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Introduction

Beginning of Jan. 15, 2021

Big picture of MATH 501: use computers to solve math problems.
(1) Linear equations, differentiation, integration, differential equations, etc.
(2) Approximation & optimization.

Continuous vs. Discrete:

Continuous (real world) Discrete (computers)

Numbers in Q, R, C, etc. ) )
Examples ) ] Integers; floating-point numbers
(Never-ending decimals)

Difference quotient: compute

f(z+Az) - f(z) | the fraction with a given Az; the

. L N
Differentiation (@)= Algllo Az smaller Az is the more accurate
the approximation is.
Discrete function approximations
Continuous functions sinz, e”, etc. (pairs of {z, f(x)} evaluated at

specific values on the domain)




Chapter 2

Computer Arithmetic

Beginning of Jan. 20, 2021

2.1 Floating-Point Numbers & Roundoff Errors

Decimal system vs. Binary system:
427.325=4-102+2-10' +7-10°+3-107" +2-102 +5-1073
(1001.11101) =1-23+1-2°+ 17 +1.27241.273 4 1.27°

[ Definition 2.1.1 |

In Normalized Scientific Notation, we denote z, a nonzero number, as z := +7-10" in decimal system where
1/10 < r < 1, or x := +¢ - 2™ in binary system, where 1/2 < ¢ < 1. We call r “mantissa” and m the exponent.

In a binary computer, both mantissa and exponent will be represented as binary numbers.

In our hypothetical computer MARC-32 with 32 bits (1 word = 4 bytes = 32 bits (binary digits)). To recover z from

its normalized scientific notation:

Sign of Sign of Normalized mantissa excluding
. Exponent(E) ) .
mantissa exponent first digit (F)
bt | 1bit | 7 bits | 23 bits

Notice that in bianry system, the first digit of the normalized mantissa is always 1:
z=(-1)%.¢-2™ where ¢ = (0.1F), and m = (-1)°FE
(where 0.1F denotes the binary number with 1 as its first digit after the decimal point).
Limitations: all numbers that can be inputted into the computer using this method are called machine numbers.
(1) restriction on E: he absolute value of exponent |m| = F can be at most ¥°_;2" = 27 — 1 = 127. Since
10738 » 97127 ¢ om ¢ 9127 ()38
and g € [1/2,1), the range of all machine numbers is about 10® < |z| < 1035.

3
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(2) restriction on ¢: since the first digit after decimal point is always 1 and we can store an additional 23 bits, we

can keep 24 significant bits in the mantissa ¢. Because 2724 ~ 107 we can roughly keep seven decimal places.

Therefore, all machine numbers are of form

-38<n <38, and
x = +r - 10" where

r=0.r179r374 57677

Integers: one bit for sign and 31 bits to record the actual integer: from 2° to 23°. Hence the range is from — (23 - 1)
to 231 — 1 = 214783647 in MARC-32.
Single-precision uses 1 word to store a number of 32 bits, whereas double-prevision uses 2 words to store words

of a total of 64 bits.

Nearby Machine Numbers

Since the machine numbers are finite discrete numbers, if the input is some complicated x, the computer will need
to choose a nearby machine number of z as its substitute. Cf. rounding.
chopping

l‘, = (0.(11@2 e a24)2 -2m

— .om
X = (0.@10,2 e a25a26)2 2 rounding

— J,‘” = ((O.alag A a24)2 + 2_24) .m

Between z’ and z”, the computer will choose whichever is closer to « and define it as «* := fl(x). Note that

z" -2’ =2724.2™m  An example of rounding with 7 digits:

rounding

(0.01111011...)s =" (0.0111101)5 + 277 = (0.0111110)s5.
—
7digits

Errors

For z := ¢ - 2™, we have two types of errors:

(1) the round-off error is defined as

1 1
|$ _ SU*| < 7|(£” _ .T/| - . 2—24 X 2m — 2m725
2 2
(2) the relative error/unit round-off error is defined as
T — .’L'* 2m725 2725 ) 1
< = <2 since ¢ > =.
T q-2m q 2

Beginning of Jan. 22, 2021

It follows that 2* = fl(z) = 2(1 + §), where |6] < e = 2724, We define this ¢ to be the unit round-off error.

4
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Overflow and Underflow
Suppose z = +q - 2.
(1) If the exponent m is too large we say an overflow occurs. Computer will usually return NaN, not a number.

(2) If m is too small, (e.g., < —127), an underflow occurs. 0 will be returned.

Remark. Note that:

(1) Round-off errors must be expected to be present whenever data are read into a computer! Even simple

numbers like 1/10 cannot be stored exactly in MARC-32 since

1
- (0.0001 1001 1001 ... )s.

(2) Errors will accumulate as arithmetic operations are carried out. We will talk about it later.

(3) Distribution of machine numbers is uneven: denser near 0 and sparser when further away (log scale).

Algorithm to Test Machine Epsilon (HW1)

s = 1.0; //starting with exponent 0 (i.e. 270)
k

for = 1:100

S s/2; //keep decreasing the exponent by 1

t

s + 1.0;

if t <= 1.0 //detect the first time when 1.0+eps=1.0
s = s%x2;
k = k-1; //-1 to get exponent of eps
break

end

end

Floating-Point Arithmetic

Now we know fl(z) = (1 + ) for some |6] < e. The next natural question to think about is, what about fl(z ® y)?

(Assuming ® is one of the basic arithmetic operations.)

Example 2.1.2. Operation on two machine numbers:

fi(z @ y) = fl[fl(z) @ fl(y)]
= (1+03)[x(1+61)y(1+d2)]
= %y(l + 51)(1 + 62)(1 + 53)

~(1+ 81 + g + 03)zy. (since the cross-terms can be neglected)
—_——
|+ ]<3e
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Theorem 2.1.3

Let {x} }}_, be a set of n positive machine numbers, all of whose unit round-off error is e. Then the relative

round-off error of the sum ) z; (in the usual way, no chopping or rounding in the process) is approximately
i=1
(1+ €)™ -1 =~ ne (again, we neglect terms with higher-order €’s.)

Beginning of Jan. 25, 2021

Proof. Let Sy, := xg +---+xy, be the partial sum and let S} be what the computer calculates for the k™ partial sum

(not directly taking fl(Sx)). It follows that

So = xg and Sg =0 (already a machine number)

Sk+1 = Sk + Tis1 Spe1 =f1(Sg + k1)  (S§ and x4 also machine numbers)

Notice that, although Sy := x¢ + ... looks obvious to us and the other equations above look cumbersome to us, the
opposite is true for computers, since the equation pairs above are defined recursively, something the computer is very
good at.

Now we define
* _ S* _ SX— +
Pr = ——— and 5k = Tkl ( k xkﬂ).
Sk Sp+ TR

Then |pi| is the relative error when approximating Sj by S;, and |d,| is the relative error in approximating
Sy + g+ by fl(+). Then

Sk+1
_ (SE+2pa) (1 +0k) = (Sk + The1)
Sk+1
[Sk(l + pk) + CE]H.l](l + (Sk;) - (Sk + S(}k+1)
Sk+1
_ (Sk + k1) 0k N Skpr(1+ )
Sk+1 Sk+1

Sk
:5k+/’k(5 )(1+Pk)

k

+1

Pk+1 =

<0 +Pk(]— + 5k)

and since |0x| < € we have

|pr+1] <€+ |prl(1+e€).

Therefore |po| = 0, |p1] < ¢, |p2| < € + (1 + €)¢, and inductively we see |p,| < e+ (1 +¢€) +---+ (1 +¢)" L. Hence

):(1+e)n—l:ne+0(62).

n-1 7
pal e (140 =
k=0 6—1

Hence we are done. O

Suppose a number z is defined by infinite series where each term is real. For example

n

ﬁ
—_
[ V)

8

i
cn‘:‘

I
gk
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How do we approximate 2:? How many digits will be correct for sure?

(1) First stage: we make sure |z — z,| < 107""/2 where z,, is the partial sum of the first n terms. (Complete math!)

(2) Second stage: we make sure |z, — z)| < 107 /2. (Numerical analysis)

2.2 Absolute & Relative Errors; Loss of Significance

Just like in last chapter, for some real number =, if it is approximated by another number (not necessarily a machine

number) z*, then the error is x — z*. Then absolute error is | — 2*| and the relative error is |(z — 2*)/x|.

Loss of Significance

Suppose we are doing subtraction between two numbers that are close to each other. For example,

x =.3721478693
= z -y =.0001248121.

y =.3720230572

Now what if we input these numbers into a computer with decimal system and a 5-digit mantissa?

fl(z) =.37215
= fl(fl(z) - fl(y)) = .00013.
fl(y) = .37202

In this case the relative error is pretty large:

2=y~ A0 -0 | 4o
Ty

Notice that originally when we did = - y, we calculated all the way till the last digit. However, when we calculated
fl(z) - fl(y), all digits starting from the 5™ become 0. That’s where the huge error comes from.

On the other hand, since z and y are very close, so are fl(z) and fl(y), the first few digits are all 0. When we
normalize fl(z) - fl(y), .00013 becomes .13000 - 10~3, with 3 extra 0’s supplemented on the right where they should

have been something else.

To avoid these errors, we should avoid situations where accuracy can be ruined by a subtraction between two nearly

equal quantities.

Example 2.2.1. Asz — 0, f(x) :=+Va?+1-1 also tends to 0. We therefore re-write the function by

_ 5 . Vaz+1+1 _ x?
fe)= Vot +1 ”(mH)sz—HH'

Then we have solved the issue by re-writing f(x) as a fraction instead of subtraction.

And as © — 0, we can re-write sin(x + 1) —sin(1) by its Taylor series.

Beginning of Jan. 27, 2021



YQL - MATH 501 Notes 2.3 - Stable and Unstable Computations; Conditioning Current file: 1-27.tex

2.3 Stable and Unstable Computations; Conditioning

Numerical Instability

A numerical process is unstable if small errors made at one stage of the process are magnified in subsequence stages

and seriously degrade the accuracy of the overall calculation.

Example 2.3.1. Consider the sequence of sequence of real numbers defined inductively by

xozl, 1’1:1/3

13 4
Tn+l = 5 Tpn — 5Tn-1-

3 3
Clearly, to us, the sequence is simply z,, := (1/3)™. However, MARC-32 will compute some ridiculous as it
gives z15 = 3.657493, with a relative error of 10% (where the correct answer should be 3715).

At first, suppose zo and x; have small round-off error: zo =1+ ¢p and x; = 1/3 + ¢;. Then,

13(1+ ) 4(1+ ) 1 138 4
XTo = — | — € - = € = — — €1 — —€9.
273 \37) 3 079" gt 3"

The term 13/3 will grow exponentially as the sequence is computed recursively!

.. . 13 4 .
Using linear algebra and eigenvalues to solve x,,,1 = ?xn - gﬂ?n—l, we have the general solution

2n = A(1/3)" + B - 4",

Where A, B are determined by xg,x;. If g = 1 and 2 = 1/3, we need to solve
1=A+B A=1
1/3=1/3A+4B B=0.

Now suppose xg =1 +¢; and z1 = 1/3 + ¢5. Then

l+ee=A+B A=1+06;
1/3+e=1/3A+4B B = 6,.
It follows that the general solution xz,, = A(1/3)" + B - 4" gives
xy = (1+81)(1/3)" + 62 -4,

where the second term again blows up.

However, sometimes we are able to produce a stable process:

Example 2.3.2. Now let 2o = 1 and z; = 4. Then x,, = A(1/3)" + B-4™ where A =0 and B = 1. Then
x, =47, and z} = 61(1/3)™ + (1 + §3)4™. Then, x¥ — z,, = §;(1/3)™ + 0 - 4™, and

ST,

*
Ty —Tn

Tn

In other words, if the answer x,,’s are large enough, they are over to overwhelm the errors — which are also
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large, but not on the same magnitude of the z,,’s.

Conditioning

Used informally to indicate how sensitive the solution of a problem may be to small relative changes in the input.
A problem is ill conditioned if small changes in data can produce large changes in the answers. It’s a “quantitative

description of how unstable a problem is”.

Example 2.3.3. The problem asks us to evaluate a function f at a point x. Question for conditioning: if x
is perturbed slightly, say by +h, what is the effect on f(x)?
We consider the difference f(z + h) — f(z) which, by MVT, equals f'({)h ~ hf'(z) for some ¢ € [z,z + h],

assuming (&) is not too large so that f/(£) ~ f'(x). Then the relative size of the pertubation is

relative size rgﬁ pertubation
fe+h)-f(z) hf'(z) _ [xf'(:v)] h
f(x) f(z) f@) |z

conditional number

Example 2.3.4. Another type of condition number is associated with solving linear system Az = b, assum-

ing A is invertible. (z is output and b is input.) Suppose a perturbation gives b + h. Then
A =b+h = 7 =A"Yb+h).

Let | - | be any norm. Then
|Z— x| = |AT(b+h) - ATH(B)]| = [A7 A].
Let |A~!| denote the matrix norm of A~! (which we’ll discuss later). Then (by Cauchy-Schwarz)

& -] _ ARl _ A~ [[A]1b]

X

lzl ] Izl
_ AT Az ]
[0l
ATAfN=] Rl
(B I
relative size of pertubation
[
- A7l -
]

conditional number

We denote the conditional number of a matrix A as x(A) = |A||A~!|, as shown above.



Chapter 3

Solution of Nonlinear Equations

Beginning of Jan. 29, 2021

3.1 Bisection Method

If f is continuous on [a,b] and if f(a)f(b) < 0, then there exists £ € [a, b] such that f(£) = 0.

Goal: find ¢ € (a,b) such that f(¢) = 0, assuming f(a)f(b) <0, i.e., both nonzero with different signs.

WLOG assume f(a) > 0 and f(b) < 0. We define ¢ := (a +b)/2. If f(¢) = 0 we are done. If not, either f(c) >0
or f(¢) < 0. Then f(c) has a different sign with either f(a) or f(b), and we are able to inductively conduct this

bisection method again.

However, notice that, although we can find one root, we cannot tell which root it is, and we may not find all the roots.

