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Problem 1

The exponential integrals are the functions En defined by

En(x) = ∫
∞

1
(exttn)−1 dt, (n ⩾ 0, x > 0).

These functions satisfy the equation
nEn+1(x) = e−x − xEn(x).

If E1(x) is known, can this computation be used to compute E2(x),E3(x), . . . accurately?

Solution

In general, no. We first rewrite the equation as

En+1(x) =
e−x

n
− x

n
En(x).

This is relatively accurate for small x. When x is small, x/n < 1 for almost n’s and the error of δ units in
En(x) gradually decays to 0.
For larger x’s, however, every time when we compute En+1(x) for n < x, the error is multiplied by a factor
> 1 as x/n > 1 when n < x. For example, when x = 10, the initial error δ caused by rounding E1(x) becomes
a stunning

10

1
⋅ 10
2
⋅ ⋅ ⋅ ⋅ ⋅ 10

9
⋅ δ = 109δ

9!
≈ 2755δ,

which greatly disrupts the accuracy. In fact, when trying x = 15 on my Matlab with a machine epsilon
2−52, E12(x) returns a negative value, which is absurd.

Problem 2 has been deleted; see problem 5 instead.
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Problem 3: (a)

(Problem 4.7.1, p.217) Prove that if A is symmetric, then the gradient of the function

q(x) = ⟨x,Ax⟩ − 2 ⟨x, b⟩

at x is 2(Ax − b).

Proof. First notice that the partial derivative

g ∶= ∂ ⟨x, y⟩
∂x

= y. (1)

Indeed, consider g1 (the first component of g). It is defined as

∂

∂x1

n

∑
i=1

xiyi = y1,

and likewise for all the remaining ones. Vector-wise we also have the chain rule:

d ⟨x,Ax⟩
dx

= dxT

dx
⋅ ∂ ⟨x,Ax⟩

∂x
+ d(Ax)T

dx
⋅ ∂ ⟨x,Ax⟩

∂(Ax)

= Ax + d(xTAT )
dx

⋅ x

= Ax +ATx = (A +AT )x = 2Ax.

From (1), it is also clear that ∂(2 ⟨x, b⟩)/∂x = 2b. Therefore the gradient of q(x) = 2(Ax − b).

Problem 3: (b)

(Problem 4.7.6, p.218) Prove that if t̂ is defined by

t̂ = ⟨v, b −Ax⟩
⟨v,Av⟩

and if y = x + t̂v, then v ⊥ (b −Ay), that is, ⟨v, b −Ay⟩ = 0.

Proof. Indeed, this result follows directly from brute-force computation:

⟨v, b −Ay⟩ = ⟨v, b −Ax⟩ − ⟨v,At̂v⟩

= ⟨v, b −Ax⟩
⟨v,Av⟩

⋅ ⟨v,Av⟩ − ⟨v,At̂v⟩

= t̂ ⟨v,Av⟩ − ⟨v,At̂v⟩ = ⟨v,At̂v⟩ − ⟨v,At̂v⟩ = 0.

Problem 3: (c)

(Problem 4.7.7, p.218) Show that in the method of steepest descent,

q(x(k+1)) = q(x(k)) − ∥r(k)∥4/ ⟨r(k),Ar(k)⟩

where r(k) = b −Ax(k).
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Proof. Recall (as shown in the textbook) that

q(x + tv) = q(x) + 2t ⟨v,Ax − b⟩ + t2 ⟨v,Av⟩ .

Here we simply need to plug in the variables. Notice that x(k+1) = x(k) + tkr(k), so

q(x(k+1)) = q(x(k)) + 2tk ⟨r(k),Ax − b⟩ + t2k ⟨r(k),Ar(k)⟩

= q(x(k)) − 2tk ⟨r(k), r(k)⟩ + t2k ⟨r(k),Ar(k)⟩

= q(x(k)) − 2 ⋅
⟨r(k), r(k)⟩
⟨r(k),Ar(k)⟩

⋅ ⟨r(k), r(k)⟩ +
⟨r(k), r(k)⟩2

⟨r(k),Ar(k)⟩2
⟨r(k),Ar(k)⟩

= q(x(k)) −
⟨r(k), r(k)⟩2

⟨r(k),Ar(k)⟩

= q(r(k)) − ∥r(k)∥4/ ⟨r(k),Ar(k)⟩ .

