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Chapter 0

Remarks & Introduction

0.1 Miscellaneous

About

(1) Who: taught by Prof. Wojciech Ożański; LATEX notes arranged by Qilin Ye

(2) When: taught in spring 2021; notes arranged in summer

(3) Where: on Zoom...

(4) What: lecture notes for MATH 425a, Fundamental Concepts in Analysis

(5) What book: Rudin, Principle of Mathematical Analysis (PMA)

Theorem Numbering Scheme

Although I personally prefer to number the theorems according to their corresponding chapters and sections, Prof.

Ożański decided to go with the week number. I will follow his numbering scheme, i.e., Theorem a.b refers to the

bth theorem/definition/etc. on the ath week. I will, however, make the section numbers consistent with those in

Rudin’s PMA, as this course is heavily based on that book.

0.2 Notations

Throughout this course, we shall adopt the following notations1.

∀ denotes “for all” †

∃ denotes “there exists” †

= denotes “equals”

∶= denotes “is defined by”

N denotes the set {1,2, ...}

E denotes “contradiction” †

[!] denotes the exclamation mark; the brackets are

to distinguish this from factorial (x! vs. x[!])

(x > 0) ∈ R is a shortcut for (x ∈ R and x > 0)

ϵ ∶= ϵ(n) denotes “ϵ whose value depends on n”

{xn}n∈I most likely denotes a set with elements are

defined over an index set

(xn)n⩾1 most likely denotes a sequence (x1, x2, ...)

1If a symbol is marked with †, then I will most likely spell the word out nevertheless, for I (Qilin Ye) personally prefer to write proofs with
more sentences than symbols to enhance readability.
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Beginning of Jan. 15, 2021

0.3 Introduction & Motivation

Why analysis? Below is a quote from Professor Kyler Siegel’s 425a (the one I took):

As you will see, our human intuition can sometimes lead us astray, and many pathologies and exotica arise

if we are not extremely careful with our assumptions.

Before beginning the course, we consider some counterintuitive examples:

(1) How should we define connectedness of a set?

Example 0.1: the Topologist’s Sine Curve / Warsaw Sine Curve. Below is the graph of f(x) ∶=
sin(1/x). We take the union of points on this graph with the points on the line segment between (0,1)
and (0,−1) [points on y-axis] and call it the closed topologist’s sine curve. It turns out that this set

is connected (intuitively!) but not path-connected, i.e., there exist two points in the set such that we

“cannot draw a path connecting them”. We will show this rigorously (or not) in Example 8.17.

x

y

(2) How about the notion of continuity and differentiability? How should one define continuity over a function?

Example 0.2: the Cantor Function / Devil’s Staircase. We construct a function f ∶ [0,1] → [0,1].
We first divide [0,1] into three equal intervals. Let f(x) = 1/2 on the middle one (i.e., on [1/3,2/3]).

Then for the other two intervals, setting f(x) = 1/4 on [1/9,2/9] and f(x) = 3/4 on [7/9,8/9]. We

iterate the process and take the limit (take it for granted!) function.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

It turns out f is continuous everywhere and has zero derivative almost everywhere, i.e., constant almost

everywhere, but f(0) = 0 and it somehow grows to f(1) = 1[!] We will discuss this in-dept in our last

lecture!

4
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(3) When can we interchange limits? When not? This is given by the Moore-Smith Theorem.

Example 0.3. Consider a sequence with two indices (an,k). It is not necessarily true that

lim
k→∞

lim
n→∞

an,k = lim
n→∞

lim
k→∞

an,k.

For example, consider an,k = n/(n + k). Then

lim
k→∞

lim
n→∞

n

n + k
= lim

k→∞
1 = 1,

whereas

lim
n→∞

lim
k→∞

n

n + k
= lim

n→∞
0 = 0.

There are no accidents; we need to know what is going on in each one of these. In mathematical analysis, one need

to be careful. Without further ado, let us begin the course.
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Chapter 1

The Real and Complex Number Systems

1.1 Introduction

Question. What are real numbers? We know what integers are (or not, lol), and we know how rationals are defined

(fractions of integers), but how do we define
√
2, for example?

Remark. It is tempting to say that we can define
√
2 to be the (positive) number x such that x2 = 2, but then we are

defining a number by saying it’s some number, a circular reasoning.

In this chapter we will develop some tools that solves this issue, even though it might seem unnecessary at first.

1.2 Ordered Sets

Definition 1.1: Subsets & Proper Subsets

If A,B are sets, we say A is a subset of B, written A ⊂ B, if x ∈ B for all x ∈ A. We say A is a proper subset

of B if A ⊂ B but A ≠ B. We denote this by A ⊊ B.

Definition 1.2: Orders & Ordered Sets

A binary relation (a relation between two points) ≺ on A is an order if

(1) (Trichotomy) for all x, y ∈ A, exactly one among the following three is true:

x < y x = y y < x

(2) (Transitivity) if x, y, z ∈ A and if x ≺ y, y ≺ z, then x ≺ z.

We say a set A is an ordered set if it is equipped with an order relation. We write x ⪯ y if (x ≺ y or x = y). It

is more convenient to simply write < instead of ≺, so I will use < to denote order in the future.

Future reference: Definition 1.6 (supremum)

Example 1.3. Let A ∶= Q with relation < (less than), and we say

a

b
< c
d

if
a

b
− c
d
= ad − bc

bd
is negative.

By doing so, we reduced the relation between rational numbers to that between integers, and we know

(ad − bc)/(bd) is negative if and only if (exactly) one between the numerator and denominator is negative.

6
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Example 1.4. Let Q2 ∶= {(q, r) ∶ q, r ∈ Q}. It is not clear how to define an order on Q2.

For example, if we let (q, v) ≺ (w,p) if q < w, then (0,1), (0,2) are not comparable. Trichotomy implies

(0,1) = (0,2), which is absurd.

For another example, consider (q, v) < (w,p) if p < w and v < p, but then (−1,1) and (0,0) cause an issue.

Definition 1.5: Bounded Sets

Let A be an ordered set and let E ⊂ A. We say E is bounded (form above, in A) if there exists α ∈ A such

that x ⩽ α for all x ∈ E. If so we call α an upper bound.

Analogously E is bouneded below if there exists a lower bound β ∈ A if β ⩽ x for all x ∈ E.

Beginning of Jan. 20, 2021

Definition 1.6: Suprema & Infima

Let A be an ordered set and E ⊂ A bounded above. We say α ∈ A is the supremum of E, written α = supE,

if it is the least upper bound of E, i.e.,

(1) x ⩽ α for all x ∈ E, (i.e., α is an upper bound of E) and

(2) if γ < α for some γ ∈ A then γ is not an upper bound of E, i.e., α is the least upper bound of E. In

particular, supremum is unique, should it exist: if α,α′ are suprema and α ≠ α′ then the definition of

order, either α < α′ or α′ < α, and in either case one between them is not an upper bound of E.

If every bounded subset E has a supremum, then we say that A has the least upper bound property (LUBP).

Analogously we can define the infimum (written inf E) and the greatest lower bound property (GLBP).

Future reference: Characterization of supremum, characterization of supremum

Remark. The supremum and the infimum, should they exist, may or may not be elements of E. If they are,

they agree with the maximum and minimum. (Example: [1,2) contains its infimum but not supremum, and

so [1,2) has a minimal element 1 but no maximal element: its supremum 2 ∉ [1,2).)

Example 1.7. Let A ∶= Q and define E ∶= {q ∈ Q ∶ q3 < 2}. Clearly E ⊂ Q and any q ∈ Q with q3 ⩾ 2 is an

upper bound for E. However, does E have a supremum? The answer is no. We take it for granted that 3
√
2

is irrational, the proof of which can be easily derived by contradiction, setting (m/n)3 = 2 for integers m,n, and

using divisibility of 2.

Suppose for contradiction that some p ∈ Q we have p = supE. Then either p3 < 2, p3 > 2, or p3 = 2. The italic

sentence above shows p3 = 3 gives a contradiction.

If p3 < 2, we claim that there exists q ∈ Q such that q > p and q3 < 2. We can find an explicit formula for q

but this is most likely going to be very complicated. However, once we get to the notion of limits, we can easily

circumvent the algebraic construction and obtain our desired result. This contradicts p’s being the supremum.

Likewise, if p3 > 2, there exists q ∈ Q with q < p and q3 ⩾ 2 (or > 2). Then q is a smaller upper bound, again

contradicting p’s being the supremum. Every single case gives a contradcition, completing the proof.

This example shows that Q does not have the LUBP, and this is not a nice thing...

Future reference: Example 1.15
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In fact, the LUBP is equivalent to the GLBP, as we present the following theorem:

Theorem 1.8: LUBP ⇒ GLBP

If A an ordered set with LUBP and E ⊂ A is bounded from below, then

inf E = sup{α ∈ A ∶ α is a lower bound of E}.

In particular A has the GLBP.

Note that the set above (the set of lower bounds of E) is nonempty and bounded: since E is bounded from below, the set

contains some lower bound of E and is nonempty, and the set is bounded because any x ∈ E bounds this set from above.

Proof. Let β denote the RHS. We want to show that (1) β is a lower bound of E and (2) if β < γ for γ ∈ A then γ is

not a lower bound of E.

For (1), if β is not a lower bound of E, then there must exist some x ∈ E such that x < β. By definition of supremum,

x is not an upper bound of the RHS set. This means there exists some α, some lower bound of E, that is greater

than x, contradicting x ∈ E.

For (2), suppose for contradiction that there exists γ > β that is a lower bound of E. In particular, γ does not belong

to the RHS set, so γ is not a lower bound of E, contradiction again!

Corollary 1.9: GLBP ⇒ LUBP

Similarly, GLBP⇒ LUBP, and so

A has LUBP ⇐⇒ A has GLBP. (Eq.1.1)

Now that we have defined ordered sets, we would like to have some operations on the set, e.g., addition and

multiplication. These are necessary tools for our construction R.

8
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1.3 Fields

This is probably the least interesting section in the entire course as it is highly axiomatic. There is no need to fluently

memorize all axioms, and they are not the main focus of our course, either.

Definition 1.10: Fields

A set F equipped with two operations, addition and multiplication, is called a field if it satisfies the

following field axioms (A), (M), and (D):

(A) Axioms for addition:

(A1) Closure: x + y ∈ F for all x, y ∈ F .

(A2) Commutativity: x + y = y + x for all x, y ∈ F .

(A3) Associativity: (x + y) + z = x + (y + z) for all x, y, z ∈ F .

(A4) Additive identity: there exists 0 ∈ F such that 0 + x = x for all x ∈ F .

(A5) Additive inverse: for each x ∈ F there exists an (unique) element −x ∈ F with x+(−x) = 0. It is in

fact not completely trivial that this inverse is unique, and we write x+ (−x) as x− x for convenience.

(M) Axioms for multiplication

(M1) Closure: xy ∈ F for all x, y ∈ F .

(M2) Commutativity: xy = yx for all x, y ∈ F .

(M3) Associativity: (xy)z = x(yz) for all x, y, z ∈ F .

(M4) Multiplicative identity: there exists [1 ≠ 0] ∈ F such that 1x = x for all x ∈ F .

(M5) If x ∈ F and x ≠ 0 then there exists an (unique) element 1/x ∈ F with x(1/x) = 1. It also takes a

small proof to prove uniqueness; once shown, the notion (1/x) is well-defined. We write x−1 ∶= 1/x.

(D) The distributive law:

x(y + z) = xy + xz

for all x, y, z ∈ F . This connects addition with multiplication.

Future reference: Example 2.2

Example 1.11. Q is a field, whereas Z is not a field as it violates (M5): 1/2 ∉ Z for example.

Lemma 1.12: Properties of Fields

Let F be a field. Then for all x, y, z ∈ F , we have

(1) Related to cancellation law for addition:

(i) x + y = x + z Ô⇒ y = z.

(ii) x + y = x Ô⇒ y = 0.

(iii) x + y = 0 Ô⇒ y = −x.

(iv) −(−x) = x.

9
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(2) Related to cancellation law for multiplication: assuming x ≠ 0,

(i) xy = xz Ô⇒ y = z.

(ii) xyx Ô⇒ y = 1.

(iii) xy = 1 Ô⇒ y = x−1.

(iv) (x−1)−1 = x.

(3) Related to field itself:

(i) 0x = 0.

(ii) x ≠ 0, y ≠ 0 Ô⇒ xy ≠ 0.

(iii) (−x)y = −(xy) = x(−y).

(iv) (−x)(−y) = xy.

Having defined ordered sets and fields, the next natural construction is a combination of them:

Definition 1.13: Ordered Fields

An ordered field is a field F which is also an ordered set, such that

(1) x + y < x + z if x, y, z ∈ F with y < z, and

(2) xy > 0 if x, y ∈ F , x > 0, and y > 0.

These express the compatibility of the order relation with the field axioms.

If x > 0 we call x positive; if x < 0 we call x negative.

Beginning of Jan. 22, 2021

Lemma 1.14: Properties of an Ordered Field

Let F be an ordered field and let x, y ∈ F . Then

(1) x > 0 if and only if −x < 0.

(2) If x > 0 and y < z then xy < xz.

(3) If x < 0 and y < z then xy > xz.

(4) If x ≠ 0 then x2 > 0. In particular, this shows 1 > 0.

(5) If 0 < x < y then 0 < 1/y < 1/x.

Future reference: C is not ordered

Example 1.15. Q is an ordered field, even though it does not have LUBP.

The issue with Q and LUBP is that, while each rational number corresponds to some integer fraction, there are numbers

10
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on the real line that do not correspond to any integer fraction. We need to define the real numbers as an extension that

“fills the gaps’ via what is called the Dedekind cuts.

1.4 The Real Field

Theorem 1.16: Dedekind Cuts and the Construction of R

There exists an ordered field (which we call R) that has the LUBP and contains Q as a subfield, i.e., Q ⊂ R
and (Q,+, ⋅) is a field where +, ⋅ are inherited from (R,+, ⋅). The members of R are called real numbers.

Proof Sketch. We say a set A ⊂ Q is a Dedekind cut if it satisfies the following property:

(1) A ≠ ∅,A ≠ Q,

(2) If p ∈ A, q ∈ Q are such that q < p, then q ∈ A.

(3) If p ∈ A then there exists r ∈ A with r > p, i.e., A has no largest element.

The diagram below serves as a heuristic visualization:

r

p

q

A

We claim that each point on the real line can be represented as a cut. For example, the example of 3
√
2 is represented

by the set {x ∈ Q ∶ x3 < 2}. Now we provide a sketch of the proof, as the actual one is rather long (see Rudin’s Ch1

Appendix for a complete proof).

(Step 1) Define Dedekind cuts as above.

(Step 2) Define R to be the set of all cuts with the order relation A < B if A ⊂ B.

(Step 3) Define addition of two cuts by

A +B ∶= {a + b ∶ a ∈ A, b ∈ B}.

In particular the zero element 0∗ is the set of all rational numbers, i.e., 0∗ ∶= {q ∈ Q ∶ q < 0}. For A > 0∗, define

−A to be the cut such that A + (−A) = 0∗.

(Step 4) Define a cut A to be positive if A > 0∗. Multiplication of two positive cuts A,B is given by

{q ∶ q ⩽ ab for some (a > 0) ∈ A, (b > 0) ∈ B}.

(Step 5) Complete the multiplication by setting A0∗ = 0∗A = 0∗ and

AB =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−A)(−B) A < 0∗,B < 0∗

−[(−A)B] A < 0∗,B > 0∗

−[A(−B)] A > 0∗,B < 0∗.

Then R with <,+, ⋅ defined as such forms an ordered field with LUBP and contains Q as a subfield by associating a

rational number by a cut at a rational number.

Future reference: Archimedean Property of R

11
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Remark. From now on, we will treat R “as usual”, i.e., we no longer need to worry about addition, multi-

plication, etc. We may also freely use the fact that R has the LUBP, i.e., the supremum and infimum exist for

any set A ⊂ R. This claim does need to be supplemented with some extra constructions. By convention,

(1) The supremum of a set unbounded from above is∞.

(2) The infimum of a set unbounded from below is −∞.

(3) inf ∅ =∞ as any number is trivially a lower bound of ∅.

(4) sup∅ = −∞ as any number is trivially an upper bound of ∅.

Example 1.17: Archimedean Property of R. We present a seemingly trivial claim:

For all x, y ∈ R such that x > 0, there exists n ∈ N such that nx > y.

Proof. Define A ∶= {nx ∶ n ∈ N}. Suppose the claim is false so all elements of A is less than y, i.e., y is an

upper bound of A. We define α ∶= supA, which exists because R has the LUBP. Note that α − x < α since

x > 0. It follows that α − x cannot be an upper bound of A as α is the supremum (LUB). Thus there exists

m ∈ N such that α − x <mx Ô⇒ α < (m + 1)x ∈ A, contradicting α = supA. Hence the claim must hold.

Beginning of Jan. 25, 2021

Example 2.1. Another seeming trivial statement that claims we are able to take roots in R:

For all (x > 0) ∈ R and n ∈ N, there exists a unique (y > 0) ∈ R such that yn = x.

Future reference: Example 2.2

Proof. We first show uniqueness. Suppose for 0 < y1 < y2 we have yn1 = x = yn2 . Using Lemma 1.14 we get yn1 < yn2 ,

an immediate contradiction. Now it remains to show existence.

Define E ∶= {t > 0 ∶ tn < x}. We know E is nonempty:

x

1 + x
< x and ( x

1 + x
)
n

< ( x

1 + x
) < x Ô⇒ x

1 + x
∈ E.

It is also bounded above, as (1 + x)n > 1 + x > x. Therefore it has a finite supremum and we define y ∶= supE. We

will show that yn = x which will complete the proof. Notice that, for 0 < a < b,

bn − an = (b − a)
n−1
∑
i=0

aib(n−1)−i < (b − a)nbn−1. (∆)

If yn < x then x − yn > 0, consider a positive number
x − yn

n(y + 1)n−1
and any k ∈ (0,1) smaller than the fraction. Now

we apply (∆) to 0 < y < y + k:

(y + k)n − yn < kn(y + k)n−1 < kn(y + 1)n−1 < x − yn,

meaning that (y + k)n < x and so y + k ∈ E, contradiction.

If yn > x then yn − x > 0. Similarly, we set k ∶= y
n − x
nyn−1

< yn

nyn−1
⩽ yn

yn−1
= y and claim y − k is still an upper bound of

12
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E (so a contradiction arises). If y − k is not an upper bound, then there exists t > y − k such that tn < x, and so

yn − x < yn − tn < yn − (y − k)n < knyn−1 = yn − x,

where the last < uses (∆) and the = uses the definition of k. Since yn − x < yn − x is absurd, we are done.