See the figure above; we can inductively find the root in [a,c] but not those roots in [c,b].

input a,b, M, 6,¢ On the left is a pseudocode for the bisection algorithm. Things to notice:

u — f(a)

v f(b) (1) When computing midpoint, we use ¢ := a + (b - a)/2 as opposed to ¢ :=
e—b—-a

output o, b, u, v (a +b)/2 to prevent potential overflow when both a and b are large.

if sign (u) = sign (v) then stop

for k = 1,2,.... M do (2) When comparing the sign, we simply compare the sign as opposed to

e —e/2 testing whether f(a)f(b) > 0 because multiplication takes much more
c—a+e time
w — £(c) '

output k,c,w, e

if |e| < 6 or [w] < ¢ then stop (3) Three stopping criteria: number of iteration bounded by M to prevent

if sign (w) # sign (u) then the algorithm running forever, and the ¢ and § bounds on |e| and |w| to
bee control the accuracy of the algorithm. Each one can be independently
Ve w

else changed in order to meet our specific demand.
a+—C
U —w 10

end if

end
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Error Analysis

If define the interval after k™ iteration as [ay, by, ] we see that
ap<ar---<bpand bg=2by >+ > ag.
In addition,
b+t — Apa1 = %(bn —ap). ™
Therefore, since {a,, } is a bounded, increasing sequence and {b,,} a bounded, decreasing sequence, lim,,_,, a,, and

lim,, o b, both exist. Applying (*) iteratively gives

lim b,, — lim a, = lim 27"(bg —ag) = 0.

n—00

We claim that r = lim a,, = lim b, is a solution. Indeed, by definition, 0 > f(a,)f(b,) for all n and so 0 > f(r)2.

n—o00 n—o0o

Beginning of Feb. 1, 2021

Theorem 3.1.1

If [ag,bo], [a1,b1],...denote the intervals in the bisection method, then lim a, = lim b, (i.e., exist and

n—o00 n—00

equal) and the limits represent a root r of f. If ¢, is the midpoint of [a,, b, ] then
1 —(n+1)
|T—qu|<§'(bn—an):2 (bo—ao).

Example 3.1.2. Suppose the bisection method starts with [50,63]. How many steps are necessary to com-

pute a root with relative accuracy in 1012?

Solution

We want to make sure |r —c,|/|[r| < 10712, Since r > 50, it suffices thos how |r - ¢, |/50 < 107*2. By the theorem

1
Ir = cn| <27 D (bg - ap) = 2*“””% <1072 = n>37.

3.2 Newton’s Method

Goal: Simple. Solve f(x) = 0.

Let f € C? and assume f(r) = 0. Then for h close to r, by Taylor expansion

0=f(r)~ f(z+h) = f(z) + hf'(x) + O(h?).

Then
f(z)
f'(x)

Ow~ f(a)+hf'(z) = hw~- )
f(@)
f(x)

Since r = x + h, we see that x —

is a better approximation of r.

11
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| Definition 3.2.1

The Newton’s Method is defined inductively by

f(zn)

Tn+l = Tp —

Remark. Newton’s Method depends on the initial value xy. If it’s far away from r, the Taylor

expansion doesn’t work and so won’t Newton’s method. We will discuss about this in detail later.

Newton’s Method is very efficient: the example on p.65 shows that for f(z) = e* — 1.5 — arctan(z), picking an initial

guess with f(z) ~ —0.7 iterates to f(zg) ~ —1-1072° and f(z7) with error beyond machine epsilon.

A graphical representation of a sufficiently close xo where {x,,} converges to r:

f(x)

Tangent line:

Ux) = f(xn) + [ (x) (X = xp)

> X
/ ;x,,,,, n

Again, recall that xy needs to be sufficiently close to r. An example where Newton’s Method breaks down:

- f(x)
|
| I
|
x’ e Y e x
r r Xo X2
|
!
J(x)
Error Analysis
Let e,, = z,, — r be the error of z,,. Then
/ —
€t = Tpat —T = Tpy — f(zn) —r=e, - f(xn) _ ent () f(xn)
f'(zn) f'(zn) f'(zn)

By Taylor’s theorem we have

0= 1) = f(on—en) = f ) = enf (o) + 56207 (60)

12
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for some &, between z,, and r. Therefore

L) o 1) o

T ) 2 ) T
We call this type of convergence, i.e., e,,11 ~ ¢2 quadratic convergence. This converges really fast.
Theorem 3.2.2

Let f € C? and r be a simple zero of f, i.e., f’(r) # f(r) = 0. Then there exists a neighborhood of r and a

constant C such that if z € (r — C,r + C) then the successive points become steadily closer to = and

[Tp1 — 7] < C(xn - r)2.

17"(6)
2 f'(zn)

Proof. Idea: we know e, = efl. If e,, is small and the same holds for the middle term, then e, ;1 < €.

Define .
_ lmaxmﬂ"\@?‘f (.13)|

B 2 min|w—r\$5|fl(‘r)|

where § > 0. Notice that since f € C? both the numerator and the denominator attain their extrema, and for

c(0)

small ¢ > 0, since f'(r) # 0, this fraction is well-defined (and so finite). If necessary, further decrease § > 0 to
ensure that jc(d) < 1.
If |xo| < ¢ then |eg| < 0 and |§o — 7| < §. Then,

14 A
2
and
|z1 = 7| =e1| < 6(2)0(5) < dc(d)leo] < |eg| < 6.
Doing this inductively, we have |e,| < (6¢(8))"|eol- O

Beginning of Feb. 3, 2021

Theorem 3.2.3

If f € C? is increasing, convex, and has a zero, then the zero is unique, and the Newton iteration works with

any starting point.

Proof. By assumption, f”(x) >0 for all  and f’(z) > 0. Therefore, since

L f"(r)
Cn+l ® 5 f’(T‘) GEL > U,

x,, > for all n > 1. Then since f is increasing, f(x,) > f(r) = 0. Also recall that

_ enf'(xn) = f(@n)

€n+1 = f’(fn)

Therefore {e, } is a strictly decreasing and bounded from below, it converges to some e. Similarly {x, } - x. The

— €p+1 < €p.

above equation then suggests
f(z)
f(@)

e=e—

= f(z)=0.

13
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_ f(@n)
fr(zn)

a necessary condition, i.e., we won’t run into problems if f € C'* \ C?. The only reason we need f € C? is
#l b

Remark. That f € C! is necessary for Newton’s method since z,,,1 := z,, Note that f € C? is not

because we want Newton’s method to be fast (i.e., achieves quadratic convergence) since we do need the
extra order of differentiability to apply Taylor’s theorem to guarantee the existence of &, between x,, and r
for the term €2 £ (&,,) /2.

Example 3.2.4. We can apply Newton’s method to solve for square roots. To compute /R we look for

roots of 22 — R. Then,
f(zn) x721 -R

1
xml:xn—f,(xn):xn— 22, =§($n+R/$n)~

For example, for \/17 we start with x = 4. With 4 iterations we get x4 with accuracy < 10726.

Implicit Functions
Newton’s method can also be applied to solving implicit functions.

For a given x, we want to solve G(z,y) = 0. With a nice enough starting point y,, we define

_ G(zyn)
9G (z,yn) [0y

Compare this with the formula x,,,1 =z, = f(@n)/f (2n)-

Yn+1 = Yn

Systems of Nonlinear Equations

Suppose we have f;(x1,22) =0 and fo(x1,22) = 0 simultaneously. This is equivalent to solving

fi(z1,22) 0
F(X)=F(z1,22) = =
fa(w1,22) 0
Similar to before, once we have an initial guess X7, we can apply Newton’s method to get better approximations by

F(X)

Xoo1 = X -
+1 f’(X)

where dividing by the so-called F'(X) is defined by multiplying (on the left) by the inverse of Jacobian.

3.3 Secant Method

Recall that in Newton’s method we defined z,, + 1 := x,, - f(z,,)/f'(x,). It is completely possible that f'(z,) =0, in

which case we run into a problem. Some of the workarounds:

(1) Simply replace f'(z, ) by approximating x,, with x,, + h:

T+l = Tp — f(T0) - f for some small A.

f(xn+h)_f(xn)

Here we need to keep picking smaller 4 since as e,, — 0, the relative error caused by h increases.

14
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(2) Steffensen’s iteration:
f(xn)?
f(@n + f(2n)) = f(z0)

which also achieves quadratic convergence without defending on f”(z). This is also similar to above in the

Tp+l = Tp —

sense that

Unlike above, we do not need to worry about picking the appropriate h for each x,, since when z,, — r,
f(xzy) = 0 itself.

f,(xn) ~

Beginning of Feb. 5, 2021

Similar to Steffensen’s iteration, as n — oo, f(x,) — f(z,-1) also tends to 0. Then we have the secant method

- flay) | T T Ee
Tne1 = Tp — f( )[f(xn)—f(xnl)]

where the [-] denotes the slope of the secant line drawn between (z,,, f(z,)) and (-1, f(Tn-1)).

J(x)

Secant line

<

/Vm—l Xn

Intuitively from the diagram above, the secant method is not as fast as Newton’s method.

Error Analysis

Assuming 7 is a simple zero, i.e., f'(r) # f(r) =0, and f € C?. Rewrite z,,,; as

Tp —Tp-1 ] _ f(l'n)l‘n_l - f(x’ﬂ—l)f?’b
xn) - f(xnfl) f(xn) - f(xnfl) .

T+l =Tp — f(xn) [f(
Then,

€n+l = Tps1 —T

_ f(@n)Tn-1 = f(Tn-1)Tn
f(xn) = f(zn-1)

G fe) ) S
f(@n) = f(xn-1)  fl@n) = f(@n-1)  f(zn) = f(@n-1)
f(zy) N f(xn1) _
(xn—l 7“) (wn T)

" f(@a) = () F(@n) = f@n)
_ f(xn)en—l - f(xn—l)en )

f(xn) - f(xnfl)
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Factoring out e, e,,_; and multiplying (x,, — x,—1)/(zy — T,-1) gives

Cnsl = [ Tp = Tn-1 :||:f(xn)/€n - f(wn—l)/en—l
" f(xn) - f(-Tn—l) Tp —Tp-1

The blue term can be roughly thought as 1/f/(r). For the second one, notice that

enf"(r)
2

f(xn):f(r+en):f(r)+enf'(r)+ +O(€§1)'

Substituting f(r) = 0 into the equation,

(fn)

n

enf’ (r)

=f'(r)+ +0(ep).

Similarly,
f(l'n 1) f ( ) €n,1f”(r) + 52
€n1 9 n-1

Therefore their difference is approximately (e,, — e,—1)f”(r)/2 and

f('rn)/(fn, B ,f(l"u,fl)/en,fl ~ €n —€p-1 f”(rr) _ f”(T) )

Tp —Tp-1 Tp —Tp-1 2 2

Therefore
R0
T2 ()

Now we determine the order of convergence:

enen-1 = Cepen_1.

len|® N|€n+1|~|(7€n€n—1|“'CﬂenH€nYU°

€n€n-1-

and so a = 1 + 1/a, of which the solution is a = (/5 + 1)/2. Since this number = 1.618 < 2, we see that indeed

the secant method is not as strong as Newton’s method (quadratic with exponent 2), but it’s still better than the

bisection method (linear with e, 11 ~ e, /2).

However, unlike Newton’s method where in each step the computer needs to evaluate both f(z,) and f'(z,), in

the secant method the computer only needs to compute f(x,) since f(x,-1) has been already evaluated. (The basic

arithmetic computations are far lighter burden than these computations.) If we compensate this by comparing one

step of Newton’s method with two steps of the secant method, we see

|en+1| ~ |en+1|a ~ |en|a

in which o ~ 2.618 > 2, and the this is much faster than Newton’s quadratic convergence.

Remark. The above holds when we don’t have parallel computing, i.e., only using one kernel. However,

if parallel computing is allowed, Newton’s method is once again faster — f(z,) and f’(x,) can be simulta-

neously evaluated, whereas f(x,) and f(z,+1) cannot be done by two kernels at the same time. The secant

method does not benefit from parallel computing.

Therefore, if we want to design an algorithm, it would be better if our algorithm becomes more efficient as

more kernels are involved.

Beginning of Feb. 8, 2021
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3.4 Fixed Points and Functional Iteration

Do we have a framework to design our own iterative algorithm? How do we find other iteration methods to solve

nonlinear equations?

[ Definition 3.4.1

An algorithm defined by an equation of form z,,; = F(z,) is called functional iteration. For example,

Newton’s method and Steffen’s method are both functional iterations:

@) U@
Fia) M@ = ) — @)

whereas the secant method cannot: it requires two inputs, namely x,, and z,_1.

Fx)=x

For the secant method, we instead consider a vector function:

Yn+1 = [wn+1;$n] = F(yn) = [Fl(yn);FQ(yn)]

by

Ty = Tp-1

Fi(yn) = 20— f(20) - m

and F5(yn) = xn.

[ Definition 3.4.2

We say s is a fixed point of F'if F(s) = s.

It follows that if F' is continuous and {x,,} — s, then
F(s)=F(lim z,) = lim F(z,) = lim 2,1 = s.
n—o0 n—oo n—oo
The main idea is to design some F such that the fixed point of F' is the root of the equation f(x) = 0. For example
consider F(z) =z — f(x) where F(r) =r - f(r) = r (it may not work, but the idea is to look for F’s like this).

One sufficient condition for convergence of {x,,} (there are more):

[ Definition 3.4.3 |

A mapping F is said to be contractive if there exists A < 1 such that
|F'(z) - F(y)| < Alz -y
for all z,y in the domain of F.

Theorem 3.4.4: Contractive Mapping Theorem

Let F be a contractive mapping of a closed set C c R to C. Then F has a fixed point. Furthermore, this fixed

point is the limit of every sequence obtained from z,,,1 = F(z,,) with 2o € C.

Proof. Since |x,, — Xn-1| < A|[Tpn-1 — |Tn-2]|, repeating this argument gives
|20 = Zp_1]| < X Yoy — 2]

17
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Therefore,

n

¢ 2 ey — o]
S — |1 — Tol.
1—'A 1 0

m
Z Tj = Tj-1

i=n+1

‘an_ﬁrn|:

From this we see that {x,} is Cauchy and is therefore convergent in R. Since C' is closed, the limit, say s, lies

within C. By what we’ve derived previously. F'(s) = s, i.e., s is a fixed point of F. O

Beginning of Feb. 10, 2021

Example 3.4.5. Use the contractive mapping theorem to compute a fixed point of

sin 2x

F(x)=4+ 7

Solution

First we verify that F' is contractive. For =,y € R,

|sin 2z —sin2y|  2|cos 2¢]
3 3

2
|F(x) - F(y)| = o=yl < Sl -yl
for some £ between z and y, so indeed this mapping is contractive. Alternatively, sum-to-product gives

sin 2z — sin 2y| = |sin(z + y) cos(z — y)| < [sin(z + y)||cos(z — y)|-.

Therefore any {z, } converges to some z € R. Then the rest can be done by computer.

Example 3.4.6. Letp > 1. Evaluate

Solution

Define z; := 1/p, 22 = 1/(p + 1/p), and so on. It follows that x,, - x. If we can find a contractive mapping

then the problem is solved. Define

1
F n)=<Ln = .
(@n) = Tne P+,
Notice that F': [0,1/p] — [0, 1/p]. It is contractive, since
1 1 y-w ly -z
P PO | ‘
p+rxz pry| [(prx)(p+y)|  p°

where 1/p? is a constant < 1. The fixed point is simply s where s = F(s) =1/(p+s) so s> +ps—-1=0, i.e.,

‘- -p++/p2+4 . -p++/p%+4

, assuming s > 0.
2 2

18



YQL - MATH 501 Notes 3.4 - Fixed Points and Functional Iteration Current file: 2-10.tex

Error Analysis

Suppose F' has a fixed point s and a sequence {z, } is a sequence defined by z,,1 = F'(x,). Let s be the fixed point
and let e,, := z,, — s.

