}$. It follows that the diagonal entries of $Q^{-1}A$ are all 1 and, since the ratios between entries in the same row remain unchanged, by A 's diagonal dominance

$$(Q^{-1}A)_{i,i} = 1 = \frac{|a_{i,i}|}{|a_{i,i}|} > \left(\sum_{j \neq i} |a_{i,j}| \right) / |a_{i,i}| = \sum_{j \neq i} \frac{|a_{i,j}|}{|a_{i,i}|} = \sum_{j \neq i} |(Q^{-1}A)_{i,j}|$$

and so $Q^{-1}A$ is also diagonal dominant. It follows that $\|I - Q^{-1}A\|_\infty < 1$, and $\rho(I - Q^{-1}A) \leq \|I - Q^{-1}A\|_\infty$ by definition of infimum. \square

4.6.5 Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Let S be an $n \times n$ nonsingular matrix. Define $\|x'\| = \|Sx\|$. Prove that $\|\cdot\|'$ is a norm.

Proof. Non-degeneracy is clear as $x \neq 0 \Rightarrow Sx \neq 0 \Rightarrow \|Sx\| > 0$ and $\|Sx\| = 0 \iff Sx = 0 \iff x = 0$.

Absolute homogeneity:

$$\|\lambda x\|' = \|S(\lambda x)\| = \|\lambda(Sx)\| = |\lambda| \|Sx\| = |\lambda| \|x\|'.$$

For triangle inequality:

$$\|x + y\|' = \|S(x + y)\| = \|Sx + Sy\| \leq \|Sx\| + \|Sy\| = \|x\|' + \|y\|'. \quad \square$$

4.6.6 Let $\|\cdot\|$ be a subordinate matrix norm and let S be a nonsingular matrix. Define $\|A\|' = \|SAS^{-1}\|$. Show that $\|\cdot\|'$ is a subordinate matrix norm.

Proof. $\|A\|' = \|SAS^{-1}\| = \sup_{\|x\|=1} \|SAS^{-1}x\| = \sup_{\|Sx\|=1} \|SAx\| = \sup_{\|x\|=1} \|Ax\|'$, where the second step takes advantage of the fact $SS^{-1}x = x$ and the third uses the result from 4.6.5. \square

4.6.10 Which of the norm axioms are satisfied by the spectral radius function ρ and which are not?

Solution

Non-degeneracy is not satisfied: the eigenvalues of the nonzero matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ are both 0 so $\rho(\cdot) = 0$.

Absolute homogeneity is not satisfied: suppose λ_i is the maximal eigenvalue of A with $Ax_i = \lambda_i x_i$. We then have

$$(-A)x_i = -(Ax_i) = -\lambda_i x_i \neq -1 \cdot \lambda_i x_i.$$

Triangle inequality is not satisfied, either. Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Clearly $\rho(A) = \rho(B) = 0$ but $A + B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ which has $\rho(\cdot) = 1$.

4.6.16 Prove that if A is nonsingular then AA^* is positive definite.

Proof. A^* is also nonsingular. Thus, for $x \neq 0$, $A^*x \neq 0$ and $x^*AA^*x = (A^*x)^*(A^*x) = \sqrt{\|A^*x\|} > 0$. \square

4.6.18 Prove that if A is positive definite, then so are A^2, A^3, \dots as well as A^{-1}, A^{-2}, \dots

Proof. If A is positive definite then its eigenvalues are strictly positive. Notice that if $Ax = \lambda x$ then $A^k x = A^{k-1}(Ax) = A^{k-1}\lambda x = \dots = \lambda^k x$. Thus all eigenvalues of A^k are also positive, and this implies the positive definiteness of A^k : for an eigenvector x corresponding to eigenvalue $\lambda > 0$ of B , we have

$$x^* B x = x^*(\lambda x) = \lambda(x^* x) > 0,$$

and the result for more general x 's (i.e., linear combination of eigenvectors) follow from linearity of matrix operation. For powers of A^{-1} , simply notice that the eigenvalues of A^{-1} are $1/\lambda_i$'s. \square

5.1.1 Let A be an $n \times n$ matrix with P 's column being its linearly independent eigenvectors. What is $P^{-1}AP$?

Solution

$$P^{-1}AP = P^{-1}(P\Lambda P^{-1})P = \Lambda = \text{diag}(\lambda_1, \dots, \lambda_n).$$

5.1.3 In the power method, let $r_k = \varphi(x^{(k+1)})/\varphi(x^{(k)})$. We know that $\lim_{k \rightarrow \infty} r_k = \lambda_1$. Show that the relative errors obey

$$\frac{r_k - \lambda_1}{\lambda_1} = \left(\frac{\lambda_2}{\lambda_1}\right)^k c_k$$

where $\{c_k\}$ is convergent.