Remark. In fact, we can replace the exponent n by any nonzero real number.

Corollary 2.2

If a, b ∈ R are positive numbers and if n ∈ N, then (ab)1/n = a1/nb1/n.

Proof. Let α ∶= a1/n and β ∶= b1/n so that αn = a and βn = b. Using Def 1.10 (M2) (commutativity of multiplication

in a field),

ab = α ⋅ ... ⋅ α
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

⋅β ⋅ ... ⋅ β
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

= (αβ) ⋅ ... ⋅ (αβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

= (αβ)n.

Therefore we have found one solution to xn = ab, and by Example 2.1 it is the unique one.

Example 2.3. Let I = (a, b] ⊂ R (or [a, b), (a, b), [a, b]) for some a < b. Then a = inf I and b = sup I.

Proof. We first show that inf I = a. First notice that a is a lower bound for I; in particular, its infimum exists.

Suppose a ≠ inf I; then there exists a′ > a also a lower bound of I. However, (a, a′) is nonempty and (a, a′) ∩ I is

also nonempty, so there exists e ∈ (a, a′) ∩ I. In particular, such e ∈ I and e < a′, contradicting the assumption that

a′ is a lower bound. We can show analogously that b = sup I and the proof is omitted.

Example 2.4. (A harder example) Find the supremum and infimum of

A ∶= {
√
n − ⌊
√
n⌋ ∶ n ∈ N}.

Note that since it is well-defined to take square roots as justified previously, the set is well defined, and so are its

supremum and infimum.

Solution. It is obvious that the infimum is 0 and that the supremum ⩽ 1 as
√
n − ⌊
√
n⌋ < 1.

We will now show that supA = 1 as anyone would guess. If not, then there exists ϵ > 0 such that

√
n − ⌊
√
n⌋ ⩽ 1 − ϵ for all n ∈ N.

If we take n ∶= k2 + 2k for some k ∈ N, then k <
√
k2 + 2k < k + 1 =

√
k2 + 2k + 1, so ⌊

√
k2 + 2k⌋ = k, and

√
n − ⌊
√
n⌋ =

√
k2 + 2k − ⌊

√
k2 + 2k⌋ =

√
k2 + 2k − k

= (
√
k2 + 2k − k)(

√
k2 + 2k + k)√

k2 + 2k + k

= 2k√
k2 + 2k + k

= 2√
1 + 2/k + 1

.

For sufficiently large k [to be precise, if k > (1 − ϵ)2/(2ϵ)], the fraction > 1 − ϵ. Therefore supA = 1.

13
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1.5 The Euclidean Space

Definition 2.5: Rn, Inner Product, & Norm

For each integer n, we define Rn to be the collection of n-tuples with real entries:

Rn ∶= {x = (x1, ..., xn) ∶ xi ∈ R}.

We see Rn is a vector field, in which addition on Rn is defined by1

x + y ∶= (x1 + y1, ..., xn + yn),

and scalar multiplication is defined by

λx ∶= (λx1, ..., λxn).

However, there is no mulplication defined on Rn, so Rn is not a field.

Nevertheless, we have the inner product, a mapping ⟨⋅, ⋅⟩ ∶ Rn ×Rn → R defined by

⟨x, y⟩ = x ⋅ y ∶=
n

∑
i=1
xiyi =∶ x1y1 + ... + xnyn,

(both notations are fine, but ⟨⋅, ⋅⟩ seems more convenient and unambiguous) and we also have the (Euclidean

standard / Euclidean 2-) norm2of x (a function ∥ ⋅ ∥ ∶ Rn → R⩾0) defined by

∥x∥2 = ∣x∣ ∶=
√
⟨x,x⟩ = (

n

∑
i=1
x2i )

1/2
.

Beginning of Jan. 27, 2021

Remark. The lecture seemed to have taken the following result for granted, but I will nevertheless include it

for the sake of completeness. The Rn inner product ⟨⋅, ⋅⟩ ∶ Rn ×Rn → R is bilinear, meaning that

⟨x, y1 + λy2⟩ = ⟨x, y1⟩ + λ ⟨x, y2⟩ and ⟨x1 + λx2, y⟩ = ⟨x1, y⟩ + λ ⟨x2, y⟩ .

This can be easily verified using the direct definition.

Lemma 2.6: Properties of Norms

For simplicity we consider ∣ ⋅ ∣ on Rn. It satisfies the following:

(1) (Non-degeneracy) ∥x∥ ⩾ 0 for all x and ∥x∥ = 0 if and only if x = 0.

(2) (Absolute homogeneity) ∥λx∥ = ∣λ∣∥x∥ (∣λ∣ denotes the absolute value).

(3) (Cauchy-Schwarz Inequality) ∣⟨x, y⟩∣ ⩽ ∥x∥∥y∥, and ⟨x, y⟩ = ∥x∥∥y∥ if and only if y is a scalar multiple

of x, i.e., y = λx for some λ ∈ R.

Future reference: Complex Cauchy-Schwarz Inequality

(4) (Triangle inequality) ∥x + y∥ ⩽ ∥x∥ + ∥y∥.

In fact, (1), (2), and (4) characterize a norm.

1When context is clear, we write x ∈ Rn instead of (x1, ..., xn) ∈ Rn for convenience.
2Currently in Rn, unless otherwise specified, we let ∣ ⋅ ∣ be the 2-norm. ∣ ⋅ ∣, ∥ ⋅ ∥, and ∥ ⋅ ∥2 are interchangeable when context is clear.
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Proof of Cauchy-Schwarz Inequality. Consider points of form x − λy (x, y ∈ Rn so x − λy ∈ Rn), and consider their

norms, which must be nonnegative by non-degeneracy. On the other hand, using the bilinearity of inner products,

we obtain

0 ⩽ ∥x − λy∥2 = ⟨x − λy, x − λy⟩

= ⟨x,x⟩ − 2λ ⟨x, y⟩ + λ2 ⟨y, y⟩

= ∥x∥2 − (2 ⟨x, y⟩)λ + ∥y∥2λ2.3 (∆)

Picking a specific λ ∶= ⟨x, y⟩ /∥y∥2, we see that

∥x∥2 − 2 ⟨x, y⟩ ⟨x, y⟩
∥y∥2

+ ∥y2∥⟨x, y⟩
2

∥y∥4
= ∥x∥2 − ⟨x, y⟩

2

∥y∥2
⩾ 0,

so indeed ∥x∥2∥y∥2 ⩾ ⟨x, y⟩2, and taking roots on both sides completes the proof of ⩽. “=” is attained if and only if

x − λy = 0, and this is precisely the claim.

Proof of triangle inequality. Taking squares on both sides,

∥x + y∥2 = ∥x∥2 + 2 ⟨x, y⟩ + ∥y∥2

⩽ ∥x∥2 + 2∣⟨x, y⟩∣ + ∥y∥2

[Cauchy-Schwarz] ⩽ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2.

3Another proof (the one I learned from Pugh’s book and Siegel’s lectures): (∆) is a quadratic equation in terms of λ. Since it is forced to be

nonnegative by non-degeneracy of norms, the discriminant must be nonpositive, so 4 ⟨x, y⟩2 ⩾ 4∥x∥2∥y∥2, and the claim follows.

15
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1.6 The Complex Field

Recall that we said Rn is not a field as there is no multiplication defined. However, we can introduce a notion of

“multiplication” on R2, and this process makes it a field, which we call the complex field.

For (a, b), (c, d) ∈ R2, we define the notions of addition and multiplication for this construction to be

(a, b) + (c, d) ∶= (a + c, b + d) and (a, b) ⋅ (c, d) ∶= (ac − bd, ad + bc), (Eq.2.1)

and we define C to be R2 equipped with such operations. We call it the complex field / complex plane.

Future reference: i2 = 1

Theorem 2.7: C is a Field

C is a field; in particular, (0,0) is the additive identity, (1,0) the multiplicative identity, and

(a, b)−1 ∶= ( a

a2 + b2
,− b

a2 + b2
) for (a, b) ≠ (0,0).

It is easy to verify that (a, b) ⋅ ( a

a2 + b2
,− b

a2 + b2
) = ( a2

a2 + b2
+ b2

a2 + b2
,− ab

a2 + b2
+ ba

a2 + b2
) = (1,0).

Definition 2.8: Imaginary Unit

We define i ∶= (0,1) ∈ C to be the imaginary unit.

Theorem 2.9: i2 = 1

i2 = 1. Quick proof: i2 = (0,1) ⋅ (0,1) = (−1,0) by Equation 2.1.

Theorem 2.10: Representation of Complex Numbers

Any (a, b) ∈ C (where a, b ∈ R) can be represented as a + bi.
Quick proof: a + bi = (a,0) + (b,0) ⋅ (0,1) = (a,0) + (0, b) = (a, b).

From now on we will write any complex number z = (a, b) ∈ C as a + bi and keep in mind that i2 = −1.

Definition 2.11

For z = a + bi ∈ C, we define

(1) (Complex conjugate) z ∶= a − bi.

(2) (Modulus) ∣z∣ ∶=
√
a2 + b2 (which is equal to ∥(a, b)∥).

(3) a to be the real part of z, written Re(z), and b to be the imaginary part of z, written Im(z).

Theorem 2.12: Properties of C

Let z,w ∈ C.

(1) ∣z∣2 = zz, z +w = z +w, zw = z ⋅w, z + z = 2Re(z), and z − z = 2iIm(z).
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(2) ∣zw∣ = ∣z∣∣w∣.

(3) Re(z) ⩽ ∣z∣ and ∣Im(z)∣ ⩽ ∣z∣.

(4) ∣z +w∣ ⩽ ∣z∣ + ∣w∣ which is immediate by the triangle inequality for R2.

Proof. For convenience we write z = a + bi and w = c + di.

(1) zz = (a + bi)(a − bi) = a2 − (bi)2 = a2 + b2 = ∣z2∣. The addition one is also clear, and so are the last two

statements, so we will only prove the third:

zw = (a + bi)(c + di) = (ac − bd) + i(ad + bc) = (ac − bd) − i(bc + ad)

and

z ⋅w = (a − bi)(c − di) = (ac − bd) + i(−ad − bc) = zw.

(2) From above we already know zw = (ac − bd) + i(bc + ad), so

∣zw∣2 = (ac − bd)2 + (bc + ad)2

= (a2c−2abcd + b2d2) + (b2c2 + 2abcd + a2d2)

= a2c2 + b2d2 + b2c2 + a2d2 = (a2 + b2)(c2 + d2) = ∣z∣2∣w∣2.

(3) Clearly ∣Re(z)∣2 = a2 ⩽ a2 + b2 = ∣z2∣ and the other one is analogous.

Theorem 2.13: C is not Ordered

While C is a field, it is not an ordered field: there is no order on C.

Proof. Suppose there were. By Lemma 1.14.4, i ≠ 0 implies i2 > 0, but −1 < 0 by Lemma 1.14.1 and .4, so

0 < i2 = −1 < 0, contradiction.

Theorem 2.14: Complex Cauchy-Schwarz Inequality

If ai, bi ∈ C, then

∣
n

∑
i=1
aibi∣

2

⩽
n

∑
i=1
∣ai∣2

n

∑
i=1
∣bi∣2.

Proof. Each ∣ai∣, ∣bi∣ is real, and ∣aibi∣ = ∣ai∣∣bi∣ as shown above. Then the real Cauchy-Schwarz applies.

Example 2.15: Applications of Complex Numbers.

(1) (Electrical engineering). In electronic circuits, one represents alternating current (AC) as a vector

rotating in the complex plane, whose formula is given by

U(t) = A exp(i(ωt + θ0),

where A represents the amplitude (maximum), ω the frequency, t time, θ0 the initial phase, and the

entire exponential the rotation. In the US ω = 60 Hz and in EU/China ω = 50 Hz.
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(2) (Euler’s formula) eix = cosx + i sinx. In particular taking x ∶= π gives eiπ = −1, “the most beautiful

equation in math” as it relates four essential constants in math.

(3) (Fluid dynamics) Modeling 2D flows near obstacles via conformal mapping.

(4) (Fourier analysis, signal analysis, control theory) Given f(x), we can define its Fourier transform

f̂(ξ) = ∫ f(x)eixξ dx.

The most classical example: we can decompose signals into a combination of sinusoidal waves.4

(5) (Holomorphic functions) If a function is complex differentiable it is smooth, and we call such functions

holomorphic. The Cauchy Inrtegral Formula gives

f (n)(x0) =
n!

2πi
∮
C

f(z)
(z − x0)n+1

dz.

4I have written some notes on Fourier transforms on finite groups as part of my MATH 410 exam project. They can be found here.
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Chapter 2

Basic Topology

Beginning of Jan. 29, 2021

2.1 Functions

Definition 2.16: Functions

(1) We say f is a function from A to B, denoted f ∶ A→ B it associates every x ∈ A with a point in B, i.e.,

f(x) ∈ B for all x ∈ A. We call A the domain of f and B the codomain.

(2) For E ⊂ A, we define f(E) ∶= {b ∈ B ∶ f(x) = b for some x ∈ A} to be the image of E under f .

(3) We say f is surjective (or f is a surjection) if, for every b ∈ B, there exists x ∈ A with f(x) = b. In other

words, each b ∈ B corresponds to at least one x ∈ A.

(4) We say f is injective (or f is a injection) if, for all x, y ∈ A, f(x) = f(y)⇒ x = y. In other words, each

b ∈ B corresponds to at most one x ∈ A.

(5) We say f is bijective (or f is a bijection) if f is both injective and surjective. In other words, each b ∈ B
corresponds to exactly one x ∈ A.

(6) If there exists a bijection f ∶ A → B, then we say A and B are equicardinal (or they have the same

cardinal number). They have the same “number of elements”. We write A ∼ B.

2.2 Finite, Countable, & Uncountable Sets

Definition 2.17: Cardinality

Let A be a set.

(1) We say A is finite if A ∼ {1, ..., n} for some n ∈ N. If so, we say the cardinality of A, written ∣A∣ 1, is n.

(2) If A is not finite, we say it is infinite.

(i) If A is infinite and A ∼ N, we say A is countable2and we say ∣A∣ = ℵ0 (aleph-null). If so, we can

find an enumeration {ai}i⩾1 that lists all elements of A.
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(ii) If A is infinite and not countable then it is uncountable. Uncountable sets can have different

cardinalities, some of which we will examine later.

Definition 2.18: Unions & Intersections over Indexed Families of Sets

Let I be an index set (countable or uncountable), and let {Aα} where α ∈ I to be an indexed family of sets.

We define the union and intersection over this indexed family of sets as the following:

⋃
α∈I

Aα ∶= {x ∶ x ∈ Aα for some α ∈ I} and ⋂
α∈I

Aα ∶= {x ∈ Aα for all α ∈ I}.

We provide a heuristic example of a union over an uncountably indexed family of sets: [0,1] = ⋃
n∈[0,1]

{n}. (We’ll show

such index set is uncountable soon.)

Lemma 2.19

A(n at most) countable union of (at most) countable set is (at most) countable. (At most countable means

countable or finite.)

Future reference: Example 2.20.4

Proof. We omit the parenthesized words (if the “all countable” version holds, then clearly the claim still holds if we

replace one or more “countable” by “finite” as we will see in the proof) and use the diagonal numbering. Let An be

a countable set for each n and define A ∶= ⋃
n∈N

An to be our countable union of countable sets. If we enumerate the

elements of each An in the nth column as shown below, we can find a way to traverse through all elements in A.

a11 a21 a31 a41 ⋯

a12 a22 a32 a42 ⋯

a13 a23 a33 a43 ⋯

a14 a24 a34 a44 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

A1 A2 A3 A4 ⋯

Let us define a new sequence whose first few terms are a11, a12, a21, a13, ... (traversing through the most upper-left

diagonal remaining before moving to the next one). In fact, we can justify rigorously that we will reach an,m (the

mth element of An) in this manner. Since the sums of indices of different elements on the same diagonal are the

1Notation of cardinality varies from text to text, e.g., card(A), ∣A∣,#A, and more. I have chosen ∣A∣, the notion my lectures used when I

took 425a, partly because it is the most convenient to write (and even till today, I still haven’t found an aesthetically pleasing hashtag in LATEX...).

This is not to be confused with norms, modulus, or absolute values (and hopefully they shouldn’t; sets are usually denoted in capital letters).
2The definition of countable sets also vary; some texts exclude finite sets from countable sets whereas some consider finite sets to be

countable also. Pugh’s book (and hence my 425a) used the latter, whereas Rudin chose the former. We will follow Rudin’s option throughout

this 425a.
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same, am,n is precisely the nth element on the (m + n − 1)th diagonal, and this corresponds to the

n +
m+n−2
∑
k=1

k = 2n + (m + n − 2)(m + n − 1)
2

-th element in our sequence. Define f ∶ A → N by f(an.m) to be the position of an,m on our newly constructed

sequence. It follows that f is surjective. It must also be injective, as each point in A has a unique pair of indices,

and an,m clearly only appears once in our sequence. Hence f is injective and thus bijective, and we conclude that

A ∼ N is countable.

If some an,m is missing because either the index set is finite or because some An is finite, we simply skip that element

when traversing through the list. The proof is still valid.

Example 2.20.

(1) Z is countable.

Valid proof : set f ∶ N→ Z by defining

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(2k + 1) = k k ⩾ 0

f(2k) ∶= −k k ⩾ 1.

This is a bijection from N→ Z so Z ∼ N.

Valid proof : enumerate Z as {0,−1,1,−2,2, ...} and verify that each z ∈ Z is included.

INVALID proof : write Z as {...,−2,−1,0,1,2, ...}.

(2) Any subset of a(n at most countable) countable set E ⊂ A is (at most) countable.

Proof sketch: if E is finite then the claim is trivial; if E is infinite, express (E ⊂ A) ∶= {ei}i⩾1 and let

(S ⊂ A) ⊂ {sj}j⩾1 be such that si ∶= f(ei), where f(ei) denotes the smallest integer k such that exactly

i elements among {a1, ..., ak} lie in E. Since E is finite, this construction is valid. Then S is countable

and S ∼ E.

Remark. In particular, this shows that “countable” is the “smallest” infinity we can have

(where “uncountable” refers to “higher levels” of infinity).

(3) Q is countable:

Q =
∞
⋃
n=1
{x
n
∶ x ∈ Z,gcd (x,n) = 1} ⊂

∞
⋃
n=1
{x
n
∶ x ∈ Z} .

The RHS is a countable union of countable sets and is therefore countable, whereas Q is a subset, so it

is at most countable. Of course we know Q is not finite: N ⊂ Q.

(4) Let A be any collection (finite, countable, or uncountable) of pairwise disjoint intervals I ⊂ R. Then A

is at most countable.