If F' exists and is continuous, then by MVT

Tpe1 =8 = F(an) = F(s) = F'(&)(2n = 5) = F'(&)en

for some &, € s, ]-

Therefore if |F'(z)| < 1 for all z, e,, - 0.

Furthermore, if ¢,, is small then &, ~ s and F'(x,,) » F'(s). From above we see that the convergence would be really
quick if F’(s) is small. Ideal situation: F'(s) = 0. Let ¢ be such that F(?)(s) # 0 but F(*)(s) = 0 for all k < ¢. Taylor

series for F'(x,) expanded about s gives

ent1 = F(xy) = F(s)
=F(s+e,)-F(s)
=[F(s) + enF (s) +é F"(s)/Z +...]-F(s)

= enF (5)+ F”(S) F(q 1)(8) & F(q)( )

(q 1!

Therefore if the derivatives of F(s) vanishes up to (¢ — 1)™ order, this algorithm is at least q + 1™ order convergent.
For example, consider Newton’s method again: z,+1 = F(x,) = 2, — f(zn)/f (z,). We know this has quadratic
convergence. We have assumed that F’(s) = 0 so this is at least quadratically convergent. Let s be a fixed point of
F so that F(s) = 0. Then

@) - f@) @) @) @)
Fi)=1 F () 7(2)?

and so by above, Newton’s method is at least quadratically convergent.

= F'(5)=0

19



Chapter 4

Solving Systems of Linear Equations

4.1 Matrix Algebra

Beginning of Feb. 12, 2021

Recall from linear algebra that necessary conditions for the uniqueness of solution to Az = b include that A has at

least as many rows as columns, i.e., A,,x, With m > n.

Some quick recap:

[ Definition 4.1.1

The elementary operations for a linear system include the following:
(1) Interchanging two equations in the system: &; « &,
(2) Multiplying an equation by a nonzero number: \&; — &;, and

(3) Adding one equation to the multiple of another: & + A&; — &;.

Theorem 4.1.2

If one system of equations is obtained by a finite sequence of elementary operations (for an infinite coun-

terexample: consider infinite iteration with A = 1/2), then the two systems are equivalent, i.e., having the

same solution.

[ Definition 4.1.3

The elementary row operations for a matrix includes three operations analogous to above: interchanging

rows, multiplying one row by A\, and adding one row to \ times another. They correspond to multiplying by
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the elementary matrix on the left. Take 3 x 3 matrices for example:

1 1 1
Ey &3 1[; A& =&y A ; E3+AE = &3 1
1 1 A1

where blank entries correspond to 0.

[ Definition 4.1.4

For A,,xn and B,,xm, if AB = I,,x,, We say B is the right inverse of A and A the left inverse of B.

Remark. A short, wide matrix usually does not have a unique right inverse, and a long, thin matrix usually

0 1
1 0 1 0 =z
8 o

does not have a unique left inverse:

1 00
010

Qo O =

0
1f;
0

Theorem 4.1.5

A square matrix has at most one right inverse.

Proof. Let AB = I where A, B, I are n x n. Let AU) be the j™ column of A and I(®) the k™ column of I. Since
AB = I, this gives
S b AD = 1M 1<k <n.

j=1
Therefore each column of 7 is a linear combination of columns of A. Since C'(I) = R”, we also have C'(A) = R™.
On the other hand, dim C(A) < n. It follows that columns of A must be linearly independent, and the equation

above is uniquely determined by a bunch of b,;’s, i.e., the right inverse must be unique. O
Theorem 4.1.6

If A, B are square matrices with AB = I then BA = I, i.e., the right inverse of a square matrix, should it exist,
is also the left inverse. Because of this, when talking about square matrices, we simply consider inverses

without specifying right or left inverses.

Proof. Simple. Let C = BA-1+ B. Then AC=ABA-Al+AB=A-A+1=1 — (C=B. O
Eliminations
If E,’s are elementary matrices and E,,F,,_1 ... E1A = I, then
A =EnEp_1 ... E;.
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This can be implemented into Gauss-Jordan elimination:

[A11] - [1] 4] =[aa | 147].

Theorem 4.1.7

Let A be n x n. TFAE:

(1) A!exists, i.e., A is nonsingular,

(2) det(A) # 0 (determinant = product of eigenvalues; see last part)
3) C(A")=c(4)=R",

(4) A:R"™—R"isinjective, or surjective, or bijective,

(5) Az=0 = z=0,

(6) Az =bhas a unique solution, i.e., N(A4) = {0},

(7) Ais aproduct of elementary matrices, and

(8) 0isnot an eigenvalue of A.

Partitioned Matrices

Multiplying partitioned matrices works just like multiplying normal matrices, as long as the submatrices “align

nicely”:

Amlxnl Amzxnl Bnlxkl anxkl

lexkl lexkz

Am1 XNo Am2><n2 Bn1 xko Bngku Cmgxkl sz)(kg

Beginning of Feb. 17, 2021

4.2 The LU and Cholesky Factorizations

Consider Az = b where A is n x n, a system of n linear equations in n unknowns 1, ..., Z,.

Easy-to-solve Systems

€3]
(2

(3)

If A is a diagonal matrix then we immediately have the solution z,, = b,,/ay, ».

Lower triangular or upper triangular A, assuming the diagonal entries are nonzero: we start with the row
with only one nonzero entry, solve the corresponding x; (either z; or z,), then do forward or backward

substitution.

Permuted lower/upper triangular A, again assuming A before permutation has nonzero diagonal entries: we

simply reorder the permutation and apply (2).
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LU Factorization

If we can decompose A into LU where L is lower triangular and U upper triangular, then solving Az = b is equivalent
to solving LUz = b. We first solve L(Uz) = b to get the solution Uz = z, which is easy since L is triangular, and then
we solve Uz = z, which is again easy since U is triangular. It follows that

n min (i,5)

aij = » lisusj = Y lisug; since L and U are triangular.

s=1 s=1
Since A is n x n we have n? equations, and we have n(n + 1) unknowns from the nonzero entries of L and U. More
unknowns than solutions, so the solutions are not unique. For convenience we set L to be unit lower triangular

(diagonal entries 1), known as Doolittle’s factorization, or set U to be unit upper triangular, known as Crout’s

factorization.
2% 0 0 --- 0 Ul U2 w3 o Uip
lyy €y 0O - 0 0 wusp wuag -0 Uz,
L= |41 ¥32 €33 --- 0 v=1| 0 0 wzy -+ usy,
énl lpy flpg - oy 0 0 0 et Upp

Suppose we adopt Doolittle’s factorization and assume /¢, ,, = 1.
Staying with the first row of U: since the first row of L contains only one nonzero entry {11, a1 = £11 + ui1, we
immediately get the value of uy;. Likewise, a1s = ¢11u12, and so on. From this we obtained the first row of U.

" row of U, along with n column

Now we stay with the first column of L (notice the parallel computing here! n*
of L). Since the first row of U contains only one nonzero entry uii, we see asy = £21u11, azy = £31u11, and so on.
Therefore we obtain the entire first column of L.

h

Now we repeat the process, computing the second row of U and second column of L, and then n™ row of U and

n® column of L.

Remark. We need A to be “nice” to have such LU decomposition. See theorem below.

Theorem 4.2.1

If all n learding leading principal minors (the truncated m x m top-left submatries of A) of the n x n matrix

A are nonsingular, then A has a LU-decomposition.

Proof. We prove by induction. Let A, be the k™ leading principal minor of A (the top-left k x k submatrix) and
let L;, Uy, be the k™ leading principal minors of L and U.
Immediately we see A; = L1U; as long as A; is nonsingular.

Now suppose Ay = LiUy; it remains to show Ag, 1 = Ly1Ug.1. By matrix block multiplication,

l14kxk Akx1

L&xk Ukx1
T .
blxk Qk+1,k+1

Oixk Wkt k+1

_ lkak kal

T
lek €k+1,k+1

Beginning of Feb. 19, 2021

Then,
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(1) Agxi = LixieUgkxk,
(2) agx1 = Lexkurxa,

3) b?xk = g?kakxk; and

_ 4T
(4) ars1k+1 = O Wt + Chr1 ke 1 Ukt 1 o1+

By assumption A, is nonsingular, and since Ay = UgLg, so are these triangular matrices (det(Ax) =
det(Ly)det(Uy)). Hence (2) gives ugx1 = (Lixk) ‘axx1, and (3) gives ¢1 , = b7, (Urxr)~. For (4), once we
fix ab arbitrary choice of {;1 k41, say 1, then we can solve for uy, x+1. Then we have obtained a LU decomposi-

tion for Ay . O

Cholesky Factorization

Theorem 4.2.2

If A is a real, symmetric, and positive definite matrix, then it has a unique factorization A = LL” where L is

lower triangular with a positive diagonal.

Proof. Recall that A is positive definite if 27 Az > 0 for all nonzero vector z. It follows that 2 + 0 = Az # 0
and so A is invertible. Furthermore, by using vectors of form = = (21,22, ...,2%,0,...)T we see that all leading

principal minors A;’s are also positive definite and thus invertible. Indeed, for nonzero «z,

T
A 0 o
I:le A 0 ... ok kx(n-k) Tk :I:Jil ij-:IAkxk ...1>0
On-k)yxk  O(n-k)x(n-k)
0 Tk

By the previous theorem, A is LU-factorizable. Suppose A = LU. Since A is symmetric,
LU=A=AT=U"LT — 7'Lu(t™)' =707 (L") = v@h)t=ru".

It follows that U(L”?)™! is upper triangular but L='U7 is lower triangular. Therefore they must both be some
diagonal matrix D. Then U(L?)™ = D == U = DL” and thus A = LDL”, from which D must also be
positive definite (part of HW). Define /D to be the diagonal matrix with each entry being the square root of the
corresponding entry in D. Then we can define LL = L\/D. Then

- T
LL" =LvDVD LT =LDL”,
and the claim of existence follows. Uniqueness: if A= LLT = MM? then
I=L'MMTLT = (L' MY LM — (L7'M) = (L' M) T,

Again the LHS is lower triangular and the RHS upper. Therefore both need to be diagonal, and since
(L7'M)(L7*M)T = I the entries must be +1. Since M = L(L M) one concludes that the entries of M dif-

fer from those of L by at most signs. Hence the uniqueness, assuming a positive diagonal. O
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Beginning of Feb. 22, 2021

4.3 Pivoting and Constructing an Algorithm

Notice that while we do Gaussian elimination, we are simultaneously doing LU decomposition. By juxtaposing an
I on the right of 4, i.e., [ A T ], while we make A upper triangular by using pivot elements from pivot rows to

eliminate all below-the-diagonal entries, [A 1 ] becomes [U L—l]. Then A=LU.

Theorem 4.3.1

If all the pivot elements are nonzero in Gaussian elimination, then A = LU.

Pivoting
Why do we need pivoting?

0 1 1
Consider the example l ] lxl] = l ], where we immediately see z; = x5 = 1.
1 1]||xs 2

However, if we were to use Gaussian elimination to solve this system, we can’t. 1 cannot be eliminated by 0.

Instead, we need to replace 0 by ¢ and solve

[ A 4

C1-1/e
Clearly this contradicts x; = 1. This is because before 1 -z, can take place, the computer already treats x5 as 1 given

This gives the solution

Za ~land zy = (1-22)/e~0.

that 2-1/e ~ 1 - 1/e. (For example, MARC-32 only stores a mantisa up to 7 digits, so if 1 and 2 are too insignificant

as compared to 1/e, 1 - 1/e = 1/e =2 - 2/¢, and then 1 - x2 = 0. An underflow occurs.)

However, it is not the small € that causes the error. Instead, the error happens because ¢ is too small compared to

other elements of the row. For example
1 1/e||x1 1/e 1 1/e || 1/e
= B = ,
11 [ 2 0 1-1/e|]xo 2-1/e

x9=(2-1/e)/(1-1/e) ~ 1

x1=1/e—xa/e~0

where the correct solution is

since both 1/e and x5 /e will be computed as 0 because of “underflow”.

The remedy to this problem is by switching the pivot element or switching the order of equations so that we no

longer have a pivot that is too small compared to other elements in the row. For example, back to the first problem

=
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which can be correctly solved by the computer. Takeaway: Ax = B < PAx = Pb.

Gaussian Elimination with Scale Row Pivoting

Suppose we have the permuted linear system PAx = Pb. (In computers we don’t need an extra step of multi-
plication. When writing codes, we simply need to specify which entry to use, i.e., instead of using A;; we use
Ap, 5-)

We begin by computing the scale of each row:

8; = {gjagﬁaiﬂa

i.e., the largest absolute value of all entries in a row.

Next we factorize and pick the pivot row as the row for which |a;1|/s; is the largest. Once the first pivot is
determined, record it in the permutation array (switching the first entry 1 with the one that corresponds to the first
pivot) and do the eliminations on the first column. Then for other remaining rows (we inspect every row but the
one that contains the first pivot, i.e., the one corresponding to the first element of the updated array), find the pivot

with the largest |a; 2|/s;. So on and so forth.

Beginning of Feb. 24, 2021

Factorizations PA = LU

Let P, Ps,..., P, be the indices of the rows in the order in which they become the pivot rows. (We first scale the
rows, then switch, switch, and switch).

Meanwhile, Gaussian elimination with scaled row pivoting gives
A=AD 5 4@ 5. A(”)7

where in each — we switch two rows (p; and i) based on the corresponding (elementary) permutation matrix.

To see how A*+1 is obtained from A(¥) where the corresponding P permutes i and ;™ rows,

aﬁ)’;) i<kori>k>j
(k+1) _ k k k k . .
Ay, = a;“). - (aélz/a;kl)agpij) i>kand j >k
a;]:,)c/a;iac i>kandj=k

The first case corresponds to the rows that are not altered (because we are done with them already), the second

corresponds to the entries that are affected by this process, and the third corresponds to the row that gets scaled.

Theorem 4.3.2

If all pivot elements of the last matrix A% are nonzero, then A = LU (or PA = LU).
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Theorem 4.3.3

(n)
PisJ

(n) sp - .
pi,j1f3<z.

Define a permutation matrix P;; = §,, ;. Define an upper triangular matrix U whose elements are u;; = a
if j >4 (and 0 otherwise), and define a unit lower triangular matrix L whose elements are ¢;; = a
Then PA=LU.

Theorem 4.3.4

If a factorization PA = LU is produced from the Gaussian algorithm with scaled row pivoting, then solving

Az = b is obtained by first solving Lz = Pb and then Uz = z.

Operation Counts

Since addition and subtraction take much less time than multiplication and division, we only count the steps, we

only count steps involving the latter, which are known as long operations.
Next question: how many long operations?

For A — A we first need to do the factorization process. In determining p; (pivot of first row) we need n
divisions. Then for the remaining n — 1 rows, one factor is computed by division and each row involves another n -1
computations (as the first one get eliminated to 0, not by division). For these p — 1 rows, each row involves n ops.