Problem 4: (a)

Consider an iterative method x(k+1) = Bx(k)+c, for which ∥B∥ ⩽ β < 1. Show that if ∥x(k)−x(k−1)∥ < ϵ(1−β)/β
for all k, then ∥x − x(k)∥ ⩽ ϵ, where x is the fixed point of the iterative method.

Proof. Notice that

∥x(k) − x(k−1)∥ = ∥Bx(k−1) + c −Bx(k−2) − c∥ = ∥Bx(k−1) −Bx(k−2)∥

⩽ ∥B∥∥x(k−1) − x(k−2)∥ ⩽ β∥x(k−1) − x(k−2)∥.

Therefore,

∥x − x(k)∥ = ∥
∞
∑

i=k+1
x(i) − x(i−1)∥ ⩽

∞
∑

i=k+1
∥x(i) − x(i−1)∥

⩽
n

∑
i=1

βi∥x(k+i) − x(k+i−1)∥ ⩽ β

1 − β
⋅ ϵ(1 − β)

β
= ϵ.

Problem 4: (b)

Show that the infinite series
I +A + A2

2!
+ ⋅ ⋅ ⋅ + An

n!
+ . . .

converges for any square matrix A. Denote the sum of the series by eA. Let λ1, λ2, . . . , λn be the eigenvalues
of A, repeated according to their multiplicity, and show that the eigenvalues of eA are eλ1 , . . . , eλn .

Proof. Let a subordinated ∥ ⋅ ∥ be given. Recall that ∥An∥ ⩽ ∥A∥n. Therefore,

∥
n

∑
k=0

Ak

k!
∥ ⩽

n

∑
k=0
∥Ak/k!∥ ⩽

n

∑
k=0
∥A∥k/k!→ e∥A∥.

This shows that indeed the infinite series converges. Let λ1 be an eigenvalue of A. It follows that λ2
1 is an
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eigenvalue of A2 with the same eigenvector x1:

A2x1 = A(Ax1) = A(λ1x1) = λ(Ax1) = λ2
1x1.

Inductively one can show that λn
1 is an eigenvalue of An (and with eigenvector x1). Therefore,

eA(x1) = (
∞
∑
k=0

Ak

k!
)(x1) = (

∞
∑
k=0

λk
1

k!
)(v) = eλ1(v).

The proof that λi corresponds to eλi is simply analogous and is omitted.

Problem 5

Show that
xn+1 =

xn(x2
n + 3a)

3x2
n + a

, n ⩾ 0

is a third-order method for computing
√
a. Calculate

lim
n→∞

√
a − xn+1

(
√
a − xn)3

assuming x0 is chosen sufficiently close to
√
a.

Proof. Let en be the error
√
a − xn. It follows that

en+1 =
√
a − xn+1 =

√
a − xn(x2

n + 3a)
3x2

n + a

=
√
a
3 − 3
√
a
2
xn + 3

√
ax2

n − 3a3

3x2
n + a

= e3n
3x2

n + a
.

Therefore the convergence is of third-order. Assuming x0 is sufficiently close to
√
a so that xn →

√
a, we have

lim
n→∞

√
a − xn+1

(
√
a − xn)3

= lim
n→∞

en+1
e3n
= lim

n→∞

1

3x2
n + a

= 1

4a
.

Problem 6: (a)

Let An×n be a real, symmetric, positive definite matrix. Prove that

∣det(A)∣ ⩽
n

∏
i=1

ai,i,

where the equality holds only if A is diagonal.

Proof. If A is positive definite then it is invertible, as xTAx > 0 for all nonzero x implies that Ax ≠ 0 for all
nonzero x. Recall that A admits a Cholesky factorization A = LL2 and det(A) = det(L)det(LT ) = det(L2).
Therefore, it suffices to prove that

det(L)2 ⩽
n

∏
i=1

ai,i.
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Notice that det(L)2 is simply the square product of the diagonal entries of L, i.e.,

det(L)2 =
n

∏
i=1

L2
i,i.

On the other hand, ai,i = ∥Li∥22, where Li denotes the ith row of L. In other words,

ai,i =
i

∑
j=1

L2
i,j .

Since squares are nonnegative, we indeed have

L2
i,i ⩽ ai,i Ô⇒ det(L)2 = det(A) ⩽

n

∏
i=1

ai,i.