Proof sketch: note that A = {I ∶ I ∈ A, ∣I ∣ > 0}, (since ∣I ∣ > 0 adds no additional restriction), so

A =
∞
⋃
n=1
{I ∈ A ∶ ∣I ∣ ⩾ 1/n}.

Note that

{I ∈ A ∶ ∣I ∣ ⩾ 1/n} = ⋃
k∈N
{disjoint I ∈ A ∶ ∣I ∣ ⩾ 1/n and I ∩ [k, k + 1) ≠ ∅},

21



MATH 425a Notes ∼ YQL 2.2 - Finite, Countable, & Uncountable Sets Current file: 2-1.tex

where the last requirement is because each I must lie in some [k, k + 1). Also notice that at most

n+ 1 disjoint open intervals can intersect with the same [k, k + 1). Therefore, each of these RHS sets is

countable, and using Lemma 2.19 twice, we conclude that A must also be countable.

Beginning of Feb. 1, 2021

Example 3.1: Cantor’s Diagonalization. Let B ∶= {({an}n⩾1 ∶ an ∈ {0,1}}, the set of all sequences whose

digits are either 0 or 1, is uncountable.

Proof. Suppose B is countable; let {Bi}i⩾1 be an enumeration of B. Let us list the Bi’s as the columns of a table

with infinite rows and infinite columns. For example, it may look like

b1 b2 b3 ⋯
1 0 1 ⋯
0 1 1 ⋯
1 0 0 ⋯
⋮ ⋮ ⋮ ⋱

We consider the diagonal sequence â ∶= (an)n⩾1 defined by âi = 1 − bi,i. For example, the first three terms of â are

0,0,1, respectively, since b11, b22, b33 are 1,1,0, respectively. Clearly this is an element of B, but does it appear in

the enumeration {Bi}? No! Its first term disagrees with that of b1, and likewise its nth term disagrees with that of

bn. Therefore we obtain a contradiction, and B must be uncountable!

This proof is due to Cantor, hence the name Cantor’s Diagonalization.

Now we let the real fun begin — introducing the (ϵ-δ) language!
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2.3 Metric Spaces

Definition 3.2: Metric

Let A be a set. We say a function d ∶ A ×A→ R is called a metric3on A (or distance function) if

(1) (Non-degeneracy) d(a, b) ⩾ 0 with d(a, b) = 0 if and only if a = b,

(2) (Symmetry) d(a, b) = d(b, a), and

(3) (Triangle inequality) d(a, b) ⩽ d(a, c) + d(c, b).

If so, we say (A,d) is a metric space. It is customary to simply say “A is a metric space” for convenience.

Future reference: (C(K), ∥ ⋅ ∥sup) is complete

Example 3.3: Some Metric Spaces.

(1) If K ⊂ Rn then (K, ∥ ⋅ ∥) is a metric space.

(2) (S2,dg), the sphere with the geodesic distance, is a metric space.

Unless otherwise specified, from now on we will look at an abstract metric space (X,d).

Definition 3.4: “ϵ-N” Sequential Convergence

Given a sequence (xn)n⩾1 ⊂X, we say xn converges to x and say x is the limit of (xn) if

For all ϵ > 0, there exists N ∈ N such that d(xn, x) ⩽ ϵ for all n ⩾ N .

For notation, we write xn → x or (xn)→ x and x = lim
n→∞

xn.

Future reference: (Open) neighborhoods

Lemma 3.5: Limits are Unique

In a metric space, the limits of a sequence, should they exist, are unique. Also see a function version.

Proof. Suppose that (xn) → x and (xn) → y. Let ϵ > 0. By assumption there exists Nx ∶= N(x) ∈ N [depending on

(xn) and x] such that

n ⩾ Nx Ô⇒ d(xn, x) <
ϵ

2
. (1)

Similarly, there exists Ny ∶= N(y) ∈ N such that

n ⩾ Ny Ô⇒ d(xn, y) <
ϵ

2
. (2)

Therefore, if n ⩾max(Nx,Ny), (1) and (2) both hold, so

d(x, y) < d(x,xn) + d(xn, y) =
ϵ

2
+ ϵ
2
= ϵ.

Since ϵ is arbitrary, d(x, y) < ϵ implies d(x, y) = 0, i.e., x = y and limits are unique. Heuristically, if two limits are

apart, how can the tail of a sequence be arbitrarily close to both limits at the same time?

3Since∞ is not an element of R, the distance between two points is always finite.
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Example 3.6. The sequence (xn)n⩾1 defined by xn ∶= 1/n converges to 0 in (R, ∥ ⋅ ∥).
The proof is a one-liner: given ϵ > 0, pick N > 1/ϵ; if n ⩾ N then d(xn,0) = xn = 1/n ⩽ 1/N < ϵ.

However, the choice of metric space matters! Consider the same example but this time with ((0,1), ∥ ⋅ ∥) as the

metric space. The number 0 does not lie in this open interval, and we say (xn) diverges in this space!

To prove this rigorously, we know that (xn) converges to 0 in the metric space (R, ∥⋅∥). Since our metric space ((0,1), ∥⋅∥)
inherits the metric from (R, ∥ ⋅ ∥), if the sequence converges, by uniqueness of limits, it must converge to 0, which is

outside (0,1). Hence (xn) does not converge in our metric space.

Example 3.7: Convergence in Rk⇔ Component-Wise Convergence. In (Rk, ∥⋅∥), a sequence x(n) → x4 if

and only if x(n)i → xi for all 1 ⩽ i ⩽ k, i.e., a sequence converges to a limit if and only if the ith component of

each term of the sequence converges to that of the limit.

Future reference: Compactness of k-cells, Example 7.10

Proof. We first prove Ô⇒ . Let ϵ > 0 be given and pick some i ∈ [1, k]. Notice that

∣x(n)i − xi∣ ⩽ ∣x(n) − x∣ < ϵ

for sufficiently large5n. The inequality is because y2i ⩽ y21 + ... + y2i + ... + y2n = ∥y∥2. It follows that the tail of (x(n)i )
can be made arbitrarily close to xi, so x(n)i → xi. This proves Ô⇒ .

For ⇐Ô , also let ϵ > 0 be given. By assumption, for all 1 ⩽ j ⩽ k, x(n)j converges to xj . Therefore, for each j, there

exists Nj ∶= N(j) ∈ N such that

∣x(n)j − xj ∣ <
√
ϵ/k for all n ⩾ Nj . (1)

(We shall see very soon where
√
ϵ/k comes from. In real analysis, it is often helpful to think backwards; once we are able

to bound our target of interest by a multiple/function of ϵ, we can go back and adjust our initial bound accordingly. In

this example, we will see if we start with ϵ we would end up with k ⋅ ϵ2, so if we start with
√
ϵ/k we would end up with

precisely ϵ, which makes things look nicer... and mathematicians like this.)

Therefore, if we define N ∶= max
1⩽j⩽k

Nj , (1) holds for every single component, and thus

∣x(n) − x∣2 =
k

∑
i=1
∣x(n)j − xj ∣2 < k ⋅

ϵ

k
= ϵ.

This shows that the tail of x(n) can be made arbitrarily close to x, which proves the convergence.

Beginning of Feb. 3, 2021

Definition 3.8: Various Definitions in Metric Spaces

Let X be a metric space and let E ⊂X.

(1) Neighborhoods: Nr(P ) ∶= {q ∈ X ∶ d(p, q) < (r > 0)} is the neighborhood6 of p ∈ X of radius r. This

gives an equivalent definition for convergence of a sequence:

pn → p if for all ϵ > 0 there exists N ∈ N such that n ⩾ N Ô⇒ p ∈ Nϵ(p). (Eq.3.1)

4Since we are also used to denote components using subscripts, we use x(n) to denote the elements in this sequence. An exception.
5We could, of course, give a more rigorous proof, completely following the (ϵ-N) language. However, that approach would significantly

decrease the comprehensibility of the proof and, like I mentioned in “Chapter 0”, I shall avoid that whenever possible.
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(2) Interior points: p ∈ E is an interior point of E if, for some r > 0, we have Nr(p) ⊂ E. In other words, p

is not on the “boundary” of E.

(3) Open sets: we say E ⊂ X is open in X if every point p ∈ E is an interior point of E. In other words, E

has no “boundary”.

(4) Limit points: we say p ∈X is a limit point of E if there exists a sequence (qn) ⊂ E, whose terms are

not p, that converges to p.

(5) Isolated points: we say p ∈X is an isolated point if it is not a limit point of E.

A limit point
or perhaps cluster point

or even condensation point

An isolated point

(6) Closed sets: we say E ⊂ X is closed if it contains all its limit points. Heuristically, it contains all its

“boundaries”. Future reference: Closed subsets of compact sets are compact

(7) Complement: Ec ∶=X −E is called the complement7 of E (in X).

(8) Perfect set: we say E is perfect if it is closed and every point in E is a limit point. Future reference:

Perfect sets are uncountable

(9) Bounded sets: we say E is bounded if it is contained in some neighborhood, i.e., there exists p ∈ X
and r > 0 such that E ⊂ Nr(p). Future reference: Compact sets are bounded, Heine-Borel theorem

(10) Closure: E ∶= E ∪ {limit points of E} is called the closure of E. (Note that this set is always closed, and

a closed set is equal to its closure. Thus E = E for any E.)

(11) Dense sets: we say E is dense in X if E = X. Using closure and limits, this means that any x ∈ X can

be approximated arbitrarily close by some e ∈ E.

Due to limit time, we will omit some basic examples which could provide helpful insights. See Rudin’s book if you

are in need of them.

Lemma 3.9: Neighborhoods are Open

Every neighborhood Nr(p) is open. Future reference: Open set condition

Proof. We need to show that every p ∈ Nr(p) is an interior point. If we can find some neighborhood of p that is

6In a metric space, it is also common to define the open ball Br(p) or B(p, r) ∶= {q ∈ X ∶ d(p, q) < r}. The word open becomes clear once

we define it in (3) and prove Nr(p) is open in the next lemma. IMO, the word ball provides a more intuitive definition than neighborhood.
7Various notations for the difference between sets exist, for example A∖B. We will use Rudin’s notation, A−B, to denote {x ∶ x ∈ B but x ∉ A}.
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entirely contained in E then we are done.

p

Nr(p)
r

q

We simply need to use the triangle inequality: if d(w, q) < r − d(p, q) then

d(w,p) ⩽ d(w, q) + d(q, p) < r − d(p, q) + d(q, p) = r. (1)

Also notice that r − d(p, q) > 0 since q ∈ Nr(p) implies d(p, q) < r, so the

neighborhood

Nr−d(p,q)(q)

is well-defined. Using (1) we see that Nr−d(p,q)(q) ⊂ Nr(p). This proves the

claim.

Theorem 3.10: Openness is Dual to Closedness

A is open in X if and only if Ac is closed (in X). Future reference: Closed set condition

Proof. We first prove ⇐Ô . Suppose Ac is closed; we want to show that if x ∈ A then x is an interior point of A.

Clearly x ∉ Ac, x cannot be a limit point of Ac (for it it were, closedness implies x ∈ Ac). We claim that there exists

some r > 0 such that Nr(x) ∩Ac = ∅.

If this is false, then for each ϵ > 0 we are able to find a corresponding qϵ ∈ Ac ∩Nϵ(x). Using this, we define

ϵ1 ∶= 1, ϵ2 ∶= 1/2, ..., ϵn ∶= 1/n. (Eq.3.2)

and we are able to construct sequence (qn)n⩾1 such that d(x, qn) < 1/n. We see that as n → ∞, d(x, qn) → 0, i.e.,

qn → x. We have just constructed a sequence in Ac that converges to x ∉ Ac, contradiction! Therefore there must

exist some r > 0 such that Nr(x)∩Ac = ∅, i.e., Nr(x) ⊂ A, and thus A is open. To justify the last step (I have no idea

why this seeming trivial equation deserves a special label):

Nr(x) = Nr(x) ∩X = (Nr(x) ∩A) ∪ (Nr(x) ∩Ac

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∅

) ⊂ A. (Eq.3.3)

Remark. Using ϵn ∶= 1/n is a very common approach for proofs, in particular when we need to construct a

sequence while also letting ϵ → 0. We shall informally call this the “proof by the 1/n sequence”, and we will

likely encounter such method in the future again.

Future reference: Characterization of supremum, Lebesgue’s numnber lemma, convergence at a point

(Heine)

We now prove Ô⇒ and suppose A is open. Assume x is a limit point of Ac. By definition there exists (qn) ∈ Ac.

We want to show that x ∈ Ac. Suppose for contradiction that x ∈ A, so there exists r > 0 such that Nr(x) ⊂ A. On

the other hand, the (ϵ-N) definition of convergence implies that sufficiently late terms in (qn) lie in Nr(x). These

points lie in both A and Ac, which is absurd!

Example 3.11: Characterization of Suprema & Infima. Let (X,d) ∶= (R, ∥ ⋅ ∥) and let A ⊂ X. Then we

have the following characterization of supremum and infimum:

(1) a = supA if and only if (a is both an upper bound and a limit point of A) or a is an isolated point of A.

(2) b = inf A if and only if (b is both a lower bound and a limit point of A) or b is an isolated point of B.
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Future reference: Characterization of limsup, Theorem 8.5, connected subsets of R

Proof. We will only prove the case for supremum; the infimum case is analogous, and we will assume that a is not

an isolated point of A (if it were, the claim is trivial).

For Ô⇒ , let a = supA. It is trivially true that a is an upper bound of A, so it remains to find a sequence8

(an)n⩾1 ⊂ A that converges to a. Indeed, we can use the “1/n proof” again. Let ϵ1 ∶= 1 and let ϵn ∶= 1/n. By

definition of supremum, there exists a1 satisfying a1 > a − 1 = a − ϵ1; likewise, there also there exists an+1 satisfying

an+1 > a − ϵn+1 and an+1 > an (using definition of supremum twice to guarantee that (an) is strictly increasing). It is

clear that an → a.

For the converse (meaning the ⇐Ô direction), suppose a is an upper bound and a limit point of A but a ≠ supA.

By Definition 1.6.2 a is not the least upper bound, and there exists a smaller upper bound a − ϵ for some ϵ > 0. But

since A is a limit point, there exists (an)n⩾1 converging to A, so late enough terms in this sequence is < ϵ away from

a, meaning that they are created than a − ϵ, our hypothesized supremum. Contradiction.

Theorem 3.12: Openness & Closedness under Union and Intersection

(1) An arbitrary union of open sets is open, i.e., if Aα’s are open then ⋃
α∈I

Aα is open. In particular the index

set can be uncountable.

(2) A finite intersection of open sets is open, i.e., if Aα’s are open and I is a finite index set then ⋂
α∈I

Aα is

open. We will show examples of countable/uncountable intersection of open sets that is closed.

(3) Analogously, an arbitrary intersection of closed sets is closed, and a finite union of closed sets is closed.

Again, there exist examples where a countable/uncountable union of closed sets gives us an open set.

Future reference: Compact sets are closed, intersection of nonempty nested compact sets is nonempty

Beginning of Feb. 5, 2021

Proof. (1) This follows directly from the definitions.

(2) Suppose that A1, ...,An are open and fix x ∈
n

⋂
i=1
Ai. It follows that x ∈ Ai for all 1 ⩽ i ⩽ n. By definition, for

all i there exists rri ∶= (i) > 0 such that

Nri(x) ⊂ Ai.

Taking r ∶= min{r1, ..., rn}, we see that Nr(x) ⊂ Ai for all i so it lies in the intersection. Note that we can take

the minimum because there are only finitely many sets; otherwise, the infimum may well be 0 in which case our

proof becomes invalid.

(3) The arbitrary intersection case follows from definition once again, so we will only prove the finite union

case. If A1, ...,An are closed and we pick a sequence (an)n⩾1 ∈
n

⋃
i=1
Ai that converges in the ambient space.

By the Pigeonhole principle, there exists at least one Ai such that infinitely many terms of (an)n⩾1 lie in Ai.

Therefore, since this subsequence is a sequence itself, by the closeness of Ai, it converges to some limit a.

8As shown by this example, it is not so interesting to construct a seequence that converges to a by simply setting its tail to be a. Unless in

proofs, we take it for granted, from now on, that (an)→ a implies an ≠ a.
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Since limits are unique, a must also be the limit of the mother sequence (an), and this shows that the union

is closed.

Alternatively, this proof is a one-liner using De Morgan’s law and (2):

(
n

⋃
i=1
Ai)

c

=

finite
ª
n

⋂
i=1

Ac
i

ōpen

= open Ô⇒
n

⋃
i=1
Ai is closed.

Example 3.13. For counterexamples of “arbitrary intersection of open sets is open” or “arbitrary union of

closed sets is closed”, consider the following:

∞
⋂
n=1
(− 1
n
,1 + 1

n
) = [0,1]

∞
⋃
n=1
[ 1
n
,1 − 1

n
] = (0,1).

We now introduce one of the most important concept (and a really nice property) in analysis.
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2.4 Compact Sets

Definition 3.14: Open Cover & Covering Compactness

Let K ⊂X.9

(1) An open cover of K is any collection of open sets {Aα}α∈I such that K ⊂ ⋃
α∈I

Aα.

(2) We say K is (covering) compact if every open cover of K contains a finite subcover, i.e., K ⊂
n

⋃
k=1

Aαk
.

Theorem 3.15: Compact ⇒ Closed

If K is compact then K is closed. Future reference: Heine-Borel theorem, Theorem 8.7

Proof. It suffices to show Kc is open by Theorem 3.12. Fix p ∈ Kc; we need to find some neighborhood nr(p) that

is contained in Kc. Clearly

K = ⋃
q∈K
{q} ⊂ ⋃

q∈K
Nd(p,q)/2(q),

so by the compactness of K, there exist q1, ..., qn ∈K such that

K ⊂
n

⋃
i=1
Nd(p,qi)/2(qn).

Now we define r ∶= min
1⩽i⩽n

d(p, qi)/2. Since p ∉K, it is obvious that r > 0. We claim Nr(p) ⊂Kc, since

(Nr(p) ∩K) ⊂ Nr(p) ∩ (
n

⋃
i=1
Nd(p,qi)/2(qn)) =

n

⋃
i=1
Nr(p) ∩Nd(p,qi)/2(qn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∅

= ∅

This completes the proof.

Alternately, there is another simple proof without using Kc: if K is not closed, there exist (an) ⊂K converging to some

a ∈ A −K. Consider the covering

Un ∶= {x ∈X ∶ d(x, a) > 1/n}, n ∈ N

which indeed covers K and thus admits a finite subcover. But it cannot have one; otherwise how could (an) → a when

the sequence is at least some positive distance away from a?

