

This exam contains 14 pages (including this cover page) and 9 questions.
Total of points is 165.

- Show your work.
- Finish by yourself!

Grade Table (for teacher use only)

Question	Points	Score
1	10	
2	20	
3	30	
4	25	
5	15	
6	20	
7	15	
8	10	
9	20	
Total:	165	

MATH 501 Midterm

Qilin Ye

March 20, 2021

Problem 1

The exponential integrals are the functions E_n defined by

$$E_n(x) = \int_1^\infty (e^{xt} t^n)^{-1} dt, \quad (n \geq 0, x > 0).$$

These functions satisfy the equation

$$nE_{n+1}(x) = e^{-x} - xE_n(x).$$

If $E_1(x)$ is known, can this computation be used to compute $E_2(x), E_3(x), \dots$ accurately?

Solution

In general, no. We first rewrite the equation as

$$E_{n+1}(x) = \frac{e^{-x}}{n} - \frac{x}{n} E_n(x).$$

This is relatively accurate for small x . When x is small, $x/n < 1$ for almost n 's and the error of δ units in $E_n(x)$ gradually decays to 0.

For larger x 's, however, every time when we compute $E_{n+1}(x)$ for $n < x$, the error is multiplied by a factor > 1 as $x/n > 1$ when $n < x$. For example, when $x = 10$, the initial error δ caused by rounding $E_1(x)$ becomes a stunning

$$\frac{10}{1} \cdot \frac{10}{2} \cdot \dots \cdot \frac{10}{9} \cdot \delta = \frac{10^9 \delta}{9!} \approx 2755 \delta,$$

which greatly disrupts the accuracy. In fact, when trying $x = 15$ on my MATLAB with a machine epsilon 2^{-52} , $E_{12}(x)$ returns a negative value, which is absurd.

Problem 2 has been deleted; see problem 5 instead.

Problem 3: (a)

(Problem 4.7.1, p.217) Prove that if A is symmetric, then the gradient of the function

$$q(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$$

at x is $2(Ax - b)$.

Proof. First notice that the partial derivative

$$g := \frac{\partial \langle x, y \rangle}{\partial x} = y. \quad (1)$$

Indeed, consider g_1 (the first component of g). It is defined as

$$\frac{\partial}{\partial x_1} \sum_{i=1}^n x_i y_i = y_1,$$

and likewise for all the remaining ones. Vector-wise we also have the chain rule:

$$\begin{aligned} \frac{d \langle x, Ax \rangle}{dx} &= \frac{dx^T}{dx} \cdot \frac{\partial \langle x, Ax \rangle}{\partial x} + \frac{d(Ax)^T}{dx} \cdot \frac{\partial \langle x, Ax \rangle}{\partial (Ax)} \\ &= Ax + \frac{d(x^T A^T)}{dx} \cdot x \\ &= Ax + A^T x = (A + A^T)x = 2Ax. \end{aligned}$$

From (1), it is also clear that $\partial(2\langle x, b \rangle)/\partial x = 2b$. Therefore the gradient of $q(x) = 2(Ax - b)$. \square

Problem 3: (b)

(Problem 4.7.6, p.218) Prove that if \hat{t} is defined by

$$\hat{t} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}$$

and if $y = x + \hat{t}v$, then $v \perp (b - Ay)$, that is, $\langle v, b - Ay \rangle = 0$.

Proof. Indeed, this result follows directly from brute-force computation:

$$\begin{aligned} \langle v, b - Ay \rangle &= \langle v, b - Ax \rangle - \langle v, A\hat{t}v \rangle \\ &= \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} \cdot \langle v, Av \rangle - \langle v, A\hat{t}v \rangle \\ &= \hat{t} \langle v, Av \rangle - \langle v, A\hat{t}v \rangle = \langle v, A\hat{t}v \rangle - \langle v, A\hat{t}v \rangle = 0. \end{aligned}$$

\square

Problem 3: (c)

(Problem 4.7.7, p.218) Show that in the method of steepest descent,

$$q(x^{(k+1)}) = q(x^{(k)}) - \|r^{(k)}\|^4 / \langle r^{(k)}, Ar^{(k)} \rangle$$

where $r^{(k)} = b - Ax^{(k)}$.