Therefore the total is n + n(n — 1) = n? ops from A™) to A,
Similarly, from A to A®) we are left with a (n - 1) x (n - 1) matrix and there are (n — 1)? ops. The total number

of ops required in factorization is

3 2 3 2
n n n n
n2+(n—1)2+--~+32+22:§+—+7—1N

3

—+—.
2 6 3 2

Having done the factorization, the solution phase only involves back substitution and there are 1 + 2+ -+ n =

n?/2 +n/2 ops. Since there are two back substitutions the total count is n?.

Theorem 4.3.5

If Gaussian elimination is used with scaled row pivoting, the solution of the system Ax = b with fixed A and
m different vectors b involves approximately

n3
3 (1/2 + m)n? ops.
Beginning of Feb. 26, 2021

Notice that there is no error analysis for these factorizations; there is no error.
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Diagonally Dominant Matrices

[ Definition 4.3.6 |

A n x n matrix is diagonally dominant if

n

laii| > > lagl,
i
VE)

i.e., the diagonal entries are “dominant” enough that it can almost be treated as a diagonal matrix.

Theorem 4.3.7

Gaussian eliminations without pivoting preserves the diagonal dominance of a matrix.

Proof. Notice that it suffices to prove that A) - A() preserves diagonal dominance. Since all other elements
of the first row except a;; become 0 and a,; becomes a;; — (a;1/a11)a1;. It is equivalent to showing

n

|an‘ - (ail/all)a1i| > E |aij - (ail/all)a1j|-
j=2
j#i

It suffices to prove the stronger version (by triangle inequality)

laii| = |(ai1/a11)aq:| > Z [|aij| + |(ai1/a11)a1j|]

or

n
laisl = Y laij| > Y- |(air/arr)aq).
1=2

j=2
By the diagonal dominance |a;;| - Y |as;| > |a:1| so it suffices to prove the RHS < |a;1|. Indeed, this is by Cauchy
j#i

inequality applied to  |a;1/a1:1| and ) |ay,]. O

[ Corollary 4.3.8

Every diagonally dominant matrix is nonsingular and has a LU factorization.

Proof. Indeed, each A(™ is diagonally dominant. O

[ Corollary 4.3.9

There is no need to consider the scaled version of Gaussian elimination if given a diagonally dominant

matrix. The pivots elements are already the ones along the diagonal.

Tridiagonal System

Recall that a tridiagonal matrix satisfies a;; = 0 if |¢ - j| > 1. It is obvious that once we eliminate the lower diagonal

then back substitution solves the system.
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4.4 Norms (Vectors & Matrices) and Analysis of Errors

Talking about relative errors and “distances between values” in a more general context, we need to introduce the

notion of norms. Recall that, on a vector space V, a norm is a function || - | : V' — Ry, that obeys 3 postulates:
(1) non-degeneracy: |z| >0 for all  and |z| = 0 if and only if = = 0,

(2) absolute homogeneity: |Az| = |\||z| for A € R, and

(3) triangle inequality (subadditivity): |z +y| < |z| + |ly|.

Usually we deal with R” in the context of this course. Recall the various norms: Euclidean norm |x||2, the p-norm

||, and the co-norm |z| .

Beginning of March 1, 2021

Matrix Norms

First recall that all n x n matrices form a vector space. Since we are most familiar with R", we prefer a matrix norm

intimately related to vector norms for R".

[ Definition 4.4.1: Matrix Norms |

If a vector norm | - | has been specified, the matrix norm subordinate to it is defined by
| Al = sup{ Au] : w e R, [Ju] = 1}

Notice immediately that taking |u|| < 1 provides the same as |u]| = 1: sup |Au| > sup |Au| is trivial, and
lull<1 luf=1
the converse is because

1
Jul <1 = Wl | Aul < JAC/[ul)] = (1/]u])]Au].

Theorem 4.4.2

If | - | is any norm on R™, then the subordinate | A| defines a norm on the linear space of all n x n matrices.

Proof. We verify the three criteria:

(1) Non-degeneracy. Nonnegativity is trivial. Now assume || A| = 0. Clearly if A is the zero matrix then
|Au| = 0. For the converse, suppose A is not the zero matrix. Then some column of A needs to be
nonzero. Consider v = (0,...,0,1,0,...)7 where the 1 corresponds to the nonzero column. Then Av # 0

and |Av| >0 and thus sup |Au| > ||Av| > 0.

luf=1

(2) Absolute homogeneity is trivial.

(3) Subadditivity.
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|A+ B| = sup |(A+ B)ul| = sup |Au + Bul|

flull=1 luf=1

< sup ([|Auf + [ Bul)

[ul=1
< sup. | Aw] + sup |Bo| = [A] +|B]. O
u|= vl|=

[ Proposition 4.4.3

A direct result from the definition is that | Az| < | A|||z||. Proof is trivial by normalizing x/| x| for nonzero .

Theorem 4.4.4

The matrix norm subordinate to | - | is given by
n
| Al = {IS%;I%I,

i.e., the largest value possible by taking the ¥ of absolute values of entries in a row.

Proof. Assume we are talking with respect to || - |- For <, notice that

sup ||Az| = sup (“entry (row) of Az with maximum abs value”)
flf=1 =1

n

Z @ij Ty

= sup max
Jw|=1isisn ]

< sup oo EI%II%I

< {gzlx Z|alj| since |z =1 = |z;] <

n
In order to prove max > lai;| < sup |Az|, suppose row i is the one that attains the max. We define
<n
=1

s zl=1
T
v0:= [sgna;,) sen(ei,) - sen(a;,)]

then

| Az = max > ag sgn(a; ;)| > 7.5 58n(a; Z|a~7]| = max > laijl. O

S =1 3=1 SIS
Beginning of March 3, 2021

Remark. The matrix norm subordinate to | - |; is highly similar, except now we are taking the largest

possible sum obtained by summing over the absolute values of a column. See HW6.

If we take || - |2, it's something different; it relates to the eigenvalues of A, and we’ll discuss about that later.

Immediately we see two properties:

(1) |IIl=1,as sup |Iz| = sup |z| =1.
[z]=1 [z]=1
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(2) ||AB| <||A]|IB], again by definition of supremum:

|AB| = sup [ABz| < sup [|A][Bz[] < sup [|A[[B[|z[]=[A}[B].

=1 =1 flf=1

Recall that we have |Az| < | A]|=| simply by normalizing x to z/|z|.

Condition Number Revisited

Suppose we want to solve Az = b where A,,,, is invertible. We treat b as input and z as output. Suppose b is

pertubed and becomes b so that the solution 2 becomes . What are their relations?

r-2=A-ATb=AT(b-b) = |z-z|=|A(b-b)| <A ]|b-D|.
Recall that the condition number describes the relation between the relative errors, i.e., between |z - Z|/|z| and
|b—b|/|b]. Notice that | = | Az < |A||z|. Multiplying the two inequalities together, we have

|z - 2]
|zl
where | A|| A~ is the conditional number of A, denoted x(A). When x(A) is small (in fact, | A||[|A7| > |AA™| = 1,

[0

|
<JAA™ ==
ol

=~ z[[o < | AT 1Al 16 -8 =

so k(A) > 1), a small pertubation in b also produces a small perturbation in Z.

1 1+e€
—€ 1

1 1 -1-¢€
-1

A" =5

€ l—1+e 1 ]

which, in |+ e, gives |Af e =2+ eand ||A7 e = (2 + €)/€2. Therefore x(A) = (2 +€)?/e? > 4/e. If € is small,
k(A) is huge.

Example 4.4.5. Consider A = [ ] This seemingly nice matrix is not very friendly:
1

We do not want a large x(A) because we are not only interested in computing Az = b for one specific b; when trying
many different bs it may happen that for some b the ratio between |b - b||/|b| and |« — Z|/|=| may reach this huge

number, which is a trouble.

If we want to solve Az = b numerically, we obtain an approximate solution z. We define the residue vector to be

r:= b— Az and the error vector e := x — . Then
Ae=Ax - Az =b- Az =r.

Theorem 4.4.6

Lol el Il
< <k(A)—.
K(A) o] ] o]
Proof. From Ae = r we have || || Kk(A) ||b|| this is nothing but |a:|—|a:| k(A) ”b|b|b| For the other direction,
X
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notice that Ae = r can be written as A™'r = e since A is assumed to be invertible. Then

=

N
<r(A™)
o]

(Ed

Notice that r(A~1) = [ A1 (A1)~ = k(A). 0

4.5 Neumann Series and Iterative Refinement

Let (V,| - |) be a normed (vector) space. Our goal is to find a convergent sequence of vectors v(}) »(?) .. that

eventually converge to our desired solution, v. (Recall that v(*) — v if klim o™ — o] = 0.

Remark. Recall thatif V is a finite-dimensional vector space, then all norms on V' are equivalent. Therefore

if klim |v® — || - 0 in some norm, the same holds for any other norm.

Remark. Also, recall that finite-dimensional normed vector spaces are complete; if dim(V) = n then V =
R"™, isometrically isomorphic. Therefore it makes sense to use an alternate criterion for convergence, the

Cauchy criterion: convergent if lim |v(™) — (™| - 0 as min(m,n) — co.

Beginning of March 5, 2021

Theorem 4.5.1

If Ais an n x n matrix such that | A| < 1, then I — A is invertible and

(I-A)"'-= i AP,
k=0

Proof. We first show that I — A is invertible. Suppose for contradiction that I — A is not invertible. Then for some

x + 0 we have (I - A)x = 0. WLOG assume ||z| = 1; we have

(I-A)z=0 = Az=x = 1=z = [Az| <[A]]«] = [ Al,

m

contradiction. Now we show that the partial sums ) A* converge to (I-A)~! (so that the infinite sum is indeed
k=0

its inverse). This is equivalent to showing

(I-A)> AP 1.
k=0

Indeed,
(I—A) ZAk: Z(Ak_AkH—l) :I—Am+1 ST
k=0 k=0
as |[A™| < |A|™* > 0and so |1 - (I - A™)| = |A™H| - 0. O

Remark. Notice that we do not need to specify which norm | A|| < 1 and the representation of (I — A)™! does
not depend on the norm we pick. Therefore we can pick any norm in the first place to work with. There is no

guarantee that if some norm works, then all other norm works though.
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This representation for (I — A)~! is enormously helpful as it allows us to bypass the O(n?) ops involved in
directly computing (I - A)~!. When n is very large, picking an appropriate m < n and computing Z AF
k=0

involves m - O(n?) steps without losing too much accuracy by omitting > AF,
k=m+1

Example 4.5.2. Use the Neumann series to compute the inverse of

0.9 -0.2 -0.3
B=10.1 10 -0.11.
0.3 0.2 1.1
Solution
Let B=1-Aso
0.1 0.2 0.3

A=[-01 00 0.1
-0.3 -0.2 -0.1

Indeed, | A|s < 1 so the theorem applies: indeed, the sum of absolute values of the entries in the first row is

0.6 < 1 and the same holds for other two. Computations are omitted.

Theorem 4.5.3
If A and B are two matrices such that |7 — AB| < 1, then A and B are invertible. Furthermore,

A'=BY (I-AB)"and B™' =AY (I - AB)".

0 k=0

Ngk

k

Proof. Applying the previous theorem, we have
(AB)™' = 3 (I-AB)",
k=0
o)

A'=BB'A"' =B(AB)' =B (I- AB)"
k=0

B'=BT'ATA=(AB)'A= Y (I-AB)"- A.
k=0

Remark. In some situations, this theorem allows us to generalize the previous one. For example, consider

1000 1 2 -999 -1 -2
A=l 0 -100 3 = [-A=[ 0 101 -3
0 0 1000 0 0 -999
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Clearly |I — Al|c > 0. We can introduce B = diag(1/2000, 1/200, 12000) so that |AB| <1, and then we

can compute AL,

Beginning of March 8, 2021

Often times we cannot immediately find B := A~!, but we can find B ~ A~!. Then the above way indeed gives a

nice way to calculate / approximate AL,

Iterative Refinement

If (*) is an approximate solution to Az = b. Then the precise solution is
e=2© + A1 (b - Az@) = 20 4 O

where ¢(®) denotes the error vector. We define 7(°) := b — Az(®) to be the residual vector. Then Ae(®) = (9, To
solve this equation, we obtain another approximation z(*) = 2(%) + ¢(%) In other words, if B is an approximation of
A~ we define

2 = Bband %Y = 2 4 B(b - AzM).
Theorem 4.5.4

If |I - AB| < 1, then the method of iterative refine given by the equation above produces the sequence of

vectors

2™ = B Y (I- AB)b.
k=0

Then by the previous theorems, (™) converges to z.
Proof. Recall that z(*+1) = 2(%) + B(b - Az(")). The base case is true since
W =2 4 Bb- BAz( = (1 - BA)2") + Bb.
For the inductive step, assuming case m holds,
2D = () 4 B(b - Az(™))

=B Y (I-AB)*b+Bb-BAB Y (I-AB)™b
k=0 k=0

= Bb+ B(I - AB) i(]- AB)"b

k=0
m+1
=B > (I-AB)"b.
k=0

For convergence,

|20 - | = H[B Z(I—AB)k—A‘l]b < [o]] > o.

k=0

BY (I-AB)F- 4™
k=0
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4.6 Solution of Equations by Iterative Methods

Recall the Gaussian eliminations and its variants. They are called direct methods because we are able to obtain the

completely accurate solution after a finite number of steps (scaling, elimination, etc.).

The counterpart, indirect methods, uses iteration of a single process to generate a sequence that ideally converges

to the solution. The algorithm is stopped when the approximation is close enough to the exact solution.

Some circumstances in which indirect methods are preferred:

(1) large linear systems (n large), where there is too much computation to carry out by direct methods,
(2) sparse systems, in which there is a large proportion of zeros in the system, and

(3) solutions of PDEs, where each row of A is discarded after being used.

(4) for a singular matrix, Gaussian elimination will run into problems (dividing by 0) and halt, but iterative

methods are more stable: at least it will provide one solution among the infinitely many others.

Example 4.6.1. Consider the simple linear system

7 -6 X1 B 3
-8 9 ||za] [-4|
Recall the fixed point argument F(z(®)) = z(**1)_If {z:(®)} converges then it will converge to a fixed point
of F. Here we adapt a similar methodology.
Jacobi method solves the i for the i™ unknown as follows:
o) = 6alf D7 riw e

2 = 82" 19— 4/9 z$"

V] [l V74377
2O 89— a9 |
T

Then, if [xgk),xgk)] converges, it must converge to a fixed point of F', namely where

Z1 62o/7+3/7 7 —-6||&: 3

= < = .
) 8%1/9-4/9 -8 9 ||22 -4
Beginning of March 10, 2021

The Gauss-Seidel method is similar:

6 8 4
a:§’“> (k Dy and a:(k) = —xik) -—.
7 7 9 9

It simply took advantage of :c *) when computing o:(k).
Basic Concepts
Still, consider Ax = b. We can split A = Q + (A - Q), i.e., splitting it, so the original equation becomes

Qr=(Q-A)x+b.
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Then we use the iterative method to compute
Qz™ = (Q - A)z* b 4+,
The Q we choose needs to satisfy the following:
(1) the sequence z(*) can be easily computed, and
(2) the sequence z(*) converges rapidly to a solution.