Below is the essence of compactness (in analysis) — it gives us a convergent sequence out of nowhere, like magic!

Theorem 3.16: Covering Compactness⇔ Sequential Compactness

A set K in a metric space is compact if and only if every sequence in K has a convergent subsequence, i.e.,

for all (xn)n⩾ ⊂ K, there exists a subsequence (xnk
)k⩾1 that converges to some x ∈ K. The second property

is called sequential compactness. (This theorem fails, however, in some more general topological spaces.)

9It is customary to name a compact set as K.
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Proof. We first show Ô⇒ . Suppose for contradiction that K is covering compact but a sequence (xn)n⩾1 ⊂ K has

no convergent subsequence. Immediately we know that this sequence has more than one element. Therefore, any

y ∈K is not the limit of (xn)n⩾1. In other words, (xn) cannot be arbitrarily close to y, unless y appears in the sequence,

in which case the shortest distance is 0 but the second shortest distance is not arbitrarily small. Therefore there exists

ry ∶= r(y) > 0 such that

Nry(y) ∩ {xn} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∅ if y ∉ {xn}

{y} if y ∈ {xn}

(where {xn} denotes the set of all points in the sequence (xn)). The second case is bothersome, but it will not affect

our proof, which focuses on convergence of the entire sequence10. Since

K = ⋃
y∈K
{y} ⊂ ⋃

y∈K
Nry(y),

by covering compactness the open cover on the RHS admits a finite subcover: there exist y1, ..., yn ⊂K such that

K ⊂
n

⋃
k=1

Nryk
(yk).

This gives a contradiction, for the intersection between the new RHS and {xn} is either ∅ or {y}, and in either case

there are a lot of elements in the sequence (xn)n⩾1 missing in this finite cover. This proves Ô⇒ .

For the converse, let K be sequentially compact and let ⋃
α∈I

Aα be any open cover of A. We need to extract a finite

subcover, but first, we need to prove Lebesgue’s number lemma:

Let Aα’s be arbitrarily chosen above. If K is compact then there exists a δ > 0, called

the Lebesgue number, such that Nδ(x) ⊂ some Aα for all x ∈ K. Note that the

Lebesgue number depends solely on K, not our choice of open cover!

Proof of Lebesgue’s number lemma. Suppose this claim is false. We use the “1/n proof”: for all n ∈ N, there

exists xn ∈ K such that N1/n(xn) is not a subset of any Aα. If some δ > 0 works for all x ∈ K then smaller δ’s

also work; our assumption that no such δ exists means in particular that all δ’s of form 1/n fail the condition.

Consider the sequence (xn)n⩾1. By sequential compactness, there exists a subsequence (xnk
)k⩾1 converging

to some x ∈ K. In particular, x belong so some open set Aα0 as the Aα’s cover K. Since Aα0 is open, there

exists ϵ > 0 such that Nϵ(x) ⊂ Aα0 . Now we have a contradiction —

On one hand, xnk
is approaching x, while on the other hand, as k increases (or nk increases), by our assumption,

we can find smaller and smaller neighborhoods of xnk
that belongs to no Aα, and since Nϵ(x) ⊂ Aα0 , this implies

that these increasingly tiny neighborhoods are not contained in Nϵ(x). Therefore, there exists sufficiently large

k such that 1/nk < ϵ/2 and d(xnk
, x) < ϵ/2. Then, for all x ∈ N1/nk

(xnk
), i.e., all y with d(xnk

, y) < 1/nk, we

have

d(x, y) ⩽ d(x,xnk
) + d(xnk

, y) < ϵ
2
+ 1

nk
< ϵ
2
+ ϵ
2
= ϵ,

so N1/nk
(xnk
) ⊂ Nϵ(x) ⊂ Aα0 , contradiction indeed. END OF PROOF OF LEBESGUE’S NUMBER LEMMA

10Pugh’s book provides a workaround: we can instead say there exists an ry ∶= r(y) > 0 such that an ∈ Nry (y) only finitely often. Then, along

with the finite cover derived later, only finitely many an ’s can appear in
n

⋃
k=1

Nryk
(yk), a superset of K. Contradiction.
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Now we are back to the main proof. The next step is to notice that, given δ > 0 (from the lemma above), there exists

x1, ..., xn ∈K such that

K ⊂
n

⋃
k=1

Nδ(xk). (Eq.3.4)

(We say K is totally bounded.) Otherwise, fix x1 ∈ K. Since we cannot cover K using finitely many δ-neighborhoods,

in particular we cannot cover K by Nδ(x1) only. Therefore there exists x2 ∈ K −Nδ(x1). Again, since we cannot cover

K using only Nδ(x1)∪Nδ(x2), there exists x3 ∈K − (Nδ(x1)∪Nδ(x2)). Inductively, we can define a sequence (xn)n⩾1
such that

xn ∈K −
n−1
⋃
i=1

Nδ(xi).

By sequential compactness, there exists a subsequence (xnk
)k⩾1 that converges to some x ∈ K. Therefore, there exists

M ∈ N such that d(xnk
, x) < δ/2 for all k ⩾M (or nk ⩾M , whatever). Then, for such k’s,

d(xnk
, xnk+1) ⩽ d(xnk

, x) + d(x,xnk+1) <
δ

2
+ δ
2
= δ, (Eq.3.5)

contradicting the assumption that xnk+1 ∉ Nδ(xnk
) (i.e., we want terms in (xn) to be at least δ apart, whereas the

convergence of (xnk
) renders this impossible). This proves Equation 3.4.

We have also completed the proof of ⇐Ô , as each Nδ(xk) is in some Aα by the property of the Lebesgue number.

Hence {Aα}α∈I admits a finite subcover!

We present an immediate consequence of the above theorem:

Example 4.1: Closed Subsets of Compact Sets are Compact. If K is compact and F ⊂ K closed, then F

is compact.

Future reference: Intersection of compact sets, Heine-Borel theorem, Perfect sets are uncountable, Theorem

8.7, Dini’s Theorem

Proof. Let (xn)n⩾1 ⊂ F ⊂ K. It follows from the compactness of K that there exists a subsequence (xnk
)k⩾1 that

converges to some x ∈ K. Since F is closed it contains its limit points (Definition 3.8.6), so x ∈ F , and (xn) admits

a convergent subsequence in F , i.e., F is compact.

Example 4.2: Compact ⇒ Bounded. If K is compact then K is bounded.

Future reference: Heine-Borel theorem

Proof. This directly follows from Equation 3.4 (right above) and the triangle inequality: let K ⊂
n

⋃
k=1

Nδ(xk) as

guaranteed by (Eq.3.4). Fix x1, and let j ∈ [1, n] be the integer such that

d(x1, xj) = max
1⩽k⩽n

d(x1, xk).

Let y ∈K be arbitrarily chosen; it belongs to some Nδ(xk). Thus

d(x1, y) ⩽ d(x1, xk) + d(xk, y) < d(x1, xj) + δ <∞,

so all of K is contained in Nr(x1) where r ∶= d(x1, xj) + δ. By Definition 3.8.9 K is bounded.
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Theorem 4.3: Intersection of Compact Sets

Let {Kα}α∈I be a collection of (finite, countable, or uncountable) compact sets such that any finite intersec-

tion is nonempty, i.e.,
n

⋂
k=1

Kαk
≠ ∅ for all n and {α1, ..., αn} ⊂ I.

Then ⋂
α∈I

Kα ≠ ∅. Furthermore, the intersection is compact. Note that this is stronger than Theorem 3.12.

Proof. Theorem 3.12 implies that ⋂
α∈I

Kα is closed, and a closed subset of compact sets is compact. (Note that this

holds even if the intersection is empty – the empty set is trivially compact.) It remains to show nonemptyness.

Suppose for contradiction that ⋂
α∈I

Kα = ∅. Taking complement gives

X = (⋂
α∈I

Kα)
c

= ⋃
α∈I

Kc
α. (1)

Since Kα is compact and in particular closed, Kc
α is open. Fix some α0 ∈ I. Clearly Kα0 ⊂ X, so (1)’s RHS is an

open cover of Kα0 . By compactness, there exists a finite subcover, i.e., there exist {α1, ..., αn} ⊂ I such that

Kα0 ⊂
n

⋃
k=1

Kc
αk
. (2)

Then,

Kα0 ∩Kα1 ∩ ... ∩Kαn ⊂ (
n

⋃
k=1

Kc
αk
) ∩ (

n

⋂
k=1

Kαk
) (using (2))

=
n

⋃
k=1
(Kc

αk
∩

n

⋂
j=1

Kαj

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈Kαk

) =
n

⋃
k=1
∅ = ∅,

contradicting the problem. This completes the proof.

Corollary 4.4: Nested Compact Sets

Let {Kn}n⩾1 be a sequence of nonempty compact sets such that Kn+1 ⊂Kn. Then
∞
⋂
n=1

Kn ≠ ∅, i.e., the infinite

intersection of a sequence of decreasing nonempty compact sets is nonempty.

Future reference: Perfect sets are uncountable, Dini’s Theorem

Beginning of Feb. 10, 2021

Theorem 4.5: [a,b] is Compact

Every closed interval [a, b] ⊂ R is compact.

Future reference: Compactness of k-cells

Proof. WLOG (without loss of generality) take [a, b] to be [0,1]. We will prove the claim using sequential compact-

ness. Let (xn)n⩾1 ⊂ [a, b] be a sequence in this interval; our goal is to find a convergent subsequence.

We define a set C ∶= {c ∈ [0,1] ∶ xn < c only for finitely many x′ns}. Clearly this is a set. Also observe that
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(1) C is nonempty: no xn < 0, so “only finitely time” trivially holds for 0, and thus C.

(2) C is bounded above: clearly the sequence is bounded by 1, so any c > 1 is going to be greater than any xn,

and for such c’s, “xn < c” would happen infinitely many times.

Therefore by the LUBP property, C has a supremum, and we define x ∶= supC and x ∈ [0,1] (0 ⩽ x because 0 ∈ C, and

x ⩽ 1 because 1 is already an upper bound).

The remainder of the proof is to show that there exists a subsequence (xnk
)k⩾1 that converges to x. Suppose for

contradiction that such subsequence does not exist. Then there exists ϵ > 0 such that xn ∈ (x − ϵ, x + ϵ) only for

finitely many xn’s. (This coincides with my footnote no.11.) Since only finitely many xn’s appear in [a, x] and also

finitely many xn’s appear in [x,x + ϵ), we conclude that only finitely many xn’s appear in [a, x + ϵ), so x + ϵ ∈ C,
contradicting the assumption that x = supC. Therefore, [a, b] is compact.

Definition 4.6: k-Cells

A set [a1, b1]× [a2, b2]× ...× [ak, bk] ⊂ Rk for ai < bi, 1 ⩽ i ⩽ k, is a k-cell in Rk, where × denotes the Cartesian

product. Think of “boxes” or “k-dimensional intervals”.

Corollary 4.7: k-Cells are Compact

k-cells (in (Rk, ∥ ⋅ ∥)) are compact.

Proof. This is a standard approach when proving (sequential) compactness: “sub-sub-sub-...-subsequences!”

Let (x(n))n⩾1 ⊂ [a1, b1]× ...× [ak, bk] ⊂ Rk be a sequence where x(n) = (x(n)1 , x
(n)
2 , ..., x

(n)
k )

11. Using the compactness

of [a1, b1] ⊂ R, we are able to extract a subsequence (x(n,1)) of (x(n)) such that the first component of each term

converges, i.e., x(n,1)1 → x1 for some x1 ∈ R.

Now, looking at the second component of each term in (x(n,1)), we immediately see that it forms another se-

quence, bounded by [a2, b2], in R. Using compactness of [a2, b2] again, we are able to extract a sub-subsequence

(x(n,2)) ⊂ (x(n,1)) ⊂ (x(n)) that converges, say to some x2, in the second component. Notice that, since (x(n,2)) is a

subsequence of (x(n,1)), it inherits the convergence in the first component as well! (This is the key fact.) Therefore

(x(n,2)) converges in both the first and second component.

Iterating this process, we are able to arrive at a sub-sub-...-subsequence (x(n,k)) such that it converges in all k

components, i.e., it converges in Rn (Example 3.7)! Of course, a sub-sub-...-subsequence is still a subsequence, so

we conclude that k-cells are compact.

Theorem 4.8: Heine-Borel Theorem

In Rk, a set K is compact if and only if it is closed and bounded. The⇒ direction is true in any metric space,

whereas the converse is not; counterexample: N equipped with discrete metric.

Future reference: Perfect sets are uncountable, Arzelá-Ascoli Theorem

Proof. Ô⇒ follows from Theorem 3.15 and Example 4.2.

11I adopted the earlier notation x(n) here. The notation used in this proof will slightly differ from what was actually written in the lecture.
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For ⇐Ô , assume K is closed and bounded. By boundedness it is contained in some k-cell. Heuristically we can of

course contain a bounded set using a big box. For a rigorous proof: by definition K ⊂ Nr(p) for some r > 0, p ∈ Rn, so

of course

K ⊂ [p1 − r, p1 + r] × [p2 − r, p2 + r] × ... × [pk − r, pk + r].

Then since a closed subset of a compact set is compact, K is compact.

Theorem 4.9: Bolzano-Weierstraß Theorem12

Let K ⊂ Rn be closed and bounded. Then every sequence (xn)n⩾1 ⊂K has a convergent subsequence in K.

Future reference: Rk is complete, Characterization of limsup, Theorem 5.8, minimization problems, proof

of the Arzelá-Ascoli Theorem

Proof. Immediate from Heine-Borel.

Theorem 4.10: Nonempty Perfect Sets are Uncountable

Let P ⊂ Rk be nonempty and perfect. Then P is uncountable. In particular R is uncountable.13

Proof. First note that P cannot be finite, for otherwise each point would be an isolated point (in particular, no

limit points, which must be limit of infinite sequences). Now, for contradiction, we suppose P is countable and let

{pn}n⩾1 be an enumeration of P .

Let V1 ∶= N1(p1), and define Vn+1 iteratively such that

Vn+1 ⊂ Vn, pn ∉ Vn+1, and Vn+1 ∩ P ≠ ∅.

P ⊂ R

V1

p1 p2

V2

Since P is perfect, each neighborhood Vn contains infinitely many points

of P (again recall that there has to exist some sequence converging to the

center of the neighborhood), so we can always define Vn’s as such, and we

can always find sufficiently small radius for Vn+1 because there are only

finitely many Vi’s we need to take care of (in particular, to ensure there is

no intersection).

Now we define Kn ∶= Vn ∩ P . Notice that Vn is closed and bounded, so Heine-Borel implies Vn is compact. On the

other hand P is closed by definition. Therefore, Kn is a closed subset of a compact set and is compact. In addition,

each Kn is nonempty and Kn+1 ⊂ K as Vn+1 ⊂ Vn ⊂ Vn+1. Also, by construction, pn ∉ Vn+1 so pn ∉ Kn+1. Now

consider the intersection

K ∶=
∞
⋂
n=1

Kn.

Is p1 ∈ K? No, because p1 ∉ K2. Is p2 ∈ K? No, because p2 ∉ K3. Is pk ∈ K? No! Assuming {pn}n⩾1 enumerates P ,

we conclude that

P ∩K = ∅.

However, a nested sequence of nonempty compact sets cannot have empty intersection. Contradiction. Therefore,

P must be uncountable.

Beginning of Feb. 12, 2021

12This theorem was initially proved in 1817, long before that of the Heine-Borel theorem (1852 by Dirichlet and 1890s by many more).
13We could have proved this using Cantor’s diagonalization; the idea is similar to the infinite string of binary numnbers.
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Corollary 4.11: [a,b] is Uncountable

Any interval [a, b] (with a < b of course) is uncountable.

In fact, there exist perfect sets in R which do not contain any interval. One such example is the Cantor Set.14 Below is

an example of the middle-thirds Cantor Set. Starting with [0,1], we remove the middle 1/3 of this segment, and

then iteratively remove the middle 1/3 of each remaining line segments. In the end we obtain the Cantor Set. This

is a compact, nonempty, perfect, totally disconnected, and uncountable set.

We will see Cantor Set again when we talk about the Devil’s Staircase / Cantor function.

14Siegel’s 425a (which I took) spent several lectures on the Cantor Set. I am surprised that this 425a almost skips it.
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Chapter 3

Sequences and Series

3.1 Convergent Sequences

Lemma 4.12: Convergent ⇒ Bounded

Convergent sequences are bounded. Future reference: Theorem 13.16, minimization problems

Proof. Let (X,d) be a metric space and suppose (xn)n⩾1 → x for some x ∈ X.1 Pick, for example, ϵ = 1. Then there

exists N ∈ N such that all but the first N terms of (xn) are in N1(x) [neighborhood]. It follows that the remaining

finite terms cannot be arbitrarily far away from x: if we define

x ∶=max{1, d(x1, x), ..., d(xN , x)} + 12

then xn ∈ Nr(x) for all xn. This completes the proof of boundedness.

Example 4.13: Operations on Two Sequences. Let (xn), (yn) ⊂ Rk and (βn) ∈ R be such that (xn) → x,

(yn)→ y, and (βn)→ β. Then:

(1) Sum of limit is limit of sums: xn + yn → x + y,

(2) (Dot) product of limit is limit of (dot) products: xn ⋅ yn → x ⋅ y,

(3) (Scalar) product of limit is limit of (scalar) products: βnxn → βx, and

(4) Convergence is preserved under exponentiation: βm
n → βm.

Future reference: Corollary 7.4

Proof. (1) Immediate by a standard ϵ/2 argument (one on xn and the other yn) with ∆-inequality.

1Now that we are familiar with the notation (xn)n⩾1 enough, we will drop the subscript and only write (xn) from now on.
2The “+1” can be replaced by any positive number; the mere purpose is to make what we want lie completely inside the open neighborhood,

and since open neighborhoods don’t contain their boundaries, we need to make the radius slightly larger.
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(2) A classic “add and subtract” trick, along with Cauchy-Schwarz:

∣xn ⋅ yn − x ⋅ y∣ = ∣xn ⋅ yn − xn ⋅ y + xn ⋅ y − x ⋅ y∣

⩽ ∣xn ⋅ yn − xn ⋅ y∣ + ∣xn ⋅ y − x ⋅ y∣

= ∣xn ⋅ (yn − y)∣ + ∣(xn − x) ⋅ y∣

⩽ ∣xn∣∣yn − y∣ + ∣y∣∣xn − x∣.

(Here ∣ ⋅ ∣ denotes the Euclidean norm.) Notice that by the previous lemma ∣xn∣ is bounded by, say, M .

Therefore, for sufficiently large n, we can have

∣yn − y∣ <
ϵ

2M
and ∣xn − x∣ <

ϵ

2∣y∣

satisfied simultaneously. Then the entire term is bounded by ϵ, completing our proof that xn ⋅ yn → x ⋅ y.