Proof. Recall (as shown in the textbook) that

$$q(x + tv) = q(x) + 2t \langle v, Ax - b \rangle + t^2 \langle v, Av \rangle.$$

Here we simply need to plug in the variables. Notice that $x^{(k+1)} = x^{(k)} + t_k r^{(k)}$, so

$$\begin{aligned} q(x^{(k+1)}) &= q(x^{(k)}) + 2t_k \langle r^{(k)}, Ax - b \rangle + t_k^2 \langle r^{(k)}, Ar^{(k)} \rangle \\ &= q(x^{(k)}) - 2t_k \langle r^{(k)}, r^{(k)} \rangle + t_k^2 \langle r^{(k)}, Ar^{(k)} \rangle \\ &= q(x^{(k)}) - 2 \cdot \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k)}, Ar^{(k)} \rangle} \cdot \langle r^{(k)}, r^{(k)} \rangle + \frac{\langle r^{(k)}, r^{(k)} \rangle^2}{\langle r^{(k)}, Ar^{(k)} \rangle^2} \langle r^{(k)}, Ar^{(k)} \rangle \\ &= q(x^{(k)}) - \frac{\langle r^{(k)}, r^{(k)} \rangle^2}{\langle r^{(k)}, Ar^{(k)} \rangle} \\ &= q(r^{(k)}) - \|r^{(k)}\|^4 / \langle r^{(k)}, Ar^{(k)} \rangle. \end{aligned} \quad \square$$

Problem 4: (a)

Consider an iterative method $x^{(k+1)} = Bx^{(k)} + c$, for which $\|B\| \leq \beta < 1$. Show that if $\|x^{(k)} - x^{(k-1)}\| < \epsilon(1-\beta)/\beta$ for all k , then $\|x - x^{(k)}\| \leq \epsilon$, where x is the fixed point of the iterative method.

Proof. Notice that

$$\begin{aligned} \|x^{(k)} - x^{(k-1)}\| &= \|Bx^{(k-1)} + c - Bx^{(k-2)} - c\| = \|Bx^{(k-1)} - Bx^{(k-2)}\| \\ &\leq \|B\| \|x^{(k-1)} - x^{(k-2)}\| \leq \beta \|x^{(k-1)} - x^{(k-2)}\|. \end{aligned}$$

Therefore,

$$\begin{aligned} \|x - x^{(k)}\| &= \left\| \sum_{i=k+1}^{\infty} x^{(i)} - x^{(i-1)} \right\| \leq \sum_{i=k+1}^{\infty} \|x^{(i)} - x^{(i-1)}\| \\ &\leq \sum_{i=1}^n \beta^i \|x^{(k+i)} - x^{(k+i-1)}\| \leq \frac{\beta}{1-\beta} \cdot \frac{\epsilon(1-\beta)}{\beta} = \epsilon. \end{aligned} \quad \square$$

Problem 4: (b)

Show that the infinite series

$$I + A + \frac{A^2}{2!} + \cdots + \frac{A^n}{n!} + \cdots$$

converges for any square matrix A . Denote the sum of the series by e^A . Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of A , repeated according to their multiplicity, and show that the eigenvalues of e^A are $e^{\lambda_1}, \dots, e^{\lambda_n}$.

Proof. Let a subordinated $\|\cdot\|$ be given. Recall that $\|A^n\| \leq \|A\|^n$. Therefore,

$$\left\| \sum_{k=0}^n \frac{A^k}{k!} \right\| \leq \sum_{k=0}^n \|A^k/k!\| \leq \sum_{k=0}^n \|A\|^k/k! \rightarrow e^{\|A\|}.$$

This shows that indeed the infinite series converges. Let λ_1 be an eigenvalue of A . It follows that λ_1^2 is an

eigenvalue of A^2 with the same eigenvector x_1 :

$$A^2 x_1 = A(Ax_1) = A(\lambda_1 x_1) = \lambda(Ax_1) = \lambda_1^2 x_1.$$

Inductively one can show that λ_1^n is an eigenvalue of A^n (and with eigenvector x_1). Therefore,

$$e^A(x_1) = \left(\sum_{k=0}^{\infty} \frac{A^k}{k!} \right) (x_1) = \left(\sum_{k=0}^{\infty} \frac{\lambda_1^k}{k!} \right) (v) = e^{\lambda_1}(v).$$

The proof that λ_i corresponds to e^{λ_i} is simply analogous and is omitted. \square

Problem 5

Show that

$$x_{n+1} = \frac{x_n(x_n^2 + 3a)}{3x_n^2 + a}, \quad n \geq 0$$

is a third-order method for computing \sqrt{a} . Calculate

$$\lim_{n \rightarrow \infty} \frac{\sqrt{a} - x_{n+1}}{(\sqrt{a} - x_n)^3}$$

assuming x_0 is chosen sufficiently close to \sqrt{a} .