Assuming both A and @ are nonsingular, we may multiply both sides by Q! and obtain the following form which
is indeed an iterative process:
e® = (1-Q ' A)z*kY + Q7 'b.

With the assumption on invertibility, the two forms are equivalent. The latter is more convenient for theoretical analysis
but it is always the first form that is used by computers. The computers don’t want to compute an extra Q!

Theorem 4.6.2

If |- Q7' A| < 1 for some subordinate norm, then the sequence produced by above converges to the solution

Az = b for any initial vector z(?).

Order of convergence. We write the error as
=™ = (1 -Q ' A)z* D + Q7 - .

Then,
e® = (1-Q'A)E* VYV -2)+Q -2+ (I-Q Az =T -Q 'A)e* V1 Q7 p-Q ' Az

where the last two terms cancel, assuming x is the solution. Therefore,
e® = (I-Qta)etb,

Taking the norm:
[e® =11 - QT A)e™ V] < |1 - Q7 Al ™V

so the convergence is linear (first order) and |[e®)| < |1 - Q1 A|®|e(?)|. Therefore, the smaller | - Q™' A| the

faster the convergence.

The Richardson Method simply takes ) = I, namely
2™ = (1= A)z*D 4 p,
The Jacobi Method takes Q = D, diagonal of A. Then
Dz™ = (D= A)a® D 1p — 20 = (1 - D1 A)z*D 4 D,
Theorem 4.6.3

If A is diagonally dominant, then the sequence produced by the Jacobi iteration converges to the solution

Ax = b for any starting vector.
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Proof. Notice that D! A is simply another diagonally dominant matrix but with diagonal entries 1. Then I-D~ A
simply removes all those 1’s along the diagonal. Now consider the | - | of I - D' A. Since D' A is diagonally
dominant, the sum of any entries in a row, excluding the diagonal entry, is always < 1 (since the diagonal entry

is 1). Then |I - Q"' A| . < 1 and convergence follows. O

Beginning of March 15, 2021

Analysis & More Concepts

The next goal is to consider the generalized case
™ = Gz 4 ¢

for any given G and vector c. Indeed, this is a generalization of what is discussed above if we simply set G := I-Q ' A

and c = Q7'b. The natural question that arises is, what are the necessary and sufficient conditions on G that ensures

a convergence of approximations regardless of starting vector? Some preliminaries first.

[ Definition 4.6.4

Let A be a matrix. We say ) is an eigenvalue of A if det(A — A\I) = 0.

[ Definition 4.6.5

The spectral radius of A is p(A) = max|A|. (If A is complex, take the modulus.) Intuitively, p(A) is the radius

of the smallest circle in the complex plane that contains all eigenvalues of A.

[ Definition 4.6.6

Let A, B be matrices. We say A and B are similar if there exists S such that S~'AS = B. It follows that A

and B have the same eigenvalues (not necessarily the same eigenvectors, of course). Indeed,
0 =det(B - \) =det(SAS - \I)
=det(S (A -A\I)S)
= det(S™")det(S)det(A - \XI) = det(A - \I) = 0.

Usually, we define spectrum of A, written A(A), to be the set of all eigenvalues of A. Therefore if A ~ B then

A(A) = A(B). In fact, ~ is reflexive, symmetric, and transitive.

Lemma 4.6.7

Every square matrix is similar to an upper triangular matrix whose off-diagonal elements are arbitrarily

small.
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Proof. Let A be given. We want to show that A ~ D + eU. Schur’s Theorem (to be covered later) states that A ~T
where T is an upper triangular matrix, real or complex. Let € > 0 be given, assuming ¢ < 1. Then consider the

diagonal matrix and its inverse as given below:
D =diag(e,€?,...,€") and D' = diag(e ', e2,..., ™).
Now we consider D~'T'D. D'T multiplies the rows of T"and (D~'7T") D multiplies the columns by D. Then

. T; ; 1=
LijoTy- e = T~
< GTZ‘J 1< 7.
This finishes the proof. O
Theorem 4.6.8

The spectral radius function satisfies

p(A) = nf |A]

where the infinum is taken over all subordinate matrix norms.

Proof. To show p(A) > 1Han |A|, by the lemma above, A ~ D + eU. Then p(A) = p(D + €U) as they have exactly

the same eigenvalues. Notice that if A ~ B then any subordinate norm of A is equal to the some (other or not)

subordinate norm of B:

|A| = |B| == |PBP~'| where A= P"'BP.

Indeed, |B|’ = |[P"'BP| = sup |P*BPz| = sup |P'By| = sup |By|’, where the third = involves substi-
l=l=1 [P-ty|=1 lyll=1

tuting y = Pz and the fourth involves a new vector norm |y|’ = [P~ 1y|.

Suppose that |C« = ¢ for some constant c. Then,
| D+ €U oo € max{|A1],-, | An|} + ce.

Oh the other hand,
p(D +eU) = max|A| = max{[As], -, [Anl}-

Therefore,
p(D +eU) = p(A) > | D+ €U e - ce.

Notice that | D+¢eU |« can be re-written as some other subordinate norm | A||" by what is shown above. Therefore

p(A) > |A] - ccforall e >0 = p(4) > inf |A].

Beginning of March 17, 2021

Now it remains to show that p(A) <inf | A|. This is equivalent to showing that p(A) < | A| for any | - |. Indeed,
if A € A then

M| = [Az] = [Az] <[ Af]]

and the claim follow from the fact that A < p(A) and taking infimum.
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Alternatively, suppose for contradiction that p(A) > |A|. Then there exists some eigenvalue Ao, and (nonzero)

eigenvector ., where |Aoo| > | A|. This gives

[AZoo]| = | AcoToo]| = Aol oo -

Normalizing this gives
[A(zeo/[ 7o )] = Ao > [ A] = Sup. | Az,
contradiction. Therefore p(A) <inf | A]|.

Recall that when spilling we used the method

Qz® = (Q-A)z*" D +b = M = Q1 (Q - Az + Qb

Theorem 4.6.9

For the iteration formula
2 = gz 4 c,
to produce a sequence converging to (I — G)~'¢, for any starting vector (%), it is necessary and sufficient

that p(G) < 1. Notice that (I - G)~'c is the fixed point of F'(z) = G(z) +c.

Proof. We show p(G) <1 < z(®) - (I-G) 'e.
= is obvious: if p(G) < 1 then some norm gives |G| < 1. Then the result follows from Theorem 4.5.1.

For <, assume p(A) > 1. If p(A) > 1 then some A has |\ > 1|. Let (?) = z the eigenvector. Then

:E(O) =T)
2W = GzO 4= My +c

7P =G%2O 1 Get e = Aoy +...

It follows that 2(™) does not converge. Similarly, if p(A) = 1, we again get a divergent series.

[ Corollary 4.6.10

The iteration formula Qz*) = (Q — A)2*~1) + b will produce a sequence converging to the solution of Az = b

for any (9 if p(I - Q'A) < 1.

Gauss-Seidel Method

Theorem 4.6.11
If A is diagonally dominant, then the Gauss-Seidel method

Qx(k) =(Q- A):L‘(k_l) + b with @ = lower triangular part of A

converges for any starting vector.
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Proof. By the above corollary, it suffices to check that p(I - Q1A) < 1. Indeed, let \ be any eigenvalue of
I -Q 'A and let x be the corresponding eigenvector. WLOG assume |z = 1. Then

(I-Q'A)z =Xz = Q- Az = Q\z = \Qx.
We rewrite A = L + D + U where L is purely lower triangular, D diagonal, and U purely upper triangular. Then
(Q-A)r=-Ux=XL+D)z.

Since U is purely upper triangular and D + L lower triangular, the computation can be simplified into
—Za”x]—)\Za”xj 1<ig<n.
J=i+1

Since A is diagonally dominant, it’s natural to leave all diagonal terms on one side and everything else the other:

1— n

)\a“l‘, ==A Z Qi jT5 — Z Qi 55 1 <i<n.

=1 j=i+l

Recall the assumption is that |z|. = 1, for some ¢ we have |z;| = 1. Fix this ¢ and it follows that |z;| < 1 for all

other j’s. Then,

[Mlas | <A Z|az,j||;z:]| + Z la; ;]| by a bunch of triangle inequalities

J=1+1

and since other |z|’s are no more than 1,

P‘Ham |)‘| Z|am| + Z |G”LJ‘

J=i+1

Recall that A is diagonally dominant! Dividing the above by |)| gives

|a’lZ Z|G’ZJ|+|>\| Z| ZJ|

J=i+1

which gives a contradiction unless |A| < 1 for all A. This finishes the proof. O

Beginning of March 22, 2021

Iterative Matrices

Recall that Ricardson uses (*) = (I - Q"' A)z(*1) + Q~'b where Q = I. Jacobi uses Q = diag(A), and GauR-Seidel

uses @ = lower triangular part (including diagonal) of A.

Extrapolation

Extrapolation is a general technique that can be used to improve the convergence properties of a linear iterative

process. Again, consider

) = G 4
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To improve it, we introduce a parameter - # 0 and consider instead
2™ =y (Gz™ D ) + (1 - y)z Y.

A fixed point for above is x = y(Gz + ¢) + (1 - y)x = ~x = v(Gz + ¢) so indeed it gives the same result. If we
define
Gy =G+ (1-7)I,

we have

) = va(k_l) +7yc.

Thus, we have introduced a new iterative method which yields the same solutions. For the original one, we needed
to consider p(G) to determine if there is convergence (if p(G) < 1 then convergent follows). Here we instead
consider p(G) = p(vG + (1 —~)I). Why is this useful though?

Assuming p(G) < 1, can we find a -y that makes p(G,) even smaller and thus even better? Recall that the smaller p

is, the faster the convergence is (recall it’s always first-order; the convergence is related to | G|").

Lemma 4.6.12

If \ is an eigenvalue of A and if p is a polynomial, then p()) is an eigenvalue of p(A). Clear enough.

Theorem 4.6.13

If the only information available about the eigenvalues of G is that they lie in the interval [a,b] and if
1 ¢ [a,b], then the best choice of v is v := 2/(2 - a — b). With this v, we can guarantee that p(G,) < 1 - |y|d

where d is the distance from 1 to [a, b].

Example 4.6.14. For example, if all eigenvalues of G are in [100,200]. Then p(G) > 100. The iterative
method will not work as p(G) is too big (need < 1)! However, if we define G, as stated in the theorem

above,
2 1

T2-100-200 149
then G, =G - (1 -v)I = p(G,) <-1-99|0| = 50/149. This is much, much smaller! The same holds even

v

for G with p(G) < 1, in which case we will get p(G) which is even smaller.

Proof of Theorem. Notice that if ) is an eigenvalue of G, then yA +1-+ is one for G, by the lemma above. (Treat

~G + (1 - 7)1 as a first-degree polynomial.) Then,

G.) = M= A+1-79]< A+1-7l
p(G) xiﬁ?éi)' | Aga(%)h +1-n/<maxjyA+1-9]|

The rest is just tedious computation and thus omitted. O
Remark. This theorem shows that it suffices to know the range of the eigenvalues in order to improve the

iteration method. In the next chapter we will derive some techniques to actually find the regions in which

the eigenvalues lie in.
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Chebyshev Acceleration

Suppose again that the iteration is given by

e®™ =Gz 4 e

Previously, when computing z(*) we only rely on 2:(*~1), Sure, this works, but is it the most efficient one? In partic-
ular, since we have computed all of (1), ..., () can we make use of them as well? Is there a linear combination
of these previous terms that gives a better approximation than z(*)? To put into mathematical language, we seek

k

u® =3P 2@ where o + .-+ a0l = 1.
=0

Compare this with extrapolation

Y (Gz D 4+ ¢) + (1= 4)a*D

which uses a linear combination of two of the previous z(")’s. We know that when this is done properly we have a

better approximation, so it is natural to wonder if we can make this even better if we use more terms.

Analysis

Similar to before, we compute the error:

N

=
Il
(=)

u®) = Zk:a(k)a:(i) -z [a(k)(x(i) - x)]
i=0

o

N
I
(=)

[agk)Gi(x(O) - m)]
- PO - )

(k) i

k
where P is a polynomial defined by P(z) =} a;"’2". Therefore,

=0

k
[u® — 2] <[P(G)] - |2 - z].
Again, there is no restriction on which matrix norm we pick. Notice that

p(P(G)) = max|P(p;)| < max|P(z)]

where p; are eigenvalues of G and S is the region that bounds all eigenvalues of G. Our goal is to minimize the last

k
expression subject to a constraint Z a;=1,1e., P(1)=1.
i=0

Beginning of March 24, 2021
It turns out that, this is a standard problem in approximation theory and we can indeed find explicit solutions for
S =[a,b]. We will talk about this later when we get to approximation theory.
One typical problem is if [a,b] = [-1,1]. Then the Chebyshev polynomial T}, (k > 1) is the unique polynomial of
degree k that minimizes the expression
To(z) =1,T1(2) =%
max [Ty (2)|: (=) 1(2)

-1<2<1

Te(2) = 22T-1(2) = Tp-2(2) (k>2)

For a general [a,b], we only need to scale and translate [-1,1] if needed.
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Chapter 5

Other Topics

5.1 Matrix Eigenvalue Problem: Power Method

Here we primarily focus on how to compute eigenvalues of a matrix using the power method. First, some prelimi-

naries.

[ Definition 5.1.1

The conjuage and modulus of v = o + i € C is given by
7 =a - Bi and || = \/a? + B2, respectively.

It is easy to check that |y|? = /7.

[ Definition 5.1.2 |

The inner product of z,y € C™ are given by
(x,y) =Y adi=yTw=y"x.
=1
The norm induced by this product is
[zlo = V{x, @) = Y[
i=1
Theorem 5.1.3: Fundamental Theorem of Algebra, FToA

Every non-nonstant polynomial of degree n with complex coeffieicnts has n roots (not necessarily distinct).

k
P(z) = ay I}(z— ;).

How to compute the eigenvalues and eigenvectors of a matrix?

Recall that if Az = Az has a nontrivial solution then ) is an eigenvalue of A. The corresponding z is an eigenvector.
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[ Proposition 5.1.4

The following are equivalent:
(1) A - )\I maps some nonzero vector into 0,
(2) A- I issingular, and

(3) det(A - AI) = 0. This cries out for the direct method of computing and finding the roots of the

characteristic polynomial! It’s easy to see that once the dimension of A gets large, this becomes a

nightmare!

Power Method

The power method is a method capable of computing eigenvalues and eigenvectors simultaneously. Unfortunately,

there are several conditions that need to be imposed on A (otherwise we need variants of power method):
(1) there is a single eigenvalue of maximum modulus, and
(2) there is a linearly independent set of n eigenvectors.
Namely, if A1, ..., \, are eigenvectors, then after relabeling we must have
A1l > A2 2 As| > - > |Anl.