(3) Similar to (2) — add and subtract a mixed term and then use Cauchy-Schwarz.

(4) We prove by induction. Case m = 1 is true by assumption. Now suppose βm
n → βm. Notice that

∣βm+1
n − βm+1∣ = ∣βm

n βn − βmβ∣,

so the claim follows from the induction hypothesis and (2).

Example 4.14: Example 1.7 Revisited. Recall in Example 1.7 we said that there is no largest q ∈ Q such that

q3 < 2. Back then the only possible approach was to derive algebraic answer. Now, with the help of limits, we

have a much cleaner approach, thanks to the power of convergence.

Claim: if p ∈ Q and p3 < 2 then there exists q ∈ Q with q > p and q3 < 2.

Proof. Since the sequence 1/n → 0, the sequence (p + 1/n) → p. By part (4) of the previous example, taking

cube preserves the convergence, so (p + 1/n)3 → p3 < 2. This proves the claim, as the convergence implies that

(p + 1/n)3 > p3 can be made arbitrarily close to p3 for sufficiently large n. Of course, p + 1/n is still a rational, and

by “arbitrarily close” we mean that it can be smaller than p3 + (2 − p3) = 2.
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3.2 Cauchy Sequences

Definition 4.15: Cauchy Sequences

A sequence (xn) ⊂X is Cauchy if the following holds:

For all ϵ > 0, there exists N ∈ N such that d(xn, xm) < ϵ for all n ⩾ N . Note that the

criterion makes no mention of limits; “Cauchy-ness” is a property of the sequence itself.

Lemma 4.16: Cauchy ⇒ Bounded

Any Cauchy sequence (xn) is bounded.

Proof. This is very similar to the proof showing convergent sequences are bounded. The idea is still that we can bound

the tail, and the remaining finite early terms are also bounded.

Let k ∈ N be such that d(xn, dm) ⩽ 1 for all n,m ⩾ k. Then, since 1 < 2, all xn for n ⩾ k are contained in N2(xk).
Then if we simply define

r ∶=max{2, d(x1, xk), ..., d(xk−1, xk)} + 1

we see that all points are contained in Nr(xk), proving our claim.

Lemma 4.17: Convergent ⇒ Cauchy

If (xn) converges, it is Cauchy.

Proof. Suppose (xn) → x. Using convergence, we pick N large enough such that d(xn, x) < ϵ/2 if n ⩾ N . Then, for

m,n ⩾ N , we have d(xn, dm) ⩽ d(xn, x) + d(x,xm) < ϵ/2 + ϵ/2 = ϵ, completing the proof.

While convergent sequences are Cauchy, the converse is not necessarily true. We need to introduce the notion of com-

pleteness to guarantee the converse, and we will present counterexamples showing that Cauchy sequences may not be

convergent.

Definition 4.18: Complete Metric Spaces

Let X be a metric space. If all Cauchy sequence (xn) ⊂X converge (with limits in X), we say X is complete.

Intuitively, there are no “holes” in this space. A complete normed vector space is called a Banach space.

Example 4.19. ((0,1), ∥ ⋅ ∥) is not Complete. In particular, the Cauchy sequence (1/n) does not converge

in this space. (It is Cauchy because (1/n) converges in the ambient space (R, ∥ ⋅ ∥), whereas the limit 0 in the

ambient space does not lie in ((0,1), ∥ ⋅ ∥) .)

Lemma 4.20: (Rk, ∥ ⋅ ∥) is Complete

(Rk, ∥ ⋅ ∥) is complete.
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Proof. Let (xn) ⊂ Rk be a Cauchy sequence. It follows that (xn) is bounded , and thus there exists R > 0 such

that all xn are contained in [−R,R]k ∶= [−R,R] × ... × [−R,R]. By the Bolzano-Weierstraß Theorem there exists a

subsequence (xnk
) that converges to some x ∈ [−R,R]k. Note that we are still not done! We have found a convergent

subsequence, but we need to show the convergence of the entire sequence.

The key is to notice that:

(1) The late terms in a Cauchy sequence are very close to each other, and

(2) Among these terms, some are contained in the subsequence (xnk
), so these terms are also very close to the

limit.

Therefore, all late terms in the Cauchy sequence must be close to the limit of (xnk
), i.e., (xn) shares the same limit.

Now we prove the italicized portion rigorously. Fix ϵ > 0. Using convergence, let N1 ∈ N be such that d(xnk
, x) ⩽ ϵ/2

for all terms in the subsequence whose indices ⩾ N1 (for shorthand notation, we write “for nk ⩾ N1”). Also, using

Cauchy-ness, we can find N2 ∈ N such that d(xn, xm) < ϵ/2 for all n,m ⩾ N2.

Now we define N ∶=max(N1,N2) and pick any nk ⩾ N1 (from the subsequence). It follows that, for any n ⩾ N ,

d(xn, x) ⩽ d(xn, xnk
) + d(xnk

, x) < ϵ
2
+ ϵ
2
= ϵ.

Therefore the entire sequence converges to x, completing the proof.
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3.3 Limits & the Euler Number e

We will be temporarily done with abstract metric spaces, and we will shift our focus to (X,d) ∶= (R, ∥ ⋅ ∥).

Definition 4.21: Infinite Limit of a Sequence

Let (xn) ⊂ R. If for all M ∈ R there exists N ∈ N such that xn >M for all n ⩾ N , we say that xn goes to infinity

and write xn →∞. That xn → −∞ is defined analogously.

Note that (xn →∞) is not equivalent to sup{xn} =∞. The Ô⇒ is true, whereas the converse is not, unless the

sequence is monotonic (see below) — for example, consider the sequence (2,1,3,1,4,1, ...).

Beginning of Feb. 17, 2021

Theorem 5.1: Convergence of Monotone Sequences

Suppose (xn) ⊂ R is nondecreasing (resp.3nonincreasing), i.e., xn+1 ⩾ xn for all n (resp. ⩽), then either xn
converges to some x ∈ R or xn →∞ (resp. xn → −∞). In the latter case, sup{xn} =∞ (resp. −∞).

Future reference: Euler e, Lemma 6.2

Proof. We will only show the nondecreasing case. If sup{xn} =∞, using the definition of supremum, for all M ∈ R
there exists N ∈ N such that xN > M . Then, since the sequence is nondecreasing, xn ⩾ xN > M for all n ⩾ N , and

this is precisely what (xn →∞) means, by definition.

Conversely, if sup{xn} < ∞, then (also by definition of supremum), give ϵ > 0, there exists N ∈ N such that

x − ϵ < xN ⩽ x. Again, since (xn) is nondecreasing, x − ϵ < xN ⩽ xn ⩽ x < x + ϵ for all n ⩾ N . Hence xn → x.

Example 5.2. (A harder example) Suppose (xn) ⊂ (0,1) is any sequence satisfying xn(1 − xn+1) > 1/4 for

all n ⩾ 1. Find lim
n→∞

xn (that is, first show lim
n→∞

xn exists and then calculate it).

Solution. Note that the AM-GM inequality gives

xn + (1 − xn+1)
2

⩾
√
xn(1 − xn+1) >

1

2
Ô⇒ xn > xn+1.

Since the sequence is bounded below by 0, the limit exists and ⩾ 0. Suppose xn → x. Then

lim
n→∞

xn(1 − xn+1) = x(1 − x) ⩽
1

4
,

so the only possibility is if x(1−x) = 1/4, i.e., x = 1/2. We will show later how attaining 1/4 does not violate the strictly

inequality (xn)(1 − xn+1) > 1/4 later.

Example 5.3: the Euler Number.. This provides one approach to define e, the Euler number. Define

xn ∶= (1 +
1

n
)
n

and yn ∶= (1 +
1

n
)
n+1

.

3An abbreviation for respectively.
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Since 1 + 1/n > 1, it follows that yn > xn for all n. Using the AM-GM inequality again,

(1 ⋅ (1 + 1

n
)
n

)
1/(n+1)

⩽

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 + 1/n) + ... + (1 + 1/n)+1

n + 1
= 1 + 1

n + 1
.

where = only takes place if 1 + 1/n = 1, which is impossible for n ∈ N. Therefore xn < xn+1 for all n and we

say (xn) is strictly increasing.

We can also show that (yn) is strictly decreasing, i.e., yn+1 < yn, using the HM-GM inequality:

(1 ⋅ (1 + 1

n
)
n+1
)
1/(n+2)

> n + 2
1 +∑n+1

i=1 n/(n + 1)
= 1 + 1

n + 1
.

Therefore, for n > 1, we have x1 < xn < yn < y1. In particular (xn) is bounded! Therefore, by Theorem 5.1

(xn) converges, and we define the Euler number e to be

e ∶= lim
n→∞

xn ∈ R. (Eq.5.1)

Also notice that

lim
n→∞

yn = lim
n→∞

xn (1 +
1

n
) = e ⋅ 1 = e.

Future reference: Theorem 5.8, the Euler number as sum of factorials
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3.4 Limit Superior & Limit Inferior

However, given an arbitrary sequence (xn), we may or may not know its behavior, and it may or may not converge.

How do we analyze such sequences as n→∞? The answer is to introduce two more definitions:

Definition 5.4: Limsup & Liminf4

Given (xn) ⊂ R, we set

E ∶= {y ∈ R ∪ {±∞} ∶ there exists a subsequence (xnk
) such that xnk

→ y}. (Eq.5.2)

We define

lim sup
n→∞

xn ∶= supE and lim inf
n→∞

xn ∶= inf E.

We call these the upper limit (or limit superior) and lower limit (or limit inferior), respectively.

lim sup and lim inf are generalizations of the notion of a limit. The best thing is that they always exist! Also

notice that if E ⊂ R then lim inf and lim inf agree with sup and inf.

Future reference: the Squeeze Theorem

Theorem 5.5: Characterization of Limsup

x = lim sup
n→∞

xn if and only if:

(1) x ∈ E (in other words, supE is attained, and the lim sup itself is a limit of some subsequence), and

(2) if (y > x) ∈ R, then there exists N ∈ N such that xn ⩽ y for all n ⩾ N (i.e., the tail is bounded by y).

The characterization of lim inf is characterized analogously, replacing > and ⩾ in (2) by < and ⩽.
Future reference: Corollary 5.6, Theorem 5.8, the Root Test

Proof. (Completed on 2/19 and 22.) We first show⇒(1). Assume x = lim sup
n→∞

xn. By definition x = supE. It follows

that there exists (ym) ⊂ E converging to x. (This could be the boring constant sequence and our proof would remain

unaffected.)

(Case 1) Suppose x ≠ ±∞. Fix ϵ > 0. We want to show that x ∈ E, i.e., there exists some n such that ∣xn −x∣ < ϵ.
(Then we can take ϵ to be smaller and smaller and obtain a subsequence (xnk

) that becomes closer and closer to

x, i.e., converges to x.)

Let y ∈ (ym) ⊂ E be such that ∣x− y∣ < ϵ/2. (This is possible as we assumed (ym)→ x.) Also, pick n ∈ N such that

∣xn − y∣ < ϵ/2. (This is also possible because y ∈ E and so y is a limit point for some subsequence, and we simply

need to pick xn from this subsequence.) Then, by triangle inequality ∣xn − x∣ ⩽ ∣xn − y∣ + ∣y − x∣ < ϵ. This proves

x ∈ E.

(Case 2) If x = −∞ the claim is trivial: if so E = {−∞}, for if there were anything else then supE > −∞.

4Here is another way to think of lim sup for a bounded sequence: given (xn) and k ∈ N, the supremum of (xk, xk+1, ...) exists. If we

increase k, the supremum is taken over a smaller set and thus (sk)k⩾1 defined by sk ∶= supn⩾k{xn} forms a nonincreasing sequence, and by

Bolzano-Weierstraß there exists a limit. The lim sup is precisely limit of supremum, lim
k→∞

sup
n⩾k
{xn}. The definition also holds for unbounded

sequences (in which cases the values are ±∞).
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(Case 3) If x = ∞, we want to show that there are arbitrarily large terms in (xn), i.e., for all M ∈ R, there

exists n ∈ N such that xn >M . Now we fix M ∈ R. Let y ∈ E be such that y >M + 1. (This is possible because

supE = ∞, so E contains arbitrarily large elements (or even ∞ itself).) Now that y > M + 1 is a limit point,

there exists xn such that
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xn >M if y =∞

∣xn − y∣ < 1 if y ∈ R.

In either case, xn >M , completing our sub-proof.

Now we need to show⇒ (2). The case x =∞ is trivial because there is no such y with y > x. Now we suppose x is

finite and that (2) is false. Then there exists (y > x) ∈ R such that (xn) does not have a tail that is bounded above

by y. This means that, for all N ∈ N, there exists n ⩾ N with xn > y. In particular there are infinitely many xn’s

greater than y. That is, we can extract an (infinite) subsequence (xnk
) with each term > y.

We now show that (xnk
) causes a contradiction:

(1) If (xnk
) is unbounded above, then there exists a subsequence (xnkm

) →∞ so ∞ ∈ E, and this contradicts

our assumption that x ∶= supE is finite.

(2) If (xnk
) is bounded above, (since it is also bounded below by y) Bolzano-Weierstraß implies it has a conver-

gent sub-subsequence (xnkm
). This sub-subsequence converges to some z ⩾ y > x so z ∈ E, again contradicting

our assumption that x = supE. This concludes the proof of⇒(2) and thus Ô⇒ entirely.

Now we show ⇐Ô . We assume that x ∈ E and that if y > x then the tail of (xn) is bounded above by y; we want

to show that x = supE. Suppose for contradiction that x ≠ supE. Notice that since x ∈ E, anything smaller than x

cannot be an upper bound for E, so our assumption implies that it is Definition 1.6.1 — rather than 1.6.2 — that is

being violated, i.e., x is not an upper bound of E. Therefore there exists (z > x) ∈ E.

Let y ∈ R be such that y ∈ (x, z). By the theorem’s second condition, there exists N ∈ N such that xn ⩽ y for all

n ⩾ N . Therefore the tail of (xn) is bounded above by y, and it is impossible to find any subsequence converging to

z. Therefore z ∉ E, contradiction. This concludes the proof.

Corollary 5.6

(1) lim sup
n→∞

= −∞ if and only if xn → −∞. Heuristically, if all possible subsequences tend to −∞, the main

sequence must also act like this. Similarly, lim inf
n→∞

xn =∞ if and only if xn →∞.

(2) xn converges to some x ∈ R if and only if lim sup
n→∞

xn = lim inf
n→∞

xn = x ∈ R.

Future reference: Squeeze Theorem, Example 5.12, Example 6.5, the Euler number as sum of factorials

Proof. (1) directly follows from condition (2) from Theorem 5.5. If lim sup
n→∞

xn = −∞ and we take any (x ∈ R) >

−∞, the Theorem implies that the tail of xn is bounded above by x. Since x is arbitrary, xn → −∞. Conversely,

if xn → −∞ then any subsequence tends to −∞, so clearly lim sup
n→∞

−∞ = sup{−∞} = −∞.

(2) For Ô⇒ , suppose xn → x for some x. Then any subsequence must converge to x, i.e., E = {x}. Thus

lim inf
n→∞

xn = inf E = x = supE = lim sup
n→∞

xn.
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For ⇐Ô , fix ϵ > 0. We use (2) in Theorem 5.5 again on x + ϵ > x. It follows that there exists N1 ∈ N such that

xn < x + ϵ for all n ⩾ N1
5. Similarly, we use the liminf version on x − ϵ < x, and there exists N2 ∈ N such that

xn > x + ϵ for all n ⩾ N2. Thus, setting N ∶=max(N1,N2), we see that

∣xn − x∣ < ϵ for all n ⩾ N.

This concludes the proof.

Example 5.7: Examples on Liminf & Limsup.

(1) Let xn ∶= (−1)n. It follows that the only convergent subsequence consist of −1 and 1, so E = {±1} and

thus lim sup
n→∞

xn = 1, lim infn→∞ xn = −1.

(2) Let (qn)n⩾1 be an enumeration of rational numbers. Then E = R ∪ {±∞} and

lim sup
n→∞

qn = +∞ lim inf
n→∞

qn = −∞.

To see this, we can, for example, define a subsequence (qnk
) by setting qn1 ∶= q1 and qnk+1 be the first

number in (qn) that is at least qnk
+ 1 and appears after qnk

. This is possible because there are infinitely

many rationals ⩾ qnk
+ 1. Then this sequence has limit +∞. Likewise for the opposite case.

(3) Find all limit points as well as liminf and limsup of xn ∶= (2 cos(2πn/3))n.

Beginning of Feb. 19, 2021

Solution of 5.7(3). The main idea is to divide the sequence into subsequences for which we can calculate limits. For

example, notice that

x3k = 23k,

x3k+1 = (2 cos(2π/3))3k+1 = (−1)3k+1 = (−1)k+1,

and

x3k+2 = (2 cos(4π/3))3k+2 = (−1)3k+2 = (−1)k,

and these three cases account for all terms in (xn).
The first case clearly → ∞, whereas the second and third both oscillates between ±1. It follows that the E for this

sequence is {±1,∞}. It follows that

lim sup
n→∞

xn =∞ and lim inf
n→∞

xn = −1.

Theorem 5.8

If xn ⩽ yn for all n then the same relations for lim sup and lim inf:

lim sup
n→∞

xn ⩽ lim sup
n→∞

yn and lim inf
n→∞

xn ⩽ lim inf
n→∞

yn.

In particular, if xn → x and yn → y and xn < yn for all n, we have x ⩽ y. The ⩽ confirms Example 5.2 and the

Euler number (Example 5.3), in which we indeed obtained ⩽ from <.

5Theorem 5.5 only gives ⩽, but of course we make it < by choosing a stronger ϵ. In ϵ-proofs, ⩽ and < are both fine.
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Future reference: the Euler number as sum of factorials, L’Hôpital’s Rule, uniformly convergent⇔ Cauchy

in ∥ ⋅ ∥sup, Moore-Smith Theorem

Proof. We will only prove the lim sup case. Let c ∶= lim sup
n→∞

xn. WLOG assume x > −∞ (otherwise, the claim is

trivial). By condition (1) of Theorem 5.5, x is the limit of some subsequence, say (xnk
). In other words, for all ϵ > 0,

there exists K ∈ N such that c − ϵ < xnk
< c + ϵ for all k ⩾K. Notice that (ynk

) is bounded below by (xnk
).