Proof. Let e_n be the error $\sqrt{a} - x_n$. It follows that

$$\begin{aligned} e_{n+1} &= \sqrt{a} - x_{n+1} = \sqrt{a} - \frac{x_n(x_n^2 + 3a)}{3x_n^2 + a} \\ &= \frac{\sqrt{a}^3 - 3\sqrt{a}^2 x_n + 3\sqrt{a} x_n^2 - 3a^3}{3x_n^2 + a} \\ &= \frac{e_n^3}{3x_n^2 + a}. \end{aligned}$$

Therefore the convergence is of third-order. Assuming x_0 is sufficiently close to \sqrt{a} so that $x_n \rightarrow \sqrt{a}$, we have

$$\lim_{n \rightarrow \infty} \frac{\sqrt{a} - x_{n+1}}{(\sqrt{a} - x_n)^3} = \lim_{n \rightarrow \infty} \frac{e_{n+1}}{e_n^3} = \lim_{n \rightarrow \infty} \frac{1}{3x_n^2 + a} = \frac{1}{4a}. \quad \square$$

Problem 6: (a)

Let $A_{n \times n}$ be a real, symmetric, positive definite matrix. Prove that

$$|\det(A)| \leq \prod_{i=1}^n a_{i,i},$$

where the equality holds only if A is diagonal.

Proof. If A is positive definite then it is invertible, as $x^T A x > 0$ for all nonzero x implies that $Ax \neq 0$ for all nonzero x . Recall that A admits a Cholesky factorization $A = LL^T$ and $\det(A) = \det(L)\det(L^T) = \det(L^2)$.

Therefore, it suffices to prove that

$$\det(L)^2 \leq \prod_{i=1}^n a_{i,i}.$$

Notice that $\det(L)^2$ is simply the square product of the diagonal entries of L , i.e.,

$$\det(L)^2 = \prod_{i=1}^n L_{i,i}^2.$$

On the other hand, $a_{i,i} = \|L_i\|_2^2$, where L_i denotes the i^{th} row of L . In other words,

$$a_{i,i} = \sum_{j=1}^i L_{i,j}^2.$$

Since squares are nonnegative, we indeed have

$$L_{i,i}^2 \leq a_{i,i} \implies \det(L)^2 = \det(A) \leq \prod_{i=1}^n a_{i,i}.$$

(Notice that $\det(A) > 0$ and we may drop the absolute value.) It is also clear that if $\det(A) = \prod_{i=1}^n a_{i,i}$ then each $a_{i,i}$ has to equal to $L_{i,i}^2$. Therefore, L must not contain nonzero off-diagonal entries, i.e., L is diagonal. Then A is diagonal, and this proves the second claim. \square

Problem 6: (b)

Show that the matrix

$$A = \begin{bmatrix} a & -1 & \cdots & -1 \\ -1 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \cdots & a \end{bmatrix}$$

is positive definite if $a > \sqrt{n}$.

Proof. I tried to use the hint and obtain a Cholesky factorization of A . I know that, if I could find such L then $x^T Ax = x^T LL^T x = \langle L^T x, L^T x \rangle > 0$ as long as $x \neq 0$. However, I was not able to prove the existence of L .