(Notice that det(A) > 0 and we may drop the absolute value.) It is also clear that if det(A) =
n

∏
i=1

ai,i then each

ai,i has to equal to L2
i,i. Therefore, L must not contain nonzero off-diagonal entries, i.e., L is diagonal. Then A

is diagonal, and this proves the second claim.

Problem 6: (b)

Show that the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a −1 ⋯ −1
−1 a ⋯ 0

⋮ ⋮ ⋱ ⋮
−1 0 ⋯ a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is positive definite if a >
√
n.

Proof. I tried to use the hint and obtain a Cholesky factorization of A. I know that, if I could find such L then
xTAx = xTLLTx = ⟨LTx,LTx⟩ > 0 as long as x ≠ 0. However, I was not able to prove the existence of L.
Instead, this proof consists of brute force computation. Let x ∶= (x1, . . . , xn)T ∈ Rn be given. It follows that

Ax = [ax1 −∑n
i=2 xn −x1 + ax2 −x1 + ax3 ⋯ −x1 + axn]

T

and

xTAx = ax2
1 −

n

∑
i=2

x1xi +
n

∑
j=2
(ax2

j − x1xj)

= ax2
1 − 2

n

∑
i=2

x1xi +
n

∑
j=2

ax2
j

= (a − n − 1
a
)x2

1 +
n

∑
i=2

x2
1

a
− 2

n

∑
i=2

x1xi +
n

∑
i=2

ax2
i

= (a − n − 1
a
)x2

1 +
n

∑
i=2
( 1√

a
x1 +

√
axi)

2

.

From this, we see that in fact a − (n − 1)/a > 0 is a sufficient condition. In other words, if a >
√
n − 1 then A is

positive definite. Our problem asks for something slightly weaker but it of course holds too. I have implemented
Cholesky factorization of matrices of this form in Matlab; indeed, given n, if a <

√
n − 1 then no (real) Cholesky

factorization exists and if a >
√
(n − 1) then all good.
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Problem 7

Using Q as in the Gauß-Seidel method, prove if A is diagonally dominant then ∥I −Q−1A∥∞ < 1.

Proof. Before going straight into the main proof, we begin by deriving two inequalities and one equation which
will be enormously helpful. Recall that A is diagonally dominant, i.e.,

∣ai,i∣ >∑
j≠i
∣ai,j ∣ =∑

i<i
∣ai,j ∣ +∑

j>i
∣ai,j ∣.

This leads to
∣ai,i∣ −∑

j<i
∣ai,j ∣ >∑

j>i
∣ai,j ∣ for all 1 ⩽ i ⩽ n

and so
∑j>i∣ai,j ∣

∣ai,i∣ −∑j<i∣ai,j ∣
⩽ α < 1 for all 1 ⩽ i ⩽ n and some α ∈ R. (1)

Also, since Q in the Gauß-Seidel method is simply the lower triangular matrix (with diagonal), we can write A

as Q +U where U is purely upper triangular, i.e., diagonal entries being uniformly 0. Then,

I −Q−1A = I −Q−1(Q +U) = I −Q−1Q −QU = −QU

and so
∥I −Q−1A∥ = ∥Q−1U∥. (2)

One more triangle inequality trick before we proceed to our main proof:

∣a + b − b∣ ⩽ ∣a + b∣ + ∣−b∣ Ô⇒ ∣a∣ ⩽ ∣a + b∣ + ∣b∣

so
∣a + b∣ ⩾ ∣a∣ − ∣b∣. (3)

Main proof. Define y = y(x) ∶= Q−1Ux where x is any arbitrary vector with ∥x∥∞ = 1. We want to show that
there exists some k < 1 such that ∥y∥∞ < β holds for all x. Assume ∥y∥∞ = ∣yk ∣ with 1 ⩽ k ⩽ n. Now we consider
the kth component of (Qy), namely (Qy)k:

∣(Qy)k ∣ = ∣∑
j⩽k

ak,jyj ∣ ⩾ ∣ak,kyk ∣ − ∣∑
j<k

ak,jyj ∣ (by (3))