We claim that (ynk
) admits a subsequence (ynkm

) (yes... triple subscript) that converges to some y ∈ R ∪ {∞}. (If

(ynk
) is unbounded, set it to ∞; otherwise use Bolzano-Weierstraß. It cannot be −∞ as (xnk

) is a lower bound.) Note

that y ⩾ c − ϵ because (ynk
) > c − ϵ. Since ϵ is arbitrary, we get y ⩾ c. In particular we have found some limit point of

(yn) that is ⩾ c, so by definition lim sup
n→∞

yn ⩾ y ⩾ lim sup
n→∞

xn.

Corollary 5.9: the “Squeeze Theorem” / “Sandwich Theorem”

If an ⩽ bn ⩽ cn and an → x, cn → x for some x ∈ R, then bn → x.

In the infinite case, if an ⩽ bn and an →∞, then bn →∞.

Future reference: Lemma 6.4.3, Example 6.12

Proof. We can completely overkill this theorem using the previous one:

x = lim inf
n→∞

an ⩽ lim inf
n→∞

bn ⩽ lim sup
n→∞

bn ⩽ lim sup
n→∞

cn = x.

The =’s are by Corollary 5.6.2, the middle ⩽ by Definition 5.4 (inf ⩽ sup), and the other two ⩽’s by the previous

theorem. Hence lim inf bn = lim sup bn and the other direction of Corollary 5.6.2 gives bn → x.

Example 5.10. p1/n → 1 for all p→ 0.

Proof. If p ⩾ 1, we can define xn ∶= p1/n − 1 ⩾ 0. Using binomial expansion,

p = (1 + xn)n = 1 + nxn + remaining terms
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩾0

⩾ 1 + nxn.

Therefore 0 ⩽ xn ⩽ (p − 1)/n, and using the Squeeze Theorem we conclude xn → 0, i.e., p1/n → 1.

If p < 1 then we write p1/n as 1/(1/p)1/n. The denominator → 1 and so p1/n → 1/1 = 1. (This is a nontrivial claim and

it needs some justification. Cf. PS5.8.)

Example 5.11. Compute the limit for xn ∶= (4(−1)
n

+ 2)1/n.

Solution. Observe that (−1)n can either be −1 or 1, so 4(−1)
n

+ 2 is either 9/4 or 6. Therefore,

(9/4)1/n ⩽ xn ⩽ 61/n

and the Squeeze Theorem implies xn → 1.
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Example 5.12. Let (an) ⊂ (0,∞) be such that

am+n ⩽ an + am +C (∆)

for some C ⩾ 0 and all m,n ∈ N. Show that lim
n→∞

an
n

exists.

Proof. Heuristically, (∆) tells us (an) behaves well. In particular, if (an) is decreasing then the limit of course exists

and equals 0. Even in the worst case where (an) is increasing, it increases at most linearly, and the constant term C

gets killed by the ever increasing n in the denominator.

We prove this by using the division algorithm. Fix k ∈ N. It follows that any n can be written as ℓk + r for some ℓ ∈ N
and 0 ⩽ r ⩽ k − 1. Therefore,

an = aℓk+r ⩽ aℓk + ar +C ⩽ ... ⩽ ℓ(ak +C) + ar

(where the ... denotes iterating the inequality aℓk ⩽ ak + a(ℓ−1)k +C). Then,

an
n
⩽ ℓ
n
(ak +C) +

ar
n
⩽ ak +C

k
+ ar
n

where the second ⩽ is because n = ℓk + r ⩾ ℓk and then the ℓ’s cancel. Since k is fixed, ar is bounded (by

max(a0, ..., ak−1)), and so ar/n→ 0 as n→∞. Taking lim sup, we obtain

lim sup
n→∞

an
n
⩽ lim sup

n→∞

ak +C
k
+ ar
n
= ak +C

k
for all k ∈ N.

Note that here (ak +C)/k is a constant once we prescribe a k. On the other hand, if we take lim inf over k (not n),

lim sup
n→∞

an
n
⩽ lim inf

k→∞

ak +C
k

⩽ lim inf
k→∞

ak
k
+ lim inf

k→∞

C

k
= lim inf

k→∞

ak
k
.

(It is taken for granted that lim inf is subadditive; the proof of this requires some justification though.) Since n, k at

this point are just dummy variables, we see that the lim sup and lim inf of (an/n)must equal, and by Corollary 5.6.2

(an/n) converges, i.e., the limit exists.

This is an elegant proof. We first used the notion of lim sup to get an inequality involving our target of interest,

lim sup
n→∞

an/n, with dependence on one variable (k) and then take lim inf to get rid of k as well.
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3.5 Series

Beginning of Feb. 22, 2021

Definition 6.1: Series

A series is a sequence of a particular form: it is a sequence consisting of partial sums

Sn ∶=
n

∑
k=1

ak for some (an) ⊂ R

(or summation over a complex sequence, but we only focus on the real case). We common use the shorthand

notation ∑an. We say that ∑an converges if Sn converges (i.e., if lim
n→∞

Sn = s for some s ∈ R) and diverges

otherwise (i.e., if lim
n→∞

Sn does not exist or Sn → ±∞).

The theory of series is concerned with determining whether a given series converges, rather than finding the limit

explicitly, as the latter is often too hard.

Lemma 6.2

(1) Since R is complete, a series converges if and only if it is Cauchy. This gives the Cauchy Convergence

Criterion (CCC): ∑an converges if and only if

For all ϵ > 0, there exists N ∈ N such that ∣
n

∑
k=m

ak∣ < ϵ for all m ⩾ n ⩾ N .

Notice that this is exactly saying that the sequence (Sn) is Cauchy. Future reference: Theorem 6.18,

Weierstraß M -Test

(2) If ∑an converges then an → 0. Use (1) and take m ∶= n. Future reference: Lemma 6.4.2, the Root Test,

the Ratio Test

(3) If (an) is nonnegative (so Sn is nondecreasing), then ∑an (namely Sn) converges if and only if it is

bounded (this is given directly by Theorem 5.1).

Future reference: Cauchy Condensation Test

Definition 6.3: Absolute Convergence

We say ∑an converges absolutely if ∑∣an∣ converges, hence the word absolutely.

Lemma 6.4

(1) Absolute convergence implies convergence: if ∑an converges absolutely then ∑an converges.

One-liner proof:
n

∑
k=m

ak ⩽
n

∑
k=m
∣ak ∣ < ϵ by ∆-inequality and assumption on ∑∣an∣.

(2) (Comparison test): If ∣an∣ ⩽ cn and ∑ cn converges, then ∑an converges absolutely (and thus con-

verges too).

Also one-liner: Sn =
n

∑
k=1
∣ak ∣ ⩽

n

∑
k=1

ck <
∞
∑
k=1

ck <∞ for all n. Then use emma 6.2.3.
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Future reference: the Root Test

(3) If an ⩾ bn ⩾ 0 and ∑ bn diverges, then ∑an diverges.

Also one-liner: Sn =
n

∑
k=1

ak ⩾
n

∑
k=1

bk →∞ by the Squeeze Theorem.

Example 6.5. Consider the sequence an = (−1)n. We have

Sn =
n

∑
k=1

ak =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 n even

−1 n odd.

This sequence diverges. (It’s always oscillating between 0 and −1. Alternatively, we could use Corollary 5.6.2

and lim sup
n→∞

Sn = 0 ≠ −1 = lim inf
n→∞

Sn to say that Sn diverges.)

Example 6.6: Geometric Series. Let q ∈ R. A series of form
∞
∑
n=0

qn (or starting with n = 1 or any n...) is

called a geometric series. Such series converges if and only if ∣q∣ < 1.

Future reference: p-series

Proof. We all know (hopefully) that
n

∑
k=0

qk = 1 − qn+1

1 − q
.

For a fixed q, qn+1 → 0 if ∣q∣ < 1 so the entire series converges to 1/(1 − q), whereas qn+1 is unbounded if ∣q∣ > 1. If

q = ±1 it is clear that the series diverges as well.

Alternatively, below is a geometric interpretation of the geometric series for ∣q∣ < 1:

Beginning of Feb. 24, 2021

Theorem 6.7: “Dyadic Thinning” / Cauchy Condensation Test

Suppose (an) satisfies 0 ⩽ an+1 ⩽ an for all n. Then

∑an converges ⇐⇒ ∑2ka2k converges.

We see immediately that this theorem fails without the assumption that (an) is nonincreasing. However, with a nonin-

creasing sequence, the theorem holds nicely. When I was first learning Calculus II, the proof showing that the harmonic
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series 1 + 1/2 + 1/3 + ... diverges uses precisely this trick:

∞
∑
n=1

1

n
= 1 + (1

2
+ 1

3
) + (1

4
+ ... + 1

8
) + ... =

∞
∑
n=0
( 1

2n
+ ... + 1

2n+1 − 1
) >

∞
∑
n=0

1 =∞.

Proof. We define Sn ∶=
k

∑
n=1

ak and Tk ∶=
k

∑
m=0

2ma2m . We will show that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sn ⩽ Tk for n ⩽ 2k (1)

Tk ⩽ 2Sn for n > 2k. (2)

If so, Sn is bounded⇔ Tk is. (Sn bounded⇒ Tk bounded by (2) and the converse by (1).)

Since ak and ama2m are nonnegative, Lemma 6.2.3 (first and third⇔) would then imply

∑an = Sn converges ⇔ Sn is bounded ⇔ Tk is bounded ⇔ Tn =∑2k22k converges

which would complete the proof. Below we show (1) and (2).

For (1), if n ⩽ 2k, since ak is nonnegative, we have Sn ⩽ S2k . Thus,

Sn ⩽ S2k

= a1 + (a2 + a3) + (a4 + ... + a7) + ... + (a2k−1 + ... + a2k−1) + a2k

⩽ 20 ⋅ a20 + 2 ⋅ a21 + 22 ⋅ a22 + ... + 2k−1a2k−1 + a2k

⩽ ... + 2ka2k = Tk.

Conversely, for (2), if n > 2k,

Sn = a1 + a2 + (a3 + a4) + (a5 + ... + a8) + ... + (a2k−1+1 + ... + a2k) + (a2k+1 + ... + an)

⩾ 2−1 ⋅ a1 + 20 ⋅ a2 + 21a22 + ... + 22k−1a2k + 0

⩾
k

∑
m=0

2m−1a2m =
Tk
2
.

Example 6.8: Convergence of p-Series. A series of form ∑1/np (indexed over n) is called a p-series. A

p-series converge if and only if p > 1.6

Future reference: the Root Test, Example 6.14, Example 13.10

Proof. The case where p ⩽ 0 is trivial as 1/np ⩾ 1 and the series clearly diverges.

If p > 0, since the terms are all nonnegative, the previous theorem states that

∞
∑
n=1

1

np
converges ⇐⇒

∞
∑
k=0

2k

2kp
converges.

Notice that the RHS is a geometric series[!] Using Example 6.6, it converges if and only if the ratio

2k+1

2(k+1)p
⋅ 2

kp

2k
= 21−p < 1.

This implies that the series converges if and only if 1 − p < 0, i.e., p > 1.

6Rudin took a completely different approach than the one I learned, which used the integral test. Mind-blowing for me!
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Example 6.9: Characterization of the Euler Number.

∞
∑
n=0

1

n!
= e,

where ! denotes factorial and 0! ∶= 1.

As previous mentioned, the limit

lim
n→∞

(1 + 1

n
)
n

exists, and we defined it to be e, the Euler number. We didn’t know precisely what that limit is, but now we do.

Proof. This proof requires clear manipulations of lim inf and lim sup. First we define

bn ∶= (1 +
1

n
)
n

and Sn ∶=
n

∑
k=0

1

k!
.

Using binomial theorem, for each n, we have

bn =
1

nn
(n + 1)n = 1

nn

n

∑
k=0
(n
k
)nn−k1k =

n

∑
k=0

1

nk
n!

k!(n − k)!

= 1 +
n

∑
k=1

1

nk
1

k!
n(n − 1)...(n − k + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k terms

= 1 +
n

∑
k=1

1

k!
(n
n
)(n − 1

n
) ...(n − k + 1

n
)

⩽ 1 +
n

∑
k=1

1

k!
=

n

∑
k=0

1

k!
= Sn.

As shown previously, bn converges and so lim inf
n→∞

bn equals the limit e by Corollary 5.6.2. On the other hand, since

bn ⩽ Sn for all n, by Theorem 5.8 we have

lim inf
n→∞

bn = e ⩽ lim inf
n→∞

Sn. (1)

The other direction ⩾ is slightly harder. If we fix m ∈ N and take n ⩾m, we have

bn =
1

nn
(n + 1)n = 1 +

n

∑
k=1

1

k!
(n
n
)(n − 1

n
) ...(n − k + 1

n
)

⩾ 1 +
m

∑
k=1

1

k!
(n
n
)(n − 1

n
) ...(n − k + 1

n
)

Now we take lim sup on both sides (on n). Keeping m fixed and letting n →∞, each term (n − j)/n converges to 1,

and so does their finite product. Then,

bn ⩾ 1 +
m

∑
k=1

1

k!
for all n Ô⇒ lim inf

n→∞
bn = e ⩾ 1 +

m

∑
k=1

1

k!
=

m

∑
k=0

1

k!
.

Finally, letting m→∞ and taking lim sup over m we get e ⩽ lim sup
m→∞

bm. This, with (1), completes the proof.
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3.6 The Root Test & the Ratio Test

In this section we present some convenient methods to decide whether a series is convergent.

Theorem 6.10: the Root Test

Let (an) be a sequence. We define its exponential growth rate to be α ∶= lim sup
n

n
√
an.

(1) If α < 1 then ∑an converges absolutely (and thus converges).

(2) If α > 1 then ∑an diverges.

(3) If α = 1 the root test is inconclusive: for example ∑1/n diverges whereas ∑1/n2 converges (to π2/6).

Proof. (1) If α < 1, we can take β ∈ (α,1) and compare (an) with the geometric sequence (βn) with βn ∶= βn.

By the characterization (2) of lim sup, there exists N ∈ N such that n
√
an ⩽ β for all n ⩾ N . In other words,

an ⩽ βn. The comparison test (6.4.2) gives the convergence of (an) (we can discard finitely many early terms

as they have no effect on convergence — only the tail has).

(2) Using the characterization (1) of lim sup, α > 1 is the limit of some ∣ank
∣1/(nk). In particular, there exists

N ∈ N such that ∣ank
∣1/(nk) > 1 for all k ⩾ N . Therefore, for such ank

’s we have ∣ank
∣ > 1nk , and this violates

the CCC and/or Lemma 6.2.2.7

Theorem 6.11: the Ratio Test

Let (an) be a sequence.

(1) If lim sup
n→∞

∣an+1/an∣ < 1 then ∑an converges absolutely.

(2) If for some N ∈ N, ∣an+1/an∣ ⩾ 1 for all n ⩾ N , then ∑an diverges. 8

Proof. (1) Let α ∶= lim sup
n→∞

∣an+1/an∣. We can pick β ∈ (α,1). Similar to the reasoning above, there exists large

N ∈ N such that ∣an+1∣ ⩽ β∣an∣ for all n ⩾ N . In particular,

∣αn+m∣ ⩽ βm∣αn∣ Ô⇒
∞
∑
k=N
∣ak ∣ ⩽ ∣an∣

∞
∑
k=0

βk <∞.

(2) For all n ⩾ N , we have

∣an+1∣ ⩾ ∣an∣ ⩾ ... ⩾ ∣aN ∣,

so an ↛ 0. By Lemma 6.2.2 ∑an diverges.

Beginning of Feb. 26, 2021

7Alternatively, we could again pick β ∈ (1, α). There exists a subsequence (ank) with ∣ank ∣1/(nk) converging to α. The tail of such sequence

> β and comparison test once gives divergence.
8A weaker but more symmetric version goes as follows: if lim inf

n→∞
∣an+1/an∣ > 1 then the series diverges.
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Remark. Just a remark on limit points coming out of nowhere: the set {−1,1} has no limit point (no

sequence other than (1,1, ...) converges to 1 and likewise for −1) whereas {−1,1} are both limit points of the

sequence an ∶= (−1)n.

Example 6.12: Root Test vs. Ratio Test. Consider the sequence (1/2,1,1/8,1/4,1/32,1/16, ...) where we

multiply by 2 then divide by 8 for successive terms. It is obvious that

lim sup
n→∞

∣an+1/an∣ = 2 and lim inf
n→∞

∣an+1/an∣ =
1

8
.

Since lim sup > 1 and lim inf < 1, the ratio test tells us nothing. On the other hand, since

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a2n+1 = 1/22n+1

a2n = 1/22n−2,
Ô⇒ 1

2n
⩽ an ⩽

4

2n
,

and both sides converges to 0, by the Squeeze Theorem we also have

lim
n→∞

n
√
∣an∣ = lim sup

n→∞

n
√
∣an∣ = lim inf

n→∞
n
√
∣an∣ =

1

2
.

This shows that the exponential growth rate of (an) < 1 and thus the series converges. It is also very easy for

us to verify this: (a1 + a2, a3 + a4, ...) forms a geometric sequence with ratio 1/8.

Theorem 6.13: Root Test vs. Ratio Test

lim inf
n→∞

∣an+1/an∣ ⩽ lim inf
n→∞

n
√
∣an∣ and lim sup

n→∞
∣an+1/an∣ ⩾ lim sup

n→∞

n
√
∣an∣.

In particular, this shows that (root test works)⇒ (ratio test works), whereas the converge may not hold, as seen

in the above example. Thus the root test is stronger than the ratio test in some cases. However, the root test

is harder to apply (ratios are much easier to compute). Of course, both may fail for some series: for example

consider the p-series with p ∈ (0,1].

Example 6.14. Let a, b > 0. Then∑
n2n

(n + a)n+b(n + b)n+a
converges if and only if a + b > 1.

Proof. Notice that both the root test and the ratio test fails in this example. We therefore resort to the comparison

test. Notice that
n2n

(n + a)n+b(n + b)n+a
= 1

(n + a)b(1 + a/n)n(n + b)a(1 + b/n)n
.

Since lim
n→∞
(1 + a/n)n = e1/a and lim

n→∞
(1 + b/n)n = e1/b (take the ath power of both sides and we recoved precisely the

limit definition of e) are both finite, it suffices to bound the other two terms, making sure they stay finite as n →∞.

Since the powers of n in the denominator is a + b, the main idea here is to find constants C1,C2 such that

C1

na+b
⩽ 1

(n + a)b(n + b)a
⩽ C2

na+b
.

If we can do so, since we know exactly when ∑1/na+b converges (i.e., if and only if a + b > 1), our proof would be

finished.
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On one hand, by assumption a, b > 0, so (n+a)b > na and (n+ b)a > nb. On the other hand, for n > 1 we have a < na,

so

(n + a)b < (n + na)b = (1 + a)bnb and (n + b)a < (1 + b)ana.