The second assumption says there exists a (linearly independent) basis {u(l), . ,u(")} (of C™) such that u(? is an
eigenvector of );.

Now we let 2(®) be any nonzero element of C™ such that it can be expressed as a linear combination of these basis

vectors with nonzero coefficient of u(V, i.e.,

2@ = Zaiu(i), ai #0.
i=1

Now we define an iterative method by z(*) = Az(*=1) = 4*2(®) Then,

2(F) = Ak (0
= A*(a1u™ + agu® + -+ a,u™)
= a1 AP+ ap AP 1.4 g, ARG

= a MU + ap u@ 4t a, Ny ™)

Az \* A\
= \¥ [alu(l) + (A—j) agu® + .+ ()\—1) anu(”)]
= M (aru® + €*) - Mau™.

Therefore, z(®) /\k — a;u).

Beginning of March 26, 2021
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Notice that
o (kD) ) )\’f“(alu(l)u(l) + 6(k))
lim — = lim
k—oo ];(k) k—oo )\If(alu(l) + E(k))

AL

We here introduce the notion of linear functional which is a mapping from vectors to scalars (C or R), i.e., it
satisfies

o(ax + By) = ap(x) + Bp(y) for all a, € C.

Then, by the linearity above, for any linear functional,

p(@®) = A} [arp(u™) + (™))

SO
(k+1) 1) (k+1)
lim 74 := lim o(x ) Y a1<,0(u )+ (e )
k— oo k—oo (p(aj(k) a1<,0(u(1)) +§0(€(k))

g )\1.

This procedure is called the power method. The way to pick ¢ is of course not unique, as we will discuss more
soon.

Aitken Acceleration

If the ratios are regarded as approximations to )\, then it makes sense to estimate |r; — A;| which should converge

to 0. Since
Tkl — AL = sO(x(kﬁ)) - )\199(37(k+1)) _ sp(x(k+2) _ /\1$(k+1))
‘P(z(kﬂ)) (p(x(k+1)
p [ (g + 52) A2 a4 00)]
99(>\/f+1(a1u(1) + 6(lc+1)))
/\If+2@(€(k+2) _ e(k_l))
Nt p(agu®) + (kD))
QD(G(IHQ) _ 6(Ic+1))
Yo(aru® + ek’
Therefore

Thel = AL o(aru™ +e®))  p(etF+2) _ (k1)
e — A1 - (p(e(k+1) _ 6(k)) (p(alu(l) + 6(k+1))

=C+(5k

for some |¢| < 1 and J;, — 0.

Based on this information, we can do a general procedure known as the Aitken acceleration:

Theorem 5.1.5

Let {r, } be a sequence of numbers that converges to a limit . Then the new sequence

2
TnTn+2 —Th41

Sp i= nz0

- 9
Tn+2 — 2Tn+1 + 7T

. . . . Sp—T
converges to r faster if r,,,; —r = (¢ + 8, ) (r, — ) with |¢| < 1 and §,, > 0, i.e., lim =0.

n=oo Ty =T

Proof. Let h,, :=r, —r for all n, i.e., the error sequence of r,,. Then immediately
_ (7“+hn)(’l“+hn+2)—(7“+hn+1)2 . hnhrﬁ.g—hgﬁ_l
(r+hpyo=2(r+hy1) +(r+hy,) Bns+o — 2hme1 + B

Notice that as r,, - r, i.e., h,, — 0, this s,, indeed converges to r, where the fraction is the error s,, — r. Recall

Sn

45



YQL - MATH 501 Notes 5.1 - Matrix Eigenvalue Problem: Power Method Current file: 3-29.tex

the assumption that h,.1 = (¢ + d,)h, (which is obtained simply by rewriting r,, — r as h,). A bunch of brutal

computations suggest that lim (s, —r)/h = 0. O

Remark. The Aitken acceleration must be stopped once it gets stationary values, as subtractive cancella-

tion in the formula will produce bad results eventually (recall we cannot do small number subtractions on

machines).

Theorem 5.1.6

If \ is an eigenvalue of A and if A is nonsingular, then A\~ is an eigenvalue of A~'. Proof: clear enough:

Az =Xr,2#0 = z=A"Az=A" Az =\ \A""2) = A'z=)\""z.

Inverse Power Method
Now suppose we have A invertible with
|)\1| P |)\2| > 2 |)\n71\ > |/\n| >0
(the opposite of our previous assumption), then we can invert A and use the power method on A~! since
e e vy e L
However, we do not compute and solve z(*1) = A=12:(k)  Instead, we obtain z(**!) by solving
Ak = (k)

which can be efficiently done using Gaussian elimination (factorization only needs to be done once since A is fixed).

Beginning of March 29, 2021

Other Variants

In addition to the power method and the inverse power method, we also have their shifted variants:
Suppose we are given A and A(A) = {\1,...,\,}. Then A(A—pul) = {\1—p,...,\,—p}. The shifter power method
uses the iterative method

D) - (A- ,u[)a;(k)

(A replaced by A - uI). It becomes clear that this method computes the largest (absolute value) among {\; —
L.y Ap — p}, i.e., the eigenvalue of A that is the farthest from u.

By the same token, the shifted inverse power method uses
(A- /LI)[L‘UHD =z
which (indirectly) computes the smallest among A(A - uI), i.e., the eigenvalue of A closest to p.
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Since . can be chosen arbitrarily, these provide a nice way to compute the “closest eigenvalues” to any x € R. This

generalizes the power method in some sense. Suppose now we have a matrix with
(A1l = A2l > [As > [Aa] 2 [A5| 2 -+ > [An[ > 0.
Clearly we can no longer use the (standard) power or inverse power methods (so they diverge). However, if we

prescribe a i close enough to |A3|, the shifted inverse power method will be able to give us |A3| by iteration.

Now, the natural question is, how can we come up with a nice y in the first place (i.e., how do we know the rough

range of the eigenvalues), and how can we get more than one eigenvalues?

5.2 Schur’s and Gershgorin’s Theorems

Localizing Eigenvalues

Theorem 5.2.1: Gershgorin’s Theorem

The spectrum (all eigenvalues) of an n x n matrix A is contained in the union of following n disks D, in the
complex plane, where each D; is given by
D;={zeC:|z—a;;| <D |ai;|}-
VE]

(Compare this with diagonal dominance.) This localizes all the eigenvalues of A.

Remark. Once we know the regions in which the eigenvalues lie, we can use the shifted inverse method to

begin “guessing” where exactly the eigenvalues are.

Proof. Let A be any eigenvalue of A (so it’s in the spectrum). Let z with |z]. = 1 be the corresponding eigen-

vector, i.e., Az = \z. Assume the ;™ component of z satisfies z; = 1. Then

Az =z = (Ax); = Z a; jTj = \T;.
j=1

Therefore
()\ - ai,i)xi = Z ama:j.
j#i
Then taking absolute value on both sides gives

|()\ —Gi,i)l‘i\ = |/\— ai,i| =

Z @i, j T

J#i

< Ylaijllil < Ylai sl =

j*i j#i

Now, a generalization of the Gershgorin’s Theorem:

Theorem 5.2.2

If A is diagonalized diagonalized by P~' AP and if B is any matrix, then the eigenvalues of A + B lie in the
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union of disks D; with
{AeC: A= Ail € hoo(P)[Blloo }

where A, ..., \, are eigenvalues of A and ke (P) = | P|e | P} | (the conditional number w.r.t. |+ | o).

Remark. If we take A := diag(\;,...,)\,) and P = I and let B be any matrix with zeroes on diagonals,

immediately we see that A + B is just an “ordinary” matrix. Furthermore, xo,(P) = 1 and | B|| is simply of
form in Gershgorin’s theorem (recall | B| is the max of sum of absolute values of entries in one row, and

B has zero diagonal).

Beginning of March 31, 2021

Proof. First recall that similar matrices have the same eigenvalues. Therefore the spectrum A(A4) = A(P™1AP) =
A(D) where D = diag(\1,...,\,) (of A). In addition,

A(A+B)=A(P*(A+B)P)=A(D+P'BP)=A(D+C).

If we apply Gershgorin’s Theorem to D + C, then the eigenvalues of A + B should lie in the Gershgorin disks of
D + C, which are defined by

Di = {)\ eC: |>\ - ()\z + Ci,i)| < Z|di7j + Ci,j| = Z|Ci7j|}.
e Jj#i
Notice that
Di C D; = {A eC: |>\ - Al| < Z|Ci7j|}'
j=1

This follows from triangle inequality: if A € D;,
n n n
A =X =il < Qleil = I = Ml <IN = A = el + leil < Y leisl + leiil = YLl
=i i j=1
But notice that the RHS is closely related to |C|: if we define
Di' = {X e C:|A = i < oo (P) | B oo }
it follows that

1<isn

leigl € max 3le; i = [Clloo = [P BPoo < [P oo | Blloo [ Plloo = oo (P) | Blloo-
j=1 j=1

Therefore each D; c D} c D!, and we are done! O

Schur’s Factorization

Suppose we can find one eigenvalues. How can we find more? Schur’s factorization gives us a way to “single out”

the first eigenvalue from A.
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| Definition 5.2.3

A matrix U is unitary if UU* = I (where U* denotes the conjugate transpose of U).

Theorem 5.2.4: Schur’s Theorem

Every square matrix is unitarily similar to a triangular matrix, i.e., A = U~ BU for some unitary U. (In this
case A=U"'BU = U*BU as well.)

Proof. We prove this theorem by induction. Clear enough, the base case where A is 1 x 1 holds.

For the inductive step, suppose the theorem holds for all (n—1) x (n— 1) matrices. Let A € A(A) with x being the
corresponding eigenvector, i.e., Az = Az. WLOG assume |z|2 = 1. Now we define another scalar 3 depending
simply on x; (first component) by 8 = z1/|z1|if 1 #0 and 1 if 21 = 0.

Claim that will be shown later (we will take this for granted for now): there exists a unitary U such that
Uz = e (where ) := (1,0,...)). Then since U~ = U* we have b~'z = U*e("). Then

UAU* M =UAb 2 = 72Uz = AeW.

Notice that [UAU*]e(") is simply the first column of UAU* by the construction of e¢(*). Once we know any
A € A(A), we are able to transform A into a matrix UAU* whose first column is (),0,...)7. This is the first
step towards arriving at a triangular matrix. Let A be the bottom-right (n — 1) x (n — 1) submatrix of U AU*. By
induction hypnosis, there exist unitary U such that U AU* is (upper) triangular. If we define

1 0
V= U
0 U
. L ) 1 0|1 O
it follows that V' is unitary since V*V = - _|U=1. Then
0 U*||0 U
1 0 1 OffAx =]|1 O
VAV* = _|UAU” _ = N - .
0 0 U* 0 U|lo Aflo U™
L 0 «U* A «U* 0
0 U|lo AU*]| [0 UAU*

[ Corollary 5.2.5

Every square matrix is similar to a triangular matrix. Trivial.

[ Corollary 5.2.6

Every Hermitian matrix is unitarily similar to a diagonal matrix.

Proof. Let A = A*. Since UAU™ is upper triangular for some unitary U, we have (UAU*)* a lower triangular
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matrix. However,
(UDAU*)* =U™ AU =UAU*
so UAU* can only be diagonal. O

Now we show the lemma taken for granted in the proof of Schur’s theorem.

Lemma 5.2.7

The matrix I — vv* is unitary if and only if |v|3 = 2 or 0.

Proof. Notice that (vv*)* = vv*. If I —vv™ is unitary, then

IT=(T-v" )" (I-vv*)=({-v0")(I-vv")
=1-2vv" +vv*ov”
=T -2v0" + (vv)(vv*)

=1-(2-v*v)vv",
so if I —vv™ is unitary, either v*v = 2 or vv* = 0. O
Lemma 5.2.8

Let z,y be two vectors such that ||z |2 = ||y||2 and (x,y) € R. Then there exists a unitary matrix U of the form

I —vv* such that Uz = y.

Proof. If x =y, simply let v = 0 so that Iz = y. If x # y, define
_V2(z-y)
|z =yl

Then

Ur-y=I-vw)z-y=x-vw'z-y
=z—y-a’(z-y)(a" —y")z

=(zx-y) (1 - (ztx - y*a:)) )

It turns out that 1 - a?(z*x —y*x) = 0. Recall the assumption that |z|s = |y|2 = 2"z =y*y. Also, (z,y) € R so

(z,y) = (y,2) = 2"y =y"z. Then,

2 2 2
* * a * * * * a * * a
1-a*(z*z -y x)=1—*2 (z+y'y-yov-x y)=1—*2 (" -y )(ﬂc—y)=1—*2 |z -y|3 =0. O

Deflation

The creation of A in Schur’s theorem is called deflation. If an eigenvalue A of A is known, we then have A(n—1)x(n-1)
with the same eigenvalues except A (recall similar matrices have same eigenvalues). Then we can use power method
again and find one particular eigenvalue of A and then get a second eigenvalue of A. So on and so forth. The way
to construct the corresponding U (for A) is given by obtaining v in the second lemma above and letting U := I —vv*.

To put formally, the steps are as follows:
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(1) Obtain an eigenvector x corresponding to a known eigenvalue .
(2) Define 8 := x1/|xy|. If 1 = 0 simply define 8 = 1.

(3) Define a = V2/|z - BV, and v = a(z - feD)).

(4) LetU=1-wvv*.

(5) Let Abethe (n-1)x (n-1) submatrix of UAU*.

5.3 Orthogonal Factorization & Least-Square Problems

Let us recall that an inner product for vectors in C” need to be non-degenerate, linear w.r.t. the first argument, and

conjugate linear w.r.t. The second. Canonically, if z = (21,...,2,)T andy = (y1,...,y,)” then

Tiyi = 7y

M=

(x,y) = .

i=1

This also induces the norm |z| = \/(z, x).
Beginning of April 5, 2021
(Actually, the inner product can also be defined in other ways: for example define (x,y) := x* Ay where A is positive
definite.)
[ Definition 5.3.1 |

A set of vectors {v,...,v,} is said to be orthogonal if (v;,v;) = 0 whenever ¢ # j. They are said to be

orthonormal if (v;,v;) = 6; ; (the Kronecker delta).

[ Proposition 5.3.2

The Pythagorean rule remains valid in inner product space: if (x,y) = 0 then

I+ lyl®

la+yl* =
and in particular we are interested in | - |2. Indeed,

lo+yl* = e+ y,a+y) = (2,2) + {y,y) + 2%Re (2,) = [2]* + y[*.

Gram-Schmidt Orthogonalization

Suppose we have a set of linearly independent vectors {x1,xs,...} and we want to obtain a set of orthonormal

vectors {uy, ug, ... ;. To begin, we begin by normalizing v; and set u; := v1/||v1|. Then inductively we define

U;C =Tk — Z (g, ui) ug
i<k
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and set uy, := u},/||u}|. This is called the Gram-Schmidt process. The summation ) (xy,u;)w; is the projection of
i<k
2 onto the subspace spanned by {u1,...,ux_1} which is equivalent to that of {x1,...,zx_1}. After all, each u; is a

linear combination of z1,. .., x;.