Instead, this proof consists of brute force computation. Let $x := (x_1, \dots, x_n)^T \in \mathbb{R}^n$ be given. It follows that

$$Ax = \begin{bmatrix} ax_1 - \sum_{i=2}^n x_n & -x_1 + ax_2 & -x_1 + ax_3 & \cdots & -x_1 + ax_n \end{bmatrix}^T$$

and

$$\begin{aligned} x^T Ax &= ax_1^2 - \sum_{i=2}^n x_1 x_i + \sum_{j=2}^n (ax_j^2 - x_1 x_j) \\ &= ax_1^2 - 2 \sum_{i=2}^n x_1 x_i + \sum_{j=2}^n ax_j^2 \\ &= \left(a - \frac{n-1}{a}\right) x_1^2 + \sum_{i=2}^n \frac{x_i^2}{a} - 2 \sum_{i=2}^n x_1 x_i + \sum_{i=2}^n ax_i^2 \\ &= \left(a - \frac{n-1}{a}\right) x_1^2 + \sum_{i=2}^n \left(\frac{1}{\sqrt{a}} x_1 + \sqrt{a} x_i\right)^2. \end{aligned}$$

From this, we see that in fact $a - (n-1)/a > 0$ is a *sufficient* condition. In other words, if $a > \sqrt{n-1}$ then A is positive definite. Our problem asks for something slightly weaker but it of course holds too. I have implemented Cholesky factorization of matrices of this form in MATLAB; indeed, given n , if $a < \sqrt{n-1}$ then no (real) Cholesky factorization exists and if $a > \sqrt{(n-1)}$ then all good. \square

Problem 7

Using Q as in the Gauß-Seidel method, prove if A is diagonally dominant then $\|I - Q^{-1}A\|_\infty < 1$.

Proof. Before going straight into the main proof, we begin by deriving two inequalities and one equation which will be enormously helpful. Recall that A is diagonally dominant, i.e.,

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| = \sum_{i < j} |a_{i,j}| + \sum_{j > i} |a_{i,j}|.$$

This leads to

$$|a_{i,i}| - \sum_{j < i} |a_{i,j}| > \sum_{j > i} |a_{i,j}| \text{ for all } 1 \leq i \leq n$$

and so

$$\frac{\sum_{j > i} |a_{i,j}|}{|a_{i,i}| - \sum_{j < i} |a_{i,j}|} \leq \alpha < 1 \text{ for all } 1 \leq i \leq n \text{ and some } \alpha \in \mathbb{R}. \quad (1)$$

Also, since Q in the Gauß-Seidel method is simply the lower triangular matrix (with diagonal), we can write A as $Q + U$ where U is purely upper triangular, i.e., diagonal entries being uniformly 0. Then,

$$I - Q^{-1}A = I - Q^{-1}(Q + U) = I - Q^{-1}Q - QU = -QU$$

and so

$$\|I - Q^{-1}A\| = \|Q^{-1}U\|. \quad (2)$$

One more triangle inequality trick before we proceed to our main proof:

$$|a + b - b| \leq |a + b| + |-b| \implies |a| \leq |a + b| + |b|$$

so

$$|a + b| \geq |a| - |b|. \quad (3)$$

Main proof. Define $y = y(x) := Q^{-1}Ux$ where x is any arbitrary vector with $\|x\|_\infty = 1$. We want to show that there exists some $k < 1$ such that $\|y\|_\infty < \beta$ holds for all x . Assume $\|y\|_\infty = |y_k|$ with $1 \leq k \leq n$. Now we consider the k^{th} component of (Qy) , namely $(Qy)_k$:

$$\begin{aligned} |(Qy)_k| &= \left| \sum_{j \leq k} a_{k,j} y_j \right| \geq |a_{k,k} y_k| - \left| \sum_{j < k} a_{k,j} y_j \right| \quad (\text{by (3)}) \\ &\geq |a_{k,k}| \|y\|_\infty - \sum_{j < k} |a_{k,j}| |y_j| \geq |a_{k,k}| \|y\|_\infty - \sum_{j < k} |a_{k,j}| \|y\|_\infty \\ &= \left(|a_{k,k}| - \sum_{j < k} |a_{k,j}| \right) \|y\|_\infty. \end{aligned} \quad (4)$$

On the other hand,

$$\begin{aligned} |(Qy)_k| &= |(QQ^{-1}Ux)_k| = |(Ux)_k| \\ &= \left| \sum_{j > k} a_{k,j} x_j \right| \leq \sum_{j > k} |a_{k,j}| |x_j| \\ &\leq \left(\sum_{j > k} |a_{k,j}| \right) \|x\|_\infty = \left(\sum_{j > k} |a_{k,j}| \right). \end{aligned} \quad (5)$$