Since a, b are prescribed, (1 + a)b and (1 + b)a can be treated as constants! We have therefore found proper lower

and upper bounds for our fraction of interest, completing the proof that ∑ ... converges if and only if a + b > 1.

Example 6.15. Suppose (an) is a strictly positive sequence. Then

∑an converges Ô⇒ ∑
√
anan+1 converges.

The proof is a one-liner using AM-GM:
√
anan+1 ⩽

an + an+1
2

.

The converse is not true in general. Consider

an ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 n odd

1/n4 n even
Ô⇒

√
anan+1 =

1

n2
or

1

(n + 1)2
⩽ 1

n2
.

Example 6.16.

(1) ∑(
√
n + 1 −

√
n) diverges:

√
n + 1 −

√
n = 1√

n + 1 +
√
n
⩾ 1

2
√
n + 1

.

When seeing difference of square roots, it is very common to take the “conjugate”:

√
a −
√
b = (

√
a −
√
b)(
√
a +
√
b)

√
a +
√
b

= a − b
√
a +
√
b.

Same thing for fractions involving complex numbers a + bi, in which case we multiply by a − bi.

(2) ∑( n
√
n − 1)n converges: n

√
n cries out for the root test, and we have

lim sup
n→∞

(( n
√
n − 1)n)1/n = lim sup

n→∞

n
√
n − 1 = 0.

That lim sup
n→∞

n
√
n = 1 is usually shown using binomial expansion and squeeze theorem, but here is a quick

alternate way using AM-GM:

n1/n ⩽

n−2 times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n + ... + n+

√
n +
√
n

n
= n − 2

n
+ 2√

n
→ 1.
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3.7 Power Series

Example 6.17: Power Series & Radius of Convergence. Given a power series ∑ cnxn, we let α ∶=
lim sup
n→∞

n
√
∣cn∣ and define R ∶= 1/α to be its radius of convergence. Then, ∑ cnxn converges absolutely

if ∣x∣ < R and diverges if ∣x∣ > R. When ∣x∣ = R no assertion can be made. The proof directly follows from the

root test as the power n and the nth power cancel each other and we can take x outside.

If α = 0 we define the radius of convergence to be +∞, and if α =∞ we define the radius of convergence to be 0.

Future reference: Infinite Taylor series

For example, the series∑nnxn has α =∞ and R = 0 so it diverges for all nonzero x. The series ∑xn/n! has α = 0 and

R =∞ so it converges (to ex) for any x [we’ll talk about the Taylor expansion of ex later]. Finally, ∑xn has α = R = 1.

3.8 Absolute vs. Conditional Convergence

Question. Are there convergent series that are not absolutely convergent, i.e., ∑an converges but not ∑∣an∣?
Answer. Yes!

Theorem 6.18

Suppose (an), (bn) are such that

(1) Sn ∶=
n

∑
k=1

ak is a bounded sequence,

(2) bn ⩾ bn+1 ⩾ 0, i.e., bn is nonnegative and nonnegative, and

(3) bn → 0.

Then ∑anbn converges.

Future reference: Alternating Series Test

Proof. (Completed on 3/1.) Let (an), (bn) be sequences that satisfy (1), (2), and (3). Let ϵ > 0 be given. To show

the convergence of ∑anbn, one approach is by using the CCC. Therefore, our goal is to show that the partial sums

∣
n

∑
k=m

akbk∣ < ϵ for m,n large.

By (1), there exists some M ∈ R such that ∣Sn∣ ⩽M for all n ∈ N. By (3), there exists N ∈ N such that bn < ϵ/2M for

n ⩾ N . We claim that this N is precisely the one satisfying the CCC as stated above: notice that

n

∑
k=m

akbk =
n

∑
k=m
(Sk − Sk−1)bk =

n

∑
k=m

Skbk −
n

∑
k=m

Sk−1bk

=
n−1
∑
k=m

Sk(bk − bk+1) + Snbn − Sm−1bm,

where each term is nonnegative. Also, using the bound M on Sn, we have

∣
n

∑
k=m

akbk∣ ⩽M(bn + bm +
n−1
∑
k=m
(bk − bk+1))

=M(bn + bm + (bm − bn))

= 2Mbm ⩽ 2MbN < ϵ.
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This completes the proof.

Corollary 6.19: Leibniz Criterion / Alternating Series Test

Suppose bn ⩾ bn+1 ⩾ 0, i.e., bn is nonnegative and nonnegative, and bn → 0. Then ∑(−1)nbn converges.

One-liner proof: take (an) with an ∶= (−1)n and then use Theorem 6.18.

Example 6.20. The series ∑(−1)n/nα converges for any α > 0. This generalizes the convergence of p-series

which only holds for p > 1.

We conclude the chapter with one last definition, which follows naturally from our discussion of p-series with p < 1:

Definition 6.21: Conditional Convergence

We call a sequence that diverges but converges absolutely a conditionally convergent sequence.
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Chapter 4

Continuity

Beginning of March 1, 2021

In this chapter we will mainly be focus on functions between two metric spaces abstractly, whereas in the next

chapter we will focus on integrals of functions on R. We have seen the “ϵ-N” language in the previous chapters; we

will start to see “ ϵ-δ” now. Unless otherwise indicated, we let (X,dX), (Y, dY ) be two metric spaces.

4.1 Limits of Functions

Definition 7.1: Cauchy Definition of Convergent at a Point

Let f be a function that maps E ⊂X into Y and let p be a limit point of E. We say f(x) converges to q ∈ Y
as x→ p ∈X, and we write lim

x→p
f(x) = q, if the following holds:

Given ϵ > 0, there exists δ > 0 such that dY (f(x), q) < ϵ whenever 0 < dX(x, p) ⩽ δ and x ∈ E.

In particular, if (X,dX) = (R, ∥ ⋅ ∥) and p <∞ then the definition reduces to the following:1

Given ϵ > 0, there exists δ > 0 such that dY (f(x), q) < ϵ whenever x ∈ (p − δ, p) ∪ (p, p + δ).

Future reference: Monotonic functions

Remark. p is a limit point of E but it needs not to be in E. lim
x→p

f(x) ≠ f(p) is possible even for p ∈ E. Also,

the strict inequality 0 < dX(x, p) implies the definition is meaningless for isolated points.

Definition 7.2: Heine Definition of Convergence at a Point

lim
x→p

f(x) = q if and only if, for every sequence (pn) ⊂ E with pn ≠ p, we have lim
n→∞

f(pn)→ q.

Future reference: Lemma 11.19

1The definition given in lecture was “f(x)→ q as x→ p− (i.e., x ↑ p) if ... for all x ∈ (p−δ, p)”, but I believe mine is a more precise analogue.

The lecture, however, also gives one condition for x → +∞: f(x) → q as x → ∞ if for all ϵ > 0 there exists M ∈ R such that dY (f(x), q) < ϵ

whenever x ≥M and x ∈ E.
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Proof. We first show Ô⇒ . Let ϵ > 0 be given. By assumption, there exists δ > 0 such that dY (f(x), q) < ϵ whenever

dX(x, p) < δ. Now we let (pn) be any sequence satisfying the Heine definition. Since (pn) → p, there exists N ∈ N
such that dX(pn, p) < δ for all n ⩾ N . Therefore, for these late enough pn’s, dY (f(pn), q) < ϵ. Since ϵ is arbitrary,

this is precisely what it mean for f(pn) to converge to q.

Conversely, suppose for contradiction that lim
x→p

f(x) ≠ q. Taking the negation of the definition (which states that

whenever x is close enough to p, f(x) is close enough to f(p)), we see that there will always be some point x close

enough to p while f(x) and f(p) are certain distance apart. Putting this into mathematical language, there exists

ϵ > 0 such that, for all δ > 0, there exists x such that dX(x, p) < δ but dY (f(x), q) > ϵ.
We again construct a “1/n sequence.” Let δn ∶= 1/n. By what is stated above, to each δn there corresponds an xn

with dX(xn, p) < 1/n but dY (f(x), q) > ϵ. It is clear that (xn)→ p, but on the other hand f(pn) is not covering to q.

This contradicts the RHS of the⇔ statement, which was our assumption. Hence lim
x→p

f(x) = q.

Remark. Note that in the proof of ⇐Ô , our construction may fail if we do not require dX(x, p) to be

strictly bigger than 0 (take the boring sequence for instance). Therefore it is necessary that we require

0 < dX(x, p) in the Cauchy definition.

From the Heine definition, we see that the limit of a function at a point, should it exist, is equal to the limit of a sequence

(f(pn)). Therefore, we naturally have the following results:

Corollary 7.3

Limits of a function at a point, should they exist, are unique (by Lemma 3.5).

Corollary 7.4

Suppose (Y, dY ) = (R, ∥ ⋅ ∥) and lim
x→p

f(x) = A, lim
x→p

g(x) = B for A,B ∈ R. Then (by Example 4.13)

lim
x→p
(f + g)(x) ∶= lim

x→p
(f(x) + g(x)) = A +B, lim

x→p
(fg)(x) ∶= lim

x→p
(f(x)g(x)) = AB

and

lim
x→p
(f/g)(x) ∶= lim

x→p
(f(x)/g(x)) = A/B if B ≠ 0.

Future reference: Corollary 7.6

Now, having defined the limit of a function at a point, we can move on and define continuity.

4.2 Continuous Functions

Definition 7.5: “ϵ-δ” Continuity

We say a function f ∶ (E ⊂X)→ Y is continuous at p ∈ E if:

Given ϵ > 0, there exists δ > 0 such that d(f(x), f(p)) < ϵ whenever d(x, p) < δ and x ∈ E.

In other words, lim
x→p

f(x) = f(p) if p is a limit point of E. (If p is an isolated point then f is trivially continuous at

p: there exists a sufficiently small δ-neighborhood of p in which p is the only point. Then of course d(f(p), f(p)) =
0 < ϵ for any ϵ[!]) This definition holds for both isolated points too, so we don’t need to require 0 < d(x, p).
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We say f is continuous on E if it is continuous at every p ∈ E. Future reference: Theorem 8.5

Remark. In particular, f needs to be defined at p. Unlike in previous definitions where p, a limit point,

may or may not be in E, here we begin by picking a point in the domain. For example, f(x) ∶= 1/x defined

on R − {0} is continuous, so “f is not continuous at 0” is false because it is not defined at 0 a priori.

What you were taught in... A function is continuous if... 2

Middle school
If you can draw it without

picking up your pencil

High school If it’s like x2

Pre-calculus
If it does not have any holes or

jumps

“Calculus” If for each c lim
x→c

f(x) = f(c)

Intro analysis (425a)

If for all ϵ > 0 and all c there
exists δ > 0 such that

∣f(x) − f(c)∣ < ϵ whenever
∣x − c∣ < δ

2Borrowed from Jay Cummings, Real Analysis: A Long Form Mathematics Textbook, p.155.
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Corollary 7.6

If (Y, dY ) = (R, ∥⋅∥) and f, g are continuous functions from (X,dX) to Y , then f+g, fg, f/g are all continuous

(f/g needs the additional assumption that g(x) ≠ 0 for all x ∈X). This is a direct result from Corollary 7.4.

Theorem 7.7: Composition of Continuous Functions

Let X,Y,Z be metric spaces. If f ∶ (E ⊂X)→ Y is continuous at p ∈ E and g ∶ (f(E) ⊂ Y )→ Z is continuous

at f(p), then the composition, written g ○ f [i.e., (g ○ f)(x) ∶= g(f(x))], is continuous at p.

Beginning of March 5, 2021

Proof. We fix ϵ > 0 and let p ∈ E be given. By continuity of g, since f(p) is in its domain, there exists δ1 > 0 such that

dz[g(y), g(f(p))] < ϵ whenever dY (y, f(p)) < δ1 and y ∈ f(E). In particular, y ∈ f(E) means y = f(x0) for some

x ∈X.

Again, using continuity of f , and “treating δ1 as the ϵ”, there exists δ2 > 0 such that dY (f(x0), f(x)) < δ1 whenever

dX(x,x0) < δ2 and x ∈X. Then for such δ2,

dX(x, p) < δ2 Ô⇒ dY (f(x), f(p)) < δ1 Ô⇒ dZ[(g ○ f)(x), (g ○ f)(p)] < ϵ.

Theorem 7.8: Continuity: Open Set Condition

A function f ∶X → Y is continuous if and only if the preimage of any open set V ⊂ Y is open in X, i.e.,

V ⊂ Y open Ô⇒ f−1(V ) ⊂X open.

We define the preimage f−1(V ) as {x ∈ X ∶ f(x) ∈ v}. This is not to be confused with inverse of f , which may

not exist, whereas f−1(V ) always exists. They agree if and only if f is bijective: see Theorem 8.6.

Future reference: Continuity & compactness, continuity & connectedness

Proof. We first show Ô⇒ . Assuming f is continuous, V ⊂ Y open, and x ∈ f−1(V ), we need to show that there

exists a δ > 0 such that Nδ(x) ⊂ f−1(V ) [i.e., showing f−1(V ) is open]. Indeed, since V is open and f(x) ⊂ V , there

exists some ϵ > 0 such that Nϵ(f(x)) ⊂ V . Using the ϵ-δ definition of continuity, there indeed exists a δ > 0 such that

dX(x, p) < δ and p ∈X Ô⇒ dY (f(x), f(p)) < ϵ.

In particular, this shows that if dX(x, p) < δ then f(p) ∈ Nϵ(f(x)), so f(p) ∈ V and p ∈ f−1(V ). Therefore

Nδ(x) ⊂ f−1(V ), which completes the proof of Ô⇒ .

For ⇐Ô , suppose f satisfies the open set condition. Fix ϵ > 0. We want to find δ > 0 such that

dX(x, y) < δ and y ∈X Ô⇒ dY (f(x), f(y)) < ϵ.

Since V ∶= Nϵ(f(x)) is a neighborhood of f(x), it is open by Lemma 3.9. By assumption f−1(V ) is open in X. Of

course, x ∈ f−1(V ) as f(x) ∈ Nϵ(f(x)). Thus, by openness of f−1(V ) there exists δ > 0 such that

dX(x,x′) < δ, i.e., x′ ∈ Nδ(x) Ô⇒ x′ ∈ f−1(V ) Ô⇒ dY (f(x′), f(x)) < ϵ.

This is precisely the ϵ-δ definition of continuity.
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Corollary 7.9: Continuity: Closed Set Condition

f ∶X → Y is continuous if the preimage of any closed set is closed.

Future reference: Theorem 8.7, Dini’s Theorem

Proof. Recall that openness is dual to closedness. With a little bit of computation, if C ⊂ Y is closed then

f−1 (Cc)
±
open

= (f−1(C))c

which implies f−1(C) is closed.

Example 7.10. Let (Y, dY ) ∶= (Rk, ∥ ⋅ ∥), and we define f ∶ (E ⊂X)→ Y by its components:

f(x) = (f1(x), ..., fk(x)).

Then f is continuous if and only if each fi is continuous.

Proof. The proof is somewhat similar to that of Example 3.7. Both directions are given by

∣fi(x) − fi(y)∣ ⩽ ∥f(x) − f(y)∥ = (
k

∑
i=1
∣fi(x) − fi(y)∣2)

1/2

(where ∣ ⋅ ∣ denotes absolute value in R and ∥ ⋅ ∥ denotes the standard Euclidean norm on Rk). If

∣fi(x) − fi(y)∣ <
ϵ√
k

for all i,

then ∥f(x) − f(y)∥ < ϵ. This means that if each component is convergent and if we want to ensure ∥f(x) − f(y)∥ < ϵ,
by the second ⩽ we can just pick some sufficiently small δ such that ∣fi(x) − fi(y)∣ < ϵ/

√
k for all i. Conversely, if we

want to ensure ∣fi(x)− fi(y)∣ < ϵ for all i [note that this would give convergence of all components], it suffices to ensure

∥f(x) − f(y)∥ < ϵ by the first ⩽.

Beginning of March 8, 2021

Example 7.11. Let X ∶= Rn and Y = R. Then the coordinate functions φi(x) ∶= xi are continuous.

Example 7.12. The function f(x) ∶= 1/x (defined on R − {0}) is continuous.

Proof using Cauchy definition. We fix x ∈ R − {0} and ϵ > 0. We want to find δ > 0 whose exact conditions will be

specified later.3 We have

∣f(x) − f(y)∣ =
RRRRRRRRRRR

1

x
− 1

y

RRRRRRRRRRR
= ∣y − x∣
∣xy∣

.

In order to bound this from above, we want to bound ∣xy∣ from below. Since

∣y∣ ⩽ ∣x∣ + ∣y − x∣ ⩾ ∣x∣ − δ,
3Just like the “ϵ/

√
k proof” involved in the component-wise convergence example, here we think “backwards” by doing the computations

first and choosing the appropriate δ appropriately later.
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we can choose δ smaller than ∣x∣/2 so that ∣y∣ ⩾ ∣x∣/2, and

∣y − x∣
∣xy∣

⩽ 2

∣x∣2
⋅ ∣y − x∣.

If it so happens that ∣y − x∣ < ϵ ⋅ ∣x∣2/2 we are done. Therefore,

∣y − x∣ <min(∣x∣/2, ϵ∣x∣2/2) Ô⇒ ∣f(x) − f(y)∣ < ϵ.

Proof using Heine definition. First notice that every x in the domain R − {0} is a limit point. Now pick x and let

(xn) ⊂ R − {0} be any sequence that converges to x. Then 1/xn → 1/x and this completes the proof.

Example 8.1.

(1) Any monomial (i.e., xn1

1 xn2

2 ...xnk

k ) on Rk is continuous.

(2) Any polynomial is continuous on Rk.

(3) Any rational function„ i.e., any function of the following form,

(x1 − a1)n1 ...(xk − ak)nk

(x1 − b1)m1 ...(xk − bk)mk
.

is continuous on Rk − ({x1 = b1} ∪ ... ∪ {xk = bk}).

(4) Exponential functions ax is continuous for all a > 0. [Will be proved later]

Remark. When studying continuity of a function, we only care about what happens in the domain of f . What

happens in X −E has no effect on our discussion on continuity. Since E itself is also a metric space, it is more

convenient to simply treat f as a mapping between metric spaces rather than mapping on a subset. In the

future if we say f ∶X → Y , we assume that f is defined on all of X.
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4.3 Continuity and Compactness

Theorem 8.2: Continuous Mapping Preserves Compactness

If f ∶X → Y is continuous and if X is compact, then f(X) is also compact.