Theorem 5.3.3

The finite-truncation {uy,us,...,u,} of the Gram-Schmidt sequence is an orthonormal basis for the linear

span of {x1,z3,...,2,}.

Proof. We proceed by induction; the base case is clearly true. Now assume the case for k — 1 holds. Define

V=T — Z (2h,wi) us;.
i<k

Then, for j < k,
(v,u5) = (wr, 1) = D (ww, wi) Quiyug) = (e, ug) = Y 0 (ow, wi) = (2, uz) = (n, uy) = 0.
i<k i<k
Note that v # 0 or otherwise xy, is in the span of {uy,...,ug_1 } which by hypothesis is also that of {x1,...,xx-1},
contradicting the linear independence of {z,}. Hence v # 0 and wy, := v/||v| form an orthonormal basis along
with the previous k — 1 u;’s. The claim then follows as clearly span(uy,...,ux) c span(zy,...,x;) and they have

to equal as their dimensions agree. O

Theorem 5.3.4

If we apply Gram-Schmidt to an m x n matrix A of rank n then we obtain the factorization A = BT where

Bixn has orthonormal columns and 7' is upper triangular with positive diagonal.

Proof. Heuristically we start with the n linearly independent column vectors of A (since it has rank n) and
Gram-Schmidt gives a bunch of orthonormal vectors which goes into B. Then T records all the coefficients of
the linear combinations and the diagonal terms are the so-called “scaling factor” 1/||u;, | obtained in w} /|u}|. To

put formally,

C1,1 €12 = Cip
C22 - Cap
xk‘ = Zci,k‘ui — I:xl e xn:I = I:ul e u,n:I . D
i<k
Cn,n

Remark. If we use the standard inner product (z,y) := *y and m = n then B is unitary.

Modified Gram-Schmidt

In the modified version, we define

(iﬁk,vi>vi
Vg = T — _—
i;c (vi, v3)
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It follows that we no longer need to manually normalize vy, in this way.

Least-Squares Problem

This is an important application of orthogonal factorization. Least-squares problems are widely examined in topics

like regression analysis (maximum likelihood estimate, MLE), data fitting, optimization, and so on.

Consider a system of m equations and n unknowns written as Az = b where A is of mxn, x € R™ (or C™), and b ¢ R™
(or C™). We assume the rank of A is n. It immediately follows that m > n. Therefore there are more (or same)
equations than unknowns. If m > n, often times the system has no precise solutions. The most natural way that
follows is to find a “best approximation”, a vector x such that |b — Az| attains its minimum. We use | - |2 (because
of some statistical reasons due to Gauld).

Lemma 5.3.5

If 2 satisfies A*(Ax - b) = 0 then «x solves the least-squares problem.

Beginning of April 9, 2021

Proof. Suppose x solves A*(Az—b) = 0 and let y be any other point. By assumption Az—b (or b—Ax) is orthogonal
to the column space of A. On the other hand, A(z - y) is in the column space of A, so (b- Az, A(xz-y)) = 0.
Then, by Pythagorean rule (and orthogonality)

[6=Ayl3 = b~ Az + A(z - ) [3 = b~ Az[3 + |A(z - ) |3 > |b - Az]3. .

Remark. If rank(A,,x,) = n then so is A* A, an n x n matrix, so it’s nonsingular. Then if for some z we
have A*(Ax - b) = 0 it must be unique. The lemma, combined with the rank assumption, gives us a unique

least-squares solution.

Now the question becomes how to find the least-squares solution?

If A has been factorized as A = BT (A;uxn, Bmxn With orthonormal columns, and 7),., upper triangular with

positive diagonal), then the least-squares solution is the one that solves

Tz =(B*B)™'B*b

(indeed this is just the one for A* Az = A*b which can be re-written as T*B* BTx = T*B*B(B*B)"'B*b = T* B*b).
Alternatively, we can solve the normal equation A* Az = A*b, but this needs the additional assumption that rank n

so that A* A is nonsingular, Hermitian, and positive definite. Hence we can invoke Cholesky factorization.

However, we often choose the first approach over the second as it sometimes provides a better condition number:

1 1 1
1 1 1
e 0 0 . 9
A= = A"A= 1 1 1 +6I3><3.
0 € O
1 1 1
0 0 e
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Heuristically, e prevents A from having rank 1 but only 2 prevents A* A from having rank 1. For smaller ¢’s we may

run into issues, e.g., when ¢ is significant but €2 too small such that it is ignored by the computer.

Householder’s QR Factorization

Goal: for a m x n matrix A, we want to factorize it into A = QR where @ is m x m unitary and R m x n upper
triangular. (Compare this to A = BT in Gram-Schmidt; the main difference is that here ) is square whereas in

Gram-Schmidt T is square. If A is square then the two methods are equivalent.)

5.4 Singular-Value Decomposition & Pseudoinverses

Now we generalize diagonalization A = QAQ™* for real symmetric matrices and Schur’s factorization A = U* BU
(U unitary and B upper triangular) for a square matrix to an arbitrary matrix. The process is called singular value
decomposition (SVD).

Theorem 5.4.1

Any arbitrary complex m x n matrix A can be factorized as
A=PDQ

where P is m x m unitary, D m x n diagonal, and Q) n x n unitary.

Proof. Notice that A* A is n x n, Hermitian, and positive semidefinite:

(A*A)* = A*A* = A*A and 2* (A* Az) = (Az)* (Az) > 0.

Beginning of April 12, 2021

Therefore the eigenvalues of A* A is real and nonnegative, and it is well-defined to write them as o%,...,02
in descending order. Then o4,...,0, are called the singular values of A. Suppose o1 > --- > ¢, > 0 and
Opy1 =+ =0y, = 0. Let {uy,...,u,} be an orthonormal set of eigenvectors corresponding to {o%,...,02}. (This

is possible because a Hermitian matrix can be diagonalized.) Then since
| Aw;||3 = uf A* Aug = u}o?u; = o%ufu; = 02,

we see that Au; =0 for i > r + 1. Also, notice that r = rank(A* A) < min(rank(A*),rank(A)) < min(m,n), which
will be useful when we construct P and Q.
We first construct Q,,«,, by setting its rows to be uj,...,u). Clearly ) is unitary as the u;’s are orthonormal.

Now we define v; := 0~ Au; for 1 <i < r. Clearly v;’s are also orthonormal:

* A% 2, %
ufA*Au;  oiu; U
* -1 * -1 _ Y R
V; V5 =0; (A’U,Z) Uj (Au]')— = —6i’j.
0;03; 0;03;
However, {vy,...,v,} might not be enough for our P,,,,, and we might need more orthonormal vectors. We
can easily overcome this by extending {v1,...,v.} to {v1,...,0p,...,v,}, an orthonormal basis for C™. In fact,
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this choice can be arbitrary (as the bottom part of D’s diagonal are zeros, i.e., these arbitrarily extended vectors
correspond to the zero singular value which makes no difference at all).
We now claim
| | o1 — u; —
A=PDQ=|v, - o,
| onll— w —

or equivalently D = P*AQ*. Indeed, for <i <,
(P*AQ*)ij =v* Auy = (07  Auy)* Auy = ovf A Auy = 076, 4,
andif m>i>r+1, (P*AQ");; = 0 as v, is orthogonal to span(us, ..., u,). O

Pseudoinverse

As suggested by the name, a pseudoinverse is a generalization of an inverse.

Given an m x n “diagonal” matrix D with “diagonal” entries o4,...,0,,0,... in which ¢; > 0, we define the pseu-
doinverse D" to be the n x m “diagonal” matrix with “diagonal” entries o7',...,0,%,0,.... More generallly, if
A= PDQ then

A+ — Q* D+P>(-

I 0
For an invertible matrix, A~ A = I, but for pseudoinverses, A" A usually is of form [ l (where 0 denotes a block
0

of appropriate size). Nevertheless we have AA*A=A, A*AA=A, (AA*)* = AA*, and (A*A)* = A" A. Notice that

the SVD is not unique but the pseudoinverse is uniquely determined. We will show this later.

Beginning of April 14, 2021

Inconsistent and Underdetermined Systems

A system is consistent if and only if there exists a solution.
Consider Az = b where A ism xn, z isn x 1, and b is m x 1. We have the following scenarios, each of which defines

the corresponding minimal solution to the system:
(1) The system is consistent and has a unique solution z. If so, x is the minimal solution.

(2) The system is consistent and has a set of solutions. The minimal solution is defined to be the one with the

least Euclidean norm (infimum, to be exact).

(3) If the system is inconsistent and there exists a unique least-squares solution x (e.g., when rank(A) =nso A*A

is nonsingular), then the minimal solution is simply .

(4) If the system is inconsistent and has a set of least-squares solutions, the minimal solution is the one with the

least Euclidean-norm (infimum, to be exact).

To put into formal mathematical language, if p := inf {||Az — b||2 : € C"} then the minimal solution of Ax = b is the

element with the least norm in the set {x : | Az — b||> = p}. In (1) and (3) we have p = 1; in (2) and (4), p > 0.
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Remark. The infimum can indeed be obtained by some x because Ax - b is linear. Furthermore, it can be

characterized by the following theorem.

Theorem 5.4.2

The minimum solution of the equation Ax = b is given by the pseudoinverse z = A*b.

Proof. Let A= PDQ be the SVD of A. Since () is unitary, it is in particular nonsignular and thus @ : C* - C" is
surjective. Therefore

p= ir(lcf | Az — 0|2 = inf |[PDQx - b| 2
xzeC™ x

=inf |P*(PDPx -b)|- (P* unitary and |P*v| = ||v])
=inf |DQx - P*b|| = inf [ Dy — ¢|. (where y := Qx & ¢:= P*b)
x y
Since D is diag(oy,...,0.,0,...), we know
2 2 T
HDy - C”2 =norm” of [/\lyl —C )‘Ty'r —Cr —Cry1 v _Cm]
= Z|/\iyi - Ci|2 + Z |Ci|2'
i=1 i=r+1

Clearly this quantity is minimized by letting y; = ¢;/o; for each i € [1,7]. (Note that we have no control over the

remaining ¢;’s as those are determined by A. Therefore all we can do is to set the first sum to 0, which we can.)

Then,
. 1/2
p:( > c?)
1=r+1

and since this p does not depend on values of y,,1,...,y,, we want to set them to all 0 to minimize |y|s. In

other words, the minimal solution is

Z/=[01/01 w cpfor 0 ]T

It is easy to see that this is in fact given by y = D*¢ (recall the nonzero diagonal entries of D* is simply 1/c;),

and indeed since y is defined to by Quz,

z=Q 'y=Q*y=Q*"D c=Q*D"P*b=A"D. O
Remark. In MATLAB we can simply use x = A \ b to compute the minimal solution.
Now we prove rigorously that pseudoinverses (and minimal solutions) are unique.

Theorem 5.4.3: Penrose properties

(R. Penrose, 1955) For any matrix A, there exists at most one matrix X (and also at least one, namely A*,
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which we will show later) having these four properties:

(DAXA=A (2)XAX=X (3)(AX)*=AX (4)(XA) = XA

Beginning of April 16, 2021

Proof. Suppose X and Y both satisfy all the properties above. Then

X =XAX = X(AYA)X (2)&(1)
= X(AYA)Y (AY A)X (1)
= (XA)"(YA)'Y(AY)"(AX)" (3)&(4)
= (A XTANHY YV (A X" AY)
= (AXA)Y*YY*(AXA)*
= A'YYY*A* = (YA)'Y (AY)* (1)
=YAYAY =Y AY =Y. (3)&(4), then (2) O

Remark. This proof is very similar to showing how A~ is unique, should it exist: if X,Y are inverses of A

then X = XT = XAY =1Y =Y. Except here it requires more steps.

Theorem 5.4.4

Connecting to the previous theorem, the pseudoinverse of a matrix has those four Penrose properties. Hence

each matrix has a unique pseudoinverse.

Proof. Let A = PD(Q be some SVD. Then A" = Q*D* P*. We will show that A* satisfies all four properties as

listed above. First off:
AA*A = (PDQ)(Q*D*P*)(PDQ) = P(DD*D)(Q) = DD*D = D.
Hence (1) holds (DD* D = D is clear; they are all diagonal matrices). Likewisae,
A*AA* =...=Q*(D*DD*)P* =Q*D*P* = A*
and (2) holds. (3) and (4) are similar and are omitted. O
Some more remarks on SVD: suppose A = PDQ and D = diag(o1,...,0.,0,...). Then
(1) rank(A) = r: since rank(XY") < min(rank(A), rank(B)), we have

rank(PDQ) < rank(A) = rank(A) < rank(D)

and
P*AQ* = D = rank(A) > rank(D)
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(2) {vi,...,v,} is an orthonormal basis for the range of A
(3)  {ups1,.-.,u,} is an orthonormal basis for the null space of A:.
(4) ||A|2 = max|o;|. WLOG if we let o, be the largest singular value then

|Allz = sup [Az|z= sup [PDQz[2= sup [DQxls

[z]2=1 [z]2=1 [z]2=1
[v:=Qxs @ unitary) = sup [Dyls = [De ] =/o7 = ol
yll2=1
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Chapter 6

Approximating Functions

6.1 Polynomial Interpolation

In computer, function values are stored discretely (e.g., for f : (a,b) - R, the computer clearly cannot store the
values of all f(z) for x € (a,b)). (We are talking about the classical methods, not symbolic functions or things like
that.)

Question: given a set of data about the function in the format below, how do we recover the original function?

x ‘l’()‘fﬂl‘l'z‘...‘l'n

y:=f(x) ‘ Yo \ 7 ‘ Y2 ‘ ‘ Yn

There are usually two ways: interpolation and approximation (least-squares approximation in |- | and Chebyshev

best approximation in | - ||;). We will look at the former first.
Beginning of April 19, 2021

Given the above table containing (x,vo), .., (zn, yn ), We seek a polynomial p of lowest possible degree for which

p(x;) = y; for all i. Such p is said to interpolate the data.

Theorem 6.1.1

If g, ..., z, are distinct real numbers, then for any yq, ..., ¥, there exists a unique polynomial p,, of degree at

most n satisfying p,, (y;) = y; for 1 <i < n.

Proof. We first show uniqueness: suppose p,, and ¢, are two polynomials of equal degree, both < n. Suppose
(pn—gn)(x;) =0for 1 <i < n. If p, — g, #0 then it is a polynomial with n + 1 zeros, so it must be of order at least
n + 1. Contradiction. Hence p,, = ¢,,.