⩾ ∣ak,k ∣∥y∥∞ −∑
j<k
∣ak,j ∣∣yj ∣ ⩾ ∣ak,k ∣∥y∥∞ −∑

j<k
∣ak,j ∣∥y∥∞

= (∣ak,k ∣ −∑
j<k
∣ak,j ∣)∥y∥∞. (4)

On the other hand,

∣(Qy)k ∣ = ∣(QQ−1Ux)k ∣ = ∣(Ux)k ∣

= ∣∑
j>k

ak,jxj ∣ ⩽ ∑
j>k
∣ak,j ∣∣xj ∣

⩽ (∑
j>k
∣ak,j ∣)∥x∥∞ = (∑

j>k
∣ak,j ∣). (5)
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Combining (4) and (5) (and using (1)), we see

∥y∥∞ ⩽
∑j>k ∣ak,j ∣

∣ak,k ∣ −∑j<k ∣ak,j ∣
⩽ β < 1,

so ∥Q−1U∥∞ = sup
∥x∥∞=1

∥Q−1Ux∥ = sup ∥y∥∞ ⩽ β < 1, and the claim follows from (2).

Problem 8

Is there a matrix A such that ρ(A) < ∥A∥ for all subordinate matrix norms? Prove or disprove.

Solution

Yes! Consider A ∶=
⎡⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎦
, of which both eigenvalues are 0 and thus ρ(A) = 0. However, since A is not the

zero matrix, all norms (in particular, the subordinate ones) satisfy ∥A∥ > 0.

Problem 9: (a)

The linear system
⎡⎢⎢⎢⎢⎣

1 −a
−a 1

⎤⎥⎥⎥⎥⎦
x = b

where a is real can under certain conditions be solved by SOR

⎡⎢⎢⎢⎢⎣

1 0

−ωa 1

⎤⎥⎥⎥⎥⎦
x(k+1) =

⎡⎢⎢⎢⎢⎣

1 − ω ωa

0 1 − ω

⎤⎥⎥⎥⎥⎦
x(k) + ωb.

The corresponding iteration matrix Bω is

⎡⎢⎢⎢⎢⎣

1 0

−ωa 1

⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣

1 − ω ωa

0 1 − ω

⎤⎥⎥⎥⎥⎦
.

Show that the eigenvalues of the corresponding iteration matrix Bω satisfies the following:

λ2 − λ [2(1 − ω) + ω2a2] + (1 − ω)2 = 0.

Proof. This can be shown by brute force computation. First notice that

⎡⎢⎢⎢⎢⎣

1 0

−ωa 1

⎤⎥⎥⎥⎥⎦

−1

= 1

1 + ωa

⎡⎢⎢⎢⎢⎣

1 0

ωa 1

⎤⎥⎥⎥⎥⎦
.

The fraction 1/(1+ωa) is just a constant; the eigenvalues of Bω and of (1+ωa)Bω are the same, so for convenience
we drop this fraction. Then,

⎡⎢⎢⎢⎢⎣

1 0

ω 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 − ω ωa

0 1 − ω

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1 − ω ωa

ωa(1 − ω) ω2a2 + 1 − ω

⎤⎥⎥⎥⎥⎦
.
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To find the eigenvalues, we suppose det(Bω − λI) = 0, that is,

0 = det(Bω − λI) =
RRRRRRRRRRRRR

(1 − ω) − λ ωa

ωa(1 − ω) (ω2a2 + 1 − ω) − λ

RRRRRRRRRRRRR
= [(1 − ω) − λ] [(ω2a2 + 1 − ω) − λ] − ω2a2(1 − ω)

= (1 − ω)(ω2a2 + 1 − ω) + λ2 − λ [2(1 − ω) + ω2a2] − ω2a2(1 − ω)

= λ2 − λ [2(1 − ω) + ω2a2] + (1 − ω)2.

Problem 9: (b)

Show that for ω = 1 the eigenvalues are λ1 = 0 and λ2 = ∣a2∣. Conclude that for this choice the iteration
converges for ∣a∣ < 1.

Proof. From the characteristic polynomial derived in (a), if ω = 1 then

λ2 − a2λ = 0 Ô⇒ λ1 = 0, λ2 = a2∣a∣2 (a ∈ R by assumption).

Indeed, if ∣a∣ < 1 then ρ(Bω) < 1 and thus the iterative method

x(k) = Bωx
(k−1) + c

converges by one of the theorems shown in class just recently.
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