Future reference: Theorem 8.7, Example 8.8

Proof. The main idea of this proof is to extract a finite subcover of f(X). Let {Aα}α∈I be an arbitrary open cover of

f(X). We consider the pre-images {f−1(Aα)}α∈I . Since f is continuous, each f−1(Aα) is also open by the open set

condition. Notice that {f−1(Aα)}α∈I covers X by definition of preimage (for any x ∈ X, f(x) is in the image so it

lies in some Aα as {Aα}α∈I covers f(X).) Since X is compact it admits a finite subcover

X ⊂ f−1(Aα1) ∪ ... ∪ f−1(Aαk
).

Notice that this implies f(X) ⊂ Aα1 ∪ ...Aαk
. (Indeed, if A ⊂ B then f(A) ⊂ f(B) and f(A ∪ B) = f(A) ∪ f(B).)

Hence we have extracted a finite subcover of f(X), and this completes the proof.

Definition 8.3: Bounded Functions

We say a function f ∶X → Rk is bounded if there exists M > 0 such that ∥f(x)∥ ⩽M for all x ∈X. Sometimes

we say f(M) is bounded as a shorthand notation.

Lemma 8.4: Continuous Functions on Compact Sets are Bounded

If f ∶X → Rk is continuous and if X is compact, then f is bounded.

One-liner proof: by the previous theorem f(X) is compact and therefore bounded.

Future reference: Theorem 11.3, (C(K), ∥ ⋅ ∥sup) is complete, Weierstraß Approximation Theorem

Theorem 8.5: Continuous Functions on Compact Sets Attain Bounds

If f ∶ X → R is continuous and X is compact, then f attains its maximum and minimum[!] In other words,

there exists p, q ∈X such that

f(p) = sup
x∈X

f(x) and f(q) = inf
x∈X

f(x).

This is, of course, false if X is not compact: for example f(x) ∶= x on (0,1) has supremum 1 and infimum 1 but

clearly neither is attained.

Future reference: Rolle’s Theorem, Darboux Property, continuous functions are R-S integrable, minimization

problems

Proof. We will only prove the case for supremum; the other is analogous. We define

M ∶= sup
x∈X

f(x) = sup f(X).

By the characterization of supremum, there exists a sequence (yn) ⊂ f(X) ⊂ R that converges to M . It follows that

there exists a sequence (xn) such that f(xn) = yn.
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A sequence in a compact set? It follows naturally that we should extract a convergent subsequence. Let (xnk
) be that

such subsequence and suppose xnk
→ p for some p ∈ X. By “Heine continuity”, since f is continuous, lim

k→∞
f(xnk

) =
f(p).

It remains to notice that ynk
= f(xnk

): since the mother sequence (yn) →M , so does the convergent subsequence

(ynk
). This means precisely that (ynk

) = (f(xnk
)) → M , so f(p) = M by the uniqueness of limits. This completes

our proof.

Theorem 8.6: Inverse of a Bijection

If f ∶ X → Y is a bijection then f−1 ∶ Y → X exists and is also a bijection. After all, f is a bijection so each

x ∈ X uniquely corresponds to some y ∈ Y . Then we can simply define f−1 by mapping y back to x for each

x ∈ X. That f is bijective (in particular, surjective) implies f−1 is defined on all of Y . Also, for such cases,

f−1(V ) and “the preimage of V ” are equivalent, whereas in general they are not, as discussed in open set

condition.

Theorem 8.7: Compactness, Bijection, & Inverses

If X is compact and f ∶ X → Y a continuous bijection (note that Y = f(X) is also compact), then the inverse

mapping f−1 is also continuous. However, the theorem is false if we omit the assumption that X is compact; an

example will be shown in the next example.

Proof. We will use the closed set condition for this proof. Let G ⊂X be closed (in X); we will show that (f−1)−1(G) =
f(G), the set which f−1 maps to G, is closed (in Y ).

This is in fact immediate: notice that G is a closed subset of a compact metric space so it is compact itself (Example

4.1). Then, since f is continuous, f(G) is compact (Theorem 8.2). In particular, this implies f(G) ⊂ Y is closed

(Theorem 3.15). The claim follows.

Beginning of March 10, 2021

Example 8.8. This example shows the necessity of X ’s compactness in the previous theorem. Consider

X ∶= [0,1)4and Y ∶= S1 = {z ∈ C ∶ ∣z∣ = 1}. We claim that

f(x) ∶= (cos 2πx, sin 2πx)

is a bijection but it does not admit a continuous inverse.

Proof. The diagram below visualizes what f and f−1 do. The main idea of the proof is to consider a sequence of

points on the circle approaching the point (1,0) from below; these points get mapped to the right side of [0,1) via

f−1 whereas (1,0) gets mapped to the leftmost 0 ∈ [0,1). We see that f−1 does not preserve sequential continuity

and is therefore not continuous.

4The example given in lecture uses X ∶= (0,1] but I found that drawing the diagram for [0,1) is easier so... Of course, both examples hold.
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(0,1]
f : “wrap around”Ô⇒

Alternate Proof. Notice that Y is compact:

Y = B(1) ∩B(1)c

where B(1) denotes the open ball of radius 1. This shows Y is the intersection of two closed balls and is therefore

closed. It is obviously bounded, so Heine-Borel gives compactness.

If f−1 is compact then f−1(Y ) =X is compact by Theorem 8.2, but [0,1) is not. Therefore f−1 is not continuous.
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4.4 Uniform Continuity

Now we present a “stronger” continuity:

Definition 8.9: Uniform Continuity

We say f ∶X → Y is uniformly continuous if:

Given ϵ > 0, there exists δ > 0 such that d(f(x), f(y)) < ϵ whenever d(x, y) < δ.5

Note that this time our δ needs to work for all x, y ∈ X, whereas previously in the “ordinary” continuity, we can

pick δ after the point of interest x is given.

Example 8.10. f(x) ∶= x2 from [0,∞) to [0,∞) is continuous but not uniformly continuous. It is a polyno-

mial and so it is indeed continuous.

Proof. Heuristically, f becomes increasingly steep, so given ϵ, the corresponding δ needs to be smaller and smaller as x

gets larger and larger. Therefore we cannot find some δ that works for all x > 0.

Suppose for contradiction that it is indeed uniformly continuous. We fix ϵ = 1. By assumption there exists δ > 0 such

that

∣x − y∣ < δ Ô⇒ ∣x2 − y2∣ < ϵ.

Now we just need to find sufficiently large x that brings a contradiction. We take x ∶= 1/δ and let y ∶= x + δ. A simple

calculation suggests that

∣x2 − y2∣ = ∣(x − y)(x + y)∣ = δ(x + y) > 2δx > 1 = ϵ.

Contradiction. Hence f is not uniformly continuous.

Theorem 8.11: Continuous and Compact Domain ⇒ Uniformly Continuous

If f ∶X → Y is continuous and X is compact, then f is uniformly continuous.

This shows us the power of compactness — just because the domain is compact, we are able to “upgrade”

continuity into a much stronger form.

Future reference: Example 8.14, continuous functions are R-S integrable, Weierstraß Approximation Theo-

rem

Proof. Suppose for contradiction that f is not uniformly continuous. This means that there exists some ϵ > 0, there

does not exist “the δ that works for all points in X”. Therefore, for such ϵ > 0, for all δ > 0 we can find x, y ∈X such

that d(x, y) < δ but d(f(x), f(y)) ⩾ ϵ.
Let δn ∶= 1/n. It follows that for each n, there exists xn, yn ∈ X with d(xn, yn) ⩾< ϵ and d(f(xn), f(yn)) ⩾ ϵ. Since

(xn), (yn) form two sequences in X, using sequential compactness, we can extract a convergent subsequence of

(xn), and based on the yn’s corresponding to this subsequence, we can further construct a sub-subsequence, whose

indices we label as nk, such that both (xnk
) and (ynk

) converge. Suppose (xnk
) → x and (ynk

) → y. By triangle

inequality

d(x, y) ⩽ d(x,xnk
) + d(xnk

+ ynk
) + d(ynk

, y)
5We will drop the cumbersome subscripts dY (f(x), f(y)) and dX(x, y) when the context is clear, i.e., f(x) ∈ Y and x ∈ X.
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where the first and third term tends to 0 by convergence and the second is bounded by 1/n. As n→∞, d(x, y)→ 0,

so x = y. By continuity of f , we have f(xnk
) → f(x) and f(ynk

) → f(x). It then follows that late terms from two

sequences can be made arbitrarily close to the limit, and at the same time they must be arbitrarily close to each other as

well. This gives a contradiction. Using triangle inequality,

ϵ ⩽ d(f(xnk
), f(ynk

)) ⩽ d(f(xnk
), f(x)) + d(f(x), f(ynk

))

where the RHS tends to 0. Therefore ϵ ⩽ 0, contradicting our assumption on ϵ > 0. Hence f is uniformly continuous.

Definition 8.12: Lipschitz Continuity

We say f ∶ (E ⊂ Rn)→ Rm is Lipschitz if there exists a Lipschitz constant L > 0 such that

∥f(x) − f(y)∥ ⩽ L∥x − y∥ for all x, y ∈ E.

If f ∶ R→ R, then that the slope/derivative at each point on the graph is always bounded by ±L.

Lemma 8.13: Lipschitz ⇒ Uniformly Continuous

Any Lipschitz function is uniformly continuous. Proof: take ϵ/L.

Future reference: FTC part 1

Example 8.14: Uniformly Continuous⇏ Lipschitz. This example shows that being Lipschitz is a stronger

condition than being uniformly continuous. For example f ∶ [0,1]→ [0,1] by x↦
√
x is uniformly continuous

but not Lipschitz.

Proof. f is uniformly continuous because [0,1] is compact and
√
x is clearly continuous (we used Theorem 8.11

here). We now show that f is not Lipschitz.

Suppose for contradiction that f is Lipschitz; in particular f is Lipschitz at x = 0. Then there exists L > 0 with

∣f(y) − f(x)∣ = ∣f(y)∣ =√y ⩽ L∣y − x = Ly for all y ∈ [0,1].

In particular, for all nonzero y we have
√
y ⩽ Ly, so dividing by

√
y gives 1 ⩽ L√y for all y ∈ (0,1]. Letting x → 0,

the LHS remains 1 whereas the RHS → 0, and clearly 1 ⩽ 0 gives a contradiction. Hence f is not Lipschitz.

Remark. We conclude this section by a summary of the “hierarchy of continuities”:

Lipschitz Ô⇒ Uniformly Continuous Ô⇒ Continuous

Continuous /Ô⇒ Lipschitz ∶ f(x) ∶=
√
x from [0,1]→ [0,1]

Continuous /Ô⇒ Uniformly Continuous ∶ f(x) ∶= x2 from [0,∞)→ [0,∞)
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4.5 Continuity and Connectedness

Definition 8.15: Separated, Connected, & Path-Connected Sets

Let A,B ⊂X.

(1) We say A,B are separated if A ∩B = A ∩B = ∅.

For the closure part, think of two tangent balls, one open and one closed. By definition they are not

separated; however, if they are further apart and no longer tangent, then they are indeed separated.

(2) We say A is connected if A ≠ C ⊔D for any separated and nonempty sets C,D.6Heuristicaly, A consists

of one piece.

(3) We say A is path-connected if for all a, b ∈ A, there exists a continuous function f ∶ [0,1] → A such

that f(0) = a and f(1) = b. In other words, any two points in A can be connected by a (continuous) path.

Example 8.16. If c ∈ (a, b) then A ∶= [a, b] − {c} is disconnected. Indeed, A is the union of two separated

intervals [a, c) and (c, b].

Example 8.17: Closed Topologist’s Curve is Not Path-Connected. The closed topologist’s curve is con-

nected but not path-connected!

Future reference: Corollary 9.2, Example 9.12

Proof sketch. The proof is omitted by this course, but since my 425a included this as a HW problem, I will briefly provide

an outline below. Notation: let S be the closed topologist’s curve, S1 ∶= the graph of sin(1/x), and S0 ∶= the line segment

{0} × [−1,1]. It follows that S = S+ ∪ S0 by definition.

(1) S is the closure of S+. Since S+ is connected so is S. (If E = A ⊔ B for separated A,B, we can write

E = (A ∩E) ∪ (B ∩E). Since E is connected, WLOG assume A ∩E = E and B ∩E = ∅. Then E ⊂ A and thus

E ⊂ A. Since A,B are separated, B ∩E ⊂ B ∩A = ∅, completing the proof.)

(i) It is clear that S+ ⊂ S. Also, for every x ∈ S0, draw a horizontal line and we see that there indeed exists a

sequence on S+ converging to x. Hence S+ ∪ S0 ⊂ S.

(ii) Any limit point of S+ must have nonnegative x-coordinate and y coordinate in [−1,1]. Besides limit points in

{0} × [−1,1], if it is in (x0, y0) ∈ (0,∞) × [−1,1], then some sequence (xn, sin(1/xn)) converges to (x0, y0).
In particular (xn) → x0 and by continuity of sin(1/x) we also have sin(1/xn) → sin(1/x0), i.e., the only

possible limit points with positive x-coordinate are those already in S. This shows the other inclusion and

thus S = S+.

(2) S is not path-connected; in particular no path exists between p ∈ S0 and x ∈ S+.

Suppose S is path connected. Pick p ∶= (0,0) any x ∈ S+, and there should exist a continuous f ∶ [0,1] → S. In

particular, we let ϵ ∶= 1/2 and there should exist some δ such that

∣f(t) − f(0)∣ < ϵ whenever ∣t − 0∣ < δ.
6The symbol ⊔ stands for disjoint union. Pugh defines clopen to be closed and open, and in his definition a set is connected if it does not

have a proper clopen subset. A set that is not connected is disconnected, and we will adopt this definition too.
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This is “clearly” impossible if we look at the graph: the topologist’s curve keeps jumping in and out of the circle

with radius 1/2 centered at the origin. With a bit of effort we can show this rigorously, but since Ożański’s focus

isn’t on this example I shall omit it.

x

y

B(1/2)

(Analogously, we can generalize the case p = (0,0) to any p ∈ S0.) These conclude the proof.

Theorem 8.18: Connected Subsets of R

If A ⊂ R then A is connected if and only if for all x, y ∈ A, (z ∈ (x, y)⇒ z ∈ A). Put informally, A is connected

if and only if it is an closed/open/clopen interval.

Future reference: Corollary 9.2

Proof. We first show Ô⇒ . Suppose for contradiction that A is connected and x, y ∈ A, but there exists z ∈ (x, y)
with z ∉ A. Then immediately we see that we can write A as

A = (A ∩ (−∞, z)) ⊔ (A ∩ (z,+∞)) .

By assumption neither set is empty as x < z < y. On the other hand, these two sets are also separated. Hence A is

disconnected, contradiction.

For ⇐Ô , suppose A is not connected but for all x, y ∈ A, (z ∈ (x, y)⇒ z ∈ A). Then we can write A = C ⊔D where

C,D are nonempty and separated. Pick x ∈ C and y ∈D. Clearly they are different points; WLOG assume x < y. We

consider the interval [x, y] and define z ∶= sup([x, y] ∩C). This set contains x and is therefore nonempty; it is clearly

bounded above by y. Thus the supremum exists.

By Example 3.11, z is a limit point of [x, y] ∩ C. Therefore z ∈ [x, y] ∩C = [x, y] ∩ C. In particular z ∈ C. By the

assumption that C ∩ D = ∅ we see z ∉ D. Since y ∈ D and z ∈ [x, y], we see that z < y (the equality cannot be

attained). We will show that either z ∈ C or z ∉ C gives contradiction.

If z ∉ C, then since x ∈ C and x ⩽ z we see x < z. Then by assumption z ∈ (x, y) and so z ∈ A, but we have said z ∉ C
and z ∉D, contradiction.

If z ∈ C then z ∉ D since C,D are separate. In particular, no sequence in D converges to z, i.e., no points in D can

be arbitrarily close to z. Therefore there exists ϵ > 0 such that (z − ϵ, z + ϵ) ∩ (D) = ∅. (In particular we focus on the

(z, z+ϵ) half of that interval.) In particular, since z < y as well, there exists z1 ∈ (z, y)∩(z, z+ϵ). By assumption such

z1 ∉ D. Also notice that such z1 is also not in C: it is in [a, b] and it is greater than z, the supremum of [a, b] ∩C so

it must not be in C. Then z1 ∈ (z, y) where z, y ∈ A but z1 ∉ A, contradiction.

Lemma 9.1: Path Connected ⇒ Connected

If A ⊂X (X being any metric space) is path connected then A is connected.
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Proof. We suppose for contradiction that A is path connected but not connected. This by definition means that

there exist nonempty, separated C,D such that C ⊔D = A. We take x ∈ C and y ∈ D. By path-connectedness there

exists a continuous f ∶ [0,1]→ A with f(0) = x, f(1) = y. Then,

[0,1] = [0,1] ∩ f−1(A) = [0,1] ∩ (f−1(C ⊔D)) = ([0,1] ∩ f−1(C)) ⊔ ([0,1] ∩ f−1(D)) .

Notice that f(x) = 0 implies 0 ∈ f−1(C), so 0 ∈ [0,1] ∩ f−1(C). Likewise 1 ∈ [0,1] ∩ f−1(D). On the other hand,

f−1(C) and f−1(D) are separated:

C,D separated Ô⇒ C ∩D = ∅ Ô⇒ f−1(C) ∩ f−1(D) ⊂ f−1(C) ∩ f−1(D) = ∅

and likewise f−1(D) ∩ f−1(C) = ∅. (We have taken it for granted that f−1(C) ⊂ f−1(C): indeed, f−1(C) ⊂ f−1(C)
so taking the closure does not affect ⊂. The converse, however, is false: see here.7) But then we see that [0,1] admits a

separation, contradiction. Therefore A must be connected.

Corollary 9.2: Path-Connected in R⇔ Connected in R

In R, a set is path-connected if and only if it is connected. Notice that the closed typologist’s curve shows that

this claim is invalid in R2!

Proof. The forward direction Ô⇒ follows from the previous lemma.

Now we show the converse. Let A ⊂ R be connected and let x, y ∈ A. It follows from Theorem 8.18 that every point

in (x, y) is also in A. It remains to notice that the map f ∶ [0,1]→ A defined by

f(t) = (1 − t)x + ty

is continuous and satisfies f(0) = x, f(1) = y (we parametrized the line segment between x and y).

Theorem 9.3: Continuous Mapping Preserves Connectedness

If f ∶X → Y is continuous and E ⊂X connected, then f(E) is connected.

Proof. Suppose for contradiction that f(E) is not connected. This means that there exist nonempty, separated C,D

such that f(E) = C ⊔D. Notice that

E = f−1(E) = E ∩ F −1(E) = (E ∩ f−1(C))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶G

⊔ (E ∩ f−1(D))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶H

.

Since C and D are nonempty, there exists y ∈ E and y = f(x) for some x ∈ E. Then x ∈ f−1(C) ∩ E, so G is

nonempty. Likewise