Now we show existence. The proof can be done by Newton’s form, Lagrange’s form, or the Vandermonde matrix.
Here we use the first, and we proceed by induction. The base case is clearly true: for a degree 0 polynomial and
(x0,y0), simply let po(zo) = yo the constant function. Now assume that for (zo,vo), ..., (Zx-1, yx—1) We can find

some polynomial pj_; satisfying the assumptions. Now suppose we are given an additional (x,yx). Consider
pr(x) = pr-1(z) + c(x —zo)(z — 21)...(x — Tf—1).
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It follows that p, and pj-; agree at zy,...,25-1 as the second term evaluates to 0. It is also clear that py(x)

is a polynomial of degree not exceeding k. Now we just need to find ¢, and this is subject to the condition

pr(xr) = yp, i€,
Yk —pk—l(Ik)

€= (1 —z0) (2 — 1) (T — Tp1)

Since the z;’s are distinct, the denominator is nonzero and this division is well-defined. The claim follows. [

Remark. There is no remark that xg < 21 < ... < z,; that is, the method stays unaffected if we shuffle the

order of (x;,y;)’s so it generates the same p,,. This is directly guaranteed by the uniqueness part.

Beginning of April 21, 2021

Newton Form

What we have been basically doing above can be summarized by

i-1
Ci

s

Il
[}

pn(x): (x_xj)'

2 7=0

Lagrange Form

Here we consider the same set of data ((zo,%0), .-, (Zn,¥yn)). Instead of expressing p,,(z) as a sum of polynomials

of (possibly) increasing degrees all the way till degree n, we consider
pn(®) = yolo(z) + ... + ynly(z) = Zyi&(x),
i=0

such that

Lo(x0) =1,4p(x1) =0,..., and in general ¢;(z;) =, ;.

We say that the polynomials ¢y, ..., ,, are polynomials that depend on the nodes xy, ..., z,, but not on the ordinates

Yo, ---» Yn. 1t immediately follows that

n
pn(:) = Y. Y05 = yi0i; = y;, as desired.
3=0

So, how to compute the polynomials? Take ¢, for example. Clearly, to be 0 at x4, ..., z,, it needs to be of form

bo(z) =c(z—x1)..(x —xp) =¢C :(Jc—xi).

What is ¢? It is obtained by substituting x = xo and solving ¢y(z() = 1, namely

c= l/ﬁ(aso —x;) = ﬁ(:co —xi)_l.

K3

To generalize this,
xXr — iL'j

ti(x) = [H(fﬂz —fﬂj)l] [I@-=;)=]1]

J#i G#i g#i Ti — L

These functions ¢ are called the cardinal functions, and with them, we obtain the Lagrange form of the interpo-

lating polynomials.
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Remark. This is more intuitive and is often used in proofs. For computers, however, this is a heavy task.

The Vandermonde Matrix

Suppose our polynomial of interest looks like
n )
pn(x) =ag+a1z+...a+nz" = Z a;x",
i=0

where we are given the same conditions (n + 1 pairs of z and y). How to find p,,(2)? LINEAR ALGEBRA!!

[ 2 210,71 T, ]
1 =z x5 - zg[|ao Y0
1 = x% SO 1 R e Y1
1 x5 x% woxh | lag | =]y
1 2L

Tp Ty Ty G Yn

The humongous matrix on the left is called the Vandermond matrix. If the z;’s are distinct then it is nonsingular

(indeed we have a trivial nullspace). In fact this number is given by

[T (@i-z)).

0<i<j<n
It is often times ill conditioned: if one of the z;’s has absolute value > 1 then " may become huge. Recall how €s

may spoil a matrix. The conditional number «(A) for such a matrix is huge.

Comparison

Now we have the following forms:

(1) Newton: p,(z) =co+c1(x—x0) +... + cp(x —x0)...(T — Tpy1).
(2) Lagrange: p,(z) = dolo(z) + dit1(x) + ... + dp ().

(3) Vandermonde: p,(z) = ag + a1z + ... + a,z™.

Notice that {1, (z — x9),..., (x = zg)...(x = xn-1)}, {o(z),....¢n(2)}, and {1,z,...,2"} are three bases of the linear

space containing all polynomials of degree < n.

Newton form:

1 0 0 0 (o] [u0]
1 1 —Xo 0 0 c m
1 To — X (xz—l‘o)(xg—l‘l) 0 e | =y
n-1
1 (zn-m0) (zn-0)(Tn—21) - (zn =) || cn Yn
L =0 40 7 c T

We need to solve a system involving a triangular system. Fine.
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Lagrange form: this is even nicer.

(1 0 0 Waol [wo]
0 0 dy Y1
0 0 1 0 d2 =1Y2
00 0 tlda]| |vm

Some More Remarks

(1) Since the Vandermonde matrix is often ill conditioned, we usually avoid using it in the practical world.

(2) Newton form is usually a better numerical method to solve the polynomial interpolation for the following

reasons:

(a) TItis an inductive algorithm so if more date points are added later on, we don’t need to start from scratch

again. Instead we can use what we already have; in other words Newton form can be easily extended.

(b) It can be combined with the divided difference algorithm (to be discussed).

Beginning of April 23, 2021

Error in Polynomial Interpolation

Theorem 6.1.2

Let f be a function in C"™*![a,b]. Let p be the polynomial of degree < n that interpolates f at n + 1 points

(zo, ..., ) in the interval. Then, to each z € [a, b] there exists a &, € [a,b] such that

A (D)

(n+1)! i=0

f(x) - p(z) =

Proof. The term f("*1)(¢&,) is a clear hint for Taylor expansion. First notice that if 2 is one of the nodes (i.e.,

x = x;) then the claim is trivial. Now suppose z is not a node. Define functions
w(t) =Tt -) o(z) = f(z) - p(z) - dw(z)
i=0

where A € R makes ¢(z) = 0. In other words,

@) -p)
w(@)
Our goal is to show that A can be represented by 1)l f ("”)(fx). Notice that ¢ not only vanishes at z but
n .
also zo, ..., 7,,. Also notice that ¢ € C"*'[a, b]. By Rolle’s theorem, ¢’ has at least n+ 1 distinct zeros in (a,b), and
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inductively o("*1) has at least one zero, say &, € (a,b). This means

0= SDn,+1(€m) _ f(n+1)(§m) _p(n+1)(§$) _ )\w(n+1)(£$)

= O (E,) - 0 - aw™ D (g,) (deg(p) <n)
(n+1) dn+1 n
AR CORESS 7= DU (Rl I
(n+1) dn+1 n+1 n
= D) - X g [t + cnt +...]t=€w
C SO () = (D = FOD (e - (o 1y L2,
w(z)
and the claim follows. O

Remark. In the above expression, the only term that we have little control of is f("+!)(¢,). Everything else

can be easily bounded. If we can manage to bound f("*1)(¢,) then we can bound the entire error.

Example 6.1.3. Consider f(z) = sinxz and we approximate it by a polynomial of degree 9 with 10 notes

n [0,1]. Clearly f(1%)(¢,) is just a trig function whose absolute value is bounded by 1. It is also clear that

9
H|x - ;] < 1 (of course we can further bound it). Then
i=0

1 -7
inx - <——<28-107".
sinz - p()] < 1,

We clearly see that if we interpolate the sine function using more nodes, then the error can be greatly

reduced — it decays factorially.

Chebyshev Polynomials
The optimization of the above error leads to a system of polynomials of polynomials called the Chebyshev polyno-
mials. As mentioned above, there is a way to minimize the term [ [(x - 2;). They are defined iteratively on [0, 1]

i=0
(we’ve mentioned this once), and if the domain changes, we need to translate and scale accordingly:

To(2z)=1 Ti(z)==x

Thi1(x) = 22T, (z) - Tpo1(x)
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Theorem 6.1.4
For x € [-1, 1], the Chebyshev polynomials have the closed-form formula

T, (x) = cos(ncos™ (x)).

Proof. Indeed, Ty(x) = cos(0-cos™!(x)) =1 and T (z) = cos(1 - cos™!(z)) = x. Now notice that
cos(A + B) = cos Acos B —sin Asin B,
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o)
cos(n + 1)6 = cos 6 cos(nf) - sin O sin(nd)

cos(n —1)6 = cos(f cos(nf) + sin O sin(nd)

SO
cos(n + 1)0 = 2cosd cos(nb) — cos(n —1)0.

Substituting 6 := cos™! x and z = cos , we have

fo(x)=1  fi(z) ==
fn+1(x) = 2.’Efn($) - fn—l(x)

where f,,(z) = cos(ncos™ (z)). O

From this theorem we immediately obtain the following properties:

T, (x)| <1 xe[-1,1]
T, (cos(km/n)) = cos(km) = (-1)* 0<k<n
T, (cos[(2k - 1)/(2k)]m) =0 1<k<n

Note that 7T}, is a degree-n polynomial with leading term 2" !z". Therefore 2!~"7T), is a monic polynomial.

Theorem 6.1.5
If p is a monic polynomial of degree n, then

_ 1-n _ 1-n
Iplloo = max [p(a)| > 217" = 2T, .

n
This bounds provides an estimate for [ [(z - ;).
i=0

Proof. Suppose the contradiction that |p(z)| < 21" for all z € [-1,1]. Let q := 27T}, and =}, = cos(km/n). Since

g is a monic polynomial of degree n, we have
(=1)*p(xx) <Ip(zi)| <27 = (=1)*q().

Therefore
(-1)*[q(zx) - p(zk)] > 0,

i.e., g(zr) - p(zy) oscillates between positive and negative values. It follows that ¢ — p a continuous polynomial

must have at least n roots on [-1, 1], contradicting the fact that both are monic which implies deg(p—¢) < n-1.

Therefore such p cannot exist. O

Choosing the Nodes

It follows from

1 n+ o
O R e ARG
that
_ 1 (n+1) n o
lsxlllgf(x) p(z)| < (ml)!ﬁjﬂﬁ'f ! (x)||§cl|l£ g(w )|,
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since all the £,’s must also lie within the same interval. From above we see that the last term is at least 27" (note we
have n + 1 products, not n, hence 27" not 2!="). Thus, the minimum is attained if the last term is the “normalized”

Chebyshev polynomial 27"T,,,;. If so, it becomes clear that the notes are

2k
T; = COS ﬂ 0<k<n.
2n + 2

Beginning of April 29, 2021

6.2 Divided Differences

In this section we develop a specific algorithm to obtain the coefficients for the Newton form.
To start simple, consider ps(z) = cogo(x) + ¢1q1 (x) + c2g2(x) where the given data are (xo,y0), (z1,y1), and (z2,y2).
By definition

qo(x)=1 q(z)=(r-20) ¢(z)=(2-z0)(x-21).
(1) We begin by solving po(z) = cogo(x), a solution that interpolates (zg,yo). Clearly qo = yo =: f[z0]-

(2) Now we solve p1(z) = coqo(z) + c1g1(x) = yo + ¢1(x — xo)(x — 1), a polynomial that interpolates (z,yo) and
(x1,y1)- Clearly p;(z) interpolates (zg, yo) regardless of value of ¢;, so we need to make sure p; interpolates

(21y1). This means

pl(xl) = Yo +61(£L’1 —CCO) =Y = €1 = Y1~ %o =: f[xo,xl]-
1 —Zo

(3) Now we consider the last term ¢y and p». Similarly, we only need to focus on the term containing c, because

(x0,90) and (z1,y; ) are automatically interpolated. Then

p2(22) = flxo] + flzo, z1](x — x0) + c2(w2 —x0) (T2 — 1) = Y2
= 2T flxo] = flwo, x1] (w2 — x0)
(w2 —z0) (22 — 71)
(Y2 —¥o)/(z2 — w0) — flxo, 1] _ flwo,z2] - f[xo, 1]

= = =: f[Io,JCl,IQ].
To — X1 T2 —T1

We adopt the notation f[z, ..., z,] to stress the fact that the coefficient depends only on the z;’s included in the

bracket. To sum it up,

p2(x) = flwo] + flwo, x1](z = 20) + f[70, 1, 22](7 — 0) (T — 71).

| Definition 6.2.1 |

n i—1
In Newton form, if p,,(z) = )" ¢;q;(x) where ¢;(z) = [[(# - z;), then we define
i=0 3=0

Ci = fl:x()a"'v'ri]'

These f[xo,...,z;] are called the divided differences of f.
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[ Proposition 6.2.2

The divided difference is a symmetric function of its arguments, i.e., if {z, 21, ..., 2o} = {0, 21, ...,z } then
flz0,21, - 2n] = flTo, 1, -y Tn ]

Proof. Recall that the polynomial p,, that interpolates the data is unique. Both the LHS and RHS denotes the

coefficient of the term z" and they are of course the same. O
Theorem 6.2.3

This theorem provides a recursive formula for the divided difference:

f[$07$17-~-;xn] _ f[mlv"'7xn] _f['q;Oa"'a'T'n,—l].
Ip — 0

Remark. With this theorem, when we are given (xq, f(x0)), (z1, f(21)), ..., (zn, f(z,)), We are able to
immediately get f[xzo],..., f[2»]. In particular we obtain ¢y. Then we are able to use the formula above and
obtain f[xo,z1], f[z1,%2], .., f[n-1,2n]. In particular we obtain ¢;. Then, using the formula again, we can

obtain f[anzlamQL "'7f[xn—23mn—17xn] via

for example. Inductively, we are able to compute all divided differences. It follows that we can obtain all the

coefficients c;’s for Newton form.

Proof. Let (xo, f(z0)), ..., (zn, f(x,)) be given and suppose p,, interpolates all n + 1 points with deg(p,) < n.
Also suppose p,_; interpolates all notes except x,, (so it interpolates n points) with deg(p,-1) < n — 1. Further
suppose p,-1 interpolates all notes except z (another polynomial with deg < n - 1 that interpolates the last n

points). What would the relation between p.,, p,_1, and p,,_; be? On one hand,

P () = pp-1(2) + fl2os oy 2n (. — 20) (= 21).. (T = Y1),
and on the other hand,

P () = Pp-1(2) + fl21, 00y Tny 20 ] (2 — 1) (2 — 22)... (T — T4

By the proposition above, f[xq,...,2,] = f[21, ..., Zn, Zo]. Notice that

T—Ty

pn(x) = ﬁn—l(x) + [ﬁn—l(x) _pn—l(x)]'

In — X0
It is clear that both LHS and RHS evaluate to 0 at x; for 1 <7 < n-1. It is also clear that p,,(x,) = 0. If x = 29 then
Pr(x0) = Pr-1() + (o — 20 [(Tn — 20) [Prn-1(20) — Pn-1(20)] = Pn-1(x0) = 0 as well. Now what is the coefficient
of ™ on both sides? That for the LHS is f[xzy,...,x,]. The one for the RHS is

X

(flx1, 22, 0] — fl2o, 21, oy Tn ).
Tp — 0

This proves the claim. O
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[ Proposition 6.2.4

Let p be the polynomial of degree < n that interpolates a function f on notes x, ..., z,,. If ¢ is a point different

from the nodes then

F(8) = p(t) = fl20, 21, 0 ] fg(t—m

Proof in a nutshell: add a new datum (¢, f(t)) and interpolate the original function at n + 2 nodes.

Theorem 6.2.5
If f e C"[a,b] and if xy, ..., z,, are distinct points on [a, b], then there exists a £ € (a, b) satisfying

Lo, ] = 25 1(E)

In particular, the case n = 1 gives the MVT.

End of Course
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