Proof. Since

$$r_k = \frac{\varphi(x^{(k+1)})}{\varphi(x^{(k)})} = \frac{\lambda_1^{k+1}(\varphi(u^{(1)}) + \varphi(\epsilon^{(k+1)}))}{\lambda_1^k(\varphi(u^{(1)}) + \varphi(\epsilon^{(k)}))} = \lambda_1 \frac{\varphi(u^{(1)}) + \varphi(\epsilon^{(k+1)})}{\varphi(u^{(1)}) + \varphi(\epsilon^{(k)})},$$

we have

$$\begin{aligned} \frac{r_k - \lambda_1}{\lambda_1} &= \frac{\varphi(u^{(1)}) + \varphi(\epsilon^{(k+1)})}{\varphi(u^{(1)}) + \varphi(\epsilon^{(k)})} - 1 = \frac{\varphi(\epsilon^{(k+1)}) - \varphi(\epsilon^{(k)})}{\varphi(u^{(1)}) + \varphi(\epsilon^{(k)})} \\ &= \frac{\varphi[(\lambda_2/\lambda_1)^{k+1}u^{(2)} - (\lambda_2/\lambda_1)^k u^{(2)} + \dots + (\lambda_n/\lambda_1)^{k+1}u^{(n)} - (\lambda_n/\lambda_1)^k u^{(n)}]}{\varphi(u^{(1)} + \epsilon^{(k)})} \\ &= \frac{\varphi[(\lambda_2/\lambda_1)^k(\lambda_2/\lambda_1 - 1)u^{(2)} + \dots]}{\varphi(u^{(1)} + \epsilon^{(k)})} \\ &= \left(\frac{\lambda_2}{\lambda_1}\right)^k \frac{\varphi[(\lambda_2/\lambda_1 - 1)u^{(2)} + (\lambda_3/\lambda_2)^k(\lambda_3/\lambda_1 - 1)u^{(3)} + \dots]}{\varphi(u^{(1)} + \epsilon^{(k)})} \\ &= \left(\frac{\lambda_2}{\lambda_1}\right)^k \frac{\varphi(\lambda_2/\lambda_1 - 1)u^{(2)}}{\varphi(u^{(1)})}. \end{aligned} \quad \square$$

5.1.4 Show that $r_{k+1} - \lambda = (c + \delta_k)(r_k - \lambda_1)$ where $|c| < 1$ and $\lim_{n \rightarrow \infty} \delta_k = 0$ so that the Aitken acceleration is applicable.

Proof. First we compute $r_{k+1} - \lambda_1$:

$$\begin{aligned} r_{k+1} - \lambda_1 &= \frac{\varphi(x^{(k+2)}) - \lambda_1 \varphi(x^{(k+1)})}{\varphi(x^{(k+1)})} = \frac{\varphi(x^{(k+2)} - \lambda_1 x^{(k+1)})}{\varphi(x^{(k+1)})} \\ &= \frac{\varphi[\lambda_1^{k+1}(a_1 u^{(1)} + \epsilon^{(k+2)}) - \lambda_1^{k+2}(a_1 u^{(1)} + \epsilon^{(k+1)})]}{\varphi(\lambda_1^{k+1}(a_1 u^{(1)} + \epsilon^{(k+1)}))} \\ &= \frac{\lambda_1^{k+2} \varphi(\epsilon^{(k+2)} - \epsilon^{(k+1)})}{\lambda_1^{k+1} \varphi(a_1 u^{(1)} + \epsilon^{(k+1)})} \\ &= \lambda_1 \frac{\varphi(\epsilon^{(k+2)} - \epsilon^{(k+1)})}{\varphi(a_1 u^{(1)} + \epsilon^{(k+1)})}. \end{aligned}$$

Therefore

$$\frac{r_{k+1} - \lambda_1}{r_k - \lambda_1} = \frac{\varphi(a_1 u^{(1)} + \epsilon^{(k)})}{\varphi(\epsilon^{(k+1)} - \epsilon^{(k)})} \cdot \frac{\varphi(\epsilon^{(k+2)} - \epsilon^{(k+1)})}{\varphi(a_1 u^{(1)} + \epsilon^{(k+1)})}$$

which indeed converges to a constant as a constant with absolute value < 1 as $k \rightarrow \infty$. \square

5.1.9 What can you prove about Aitken acceleration if the sequence $\{r_n\}$ satisfies only the hypothesis $|r_{n+1} - r| \leq c|r_n - r|$ with $0 < c < 0.2$?

Solution

The faster convergence by Aitken acceleration still holds as certainly any sequence bounded by $(-0.2, 0.2)$ can be written as $a_n = c' + \delta_n$ for some fixed c' and $\delta_n \rightarrow 0$.