Combining (4) and (5) (and using (1)), we see

$$\|y\|_\infty \leq \frac{\sum_{j>k} |a_{k,j}|}{|a_{k,k}| - \sum_{j<k} |a_{k,j}|} \leq \beta < 1,$$

so $\|Q^{-1}U\|_\infty = \sup_{\|x\|_\infty=1} \|Q^{-1}Ux\| = \sup \|y\|_\infty \leq \beta < 1$, and the claim follows from (2). \square

Problem 8

Is there a matrix A such that $\rho(A) < \|A\|$ for all subordinate matrix norms? Prove or disprove.

Solution

Yes! Consider $A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, of which both eigenvalues are 0 and thus $\rho(A) = 0$. However, since A is not the zero matrix, all norms (in particular, the subordinate ones) satisfy $\|A\| > 0$.

Problem 9: (a)

The linear system

$$\begin{bmatrix} 1 & -a \\ -a & 1 \end{bmatrix}x = b$$

where a is real can under certain conditions be solved by SOR

$$\begin{bmatrix} 1 & 0 \\ -\omega a & 1 \end{bmatrix}x^{(k+1)} = \begin{bmatrix} 1 - \omega & \omega a \\ 0 & 1 - \omega \end{bmatrix}x^{(k)} + \omega b.$$

The corresponding iteration matrix B_ω is

$$\begin{bmatrix} 1 & 0 \\ -\omega a & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 - \omega & \omega a \\ 0 & 1 - \omega \end{bmatrix}.$$

Show that the eigenvalues of the corresponding iteration matrix B_ω satisfies the following:

$$\lambda^2 - \lambda [2(1 - \omega) + \omega^2 a^2] + (1 - \omega)^2 = 0.$$

Proof. This can be shown by brute force computation. First notice that

$$\begin{bmatrix} 1 & 0 \\ -\omega a & 1 \end{bmatrix}^{-1} = \frac{1}{1 + \omega a} \begin{bmatrix} 1 & 0 \\ \omega a & 1 \end{bmatrix}.$$

The fraction $1/(1+\omega a)$ is just a constant; the eigenvalues of B_ω and of $(1+\omega a)B_\omega$ are the same, so for convenience we drop this fraction. Then,

$$\begin{bmatrix} 1 & 0 \\ \omega & 1 \end{bmatrix} \begin{bmatrix} 1 - \omega & \omega a \\ 0 & 1 - \omega \end{bmatrix} = \begin{bmatrix} 1 - \omega & \omega a \\ \omega a(1 - \omega) & \omega^2 a^2 + 1 - \omega \end{bmatrix}.$$

To find the eigenvalues, we suppose $\det(B_\omega - \lambda I) = 0$, that is,

$$\begin{aligned}
 0 = \det(B_\omega - \lambda I) &= \begin{vmatrix} (1-\omega) - \lambda & \omega a \\ \omega a(1-\omega) & (\omega^2 a^2 + 1 - \omega) - \lambda \end{vmatrix} \\
 &= [(1-\omega) - \lambda] [(\omega^2 a^2 + 1 - \omega) - \lambda] - \omega^2 a^2 (1-\omega) \\
 &= (1-\omega)(\omega^2 a^2 + 1 - \omega) + \lambda^2 - \lambda [2(1-\omega) + \omega^2 a^2] - \omega^2 a^2 (1-\omega) \\
 &= \lambda^2 - \lambda [2(1-\omega) + \omega^2 a^2] + (1-\omega)^2.
 \end{aligned}$$

□

Problem 9: (b)

Show that for $\omega = 1$ the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = |a^2|$. Conclude that for this choice the iteration converges for $|a| < 1$.

Proof. From the characteristic polynomial derived in (a), if $\omega = 1$ then

$$\lambda^2 - a^2 \lambda = 0 \implies \lambda_1 = 0, \lambda_2 = a^2 |a|^2 \quad (a \in \mathbb{R} \text{ by assumption}).$$

Indeed, if $|a| < 1$ then $\rho(B_\omega) < 1$ and thus the iterative method

$$x^{(k)} = B_\omega x^{(k-1)} + c$$

converges by one of the theorems shown in class just recently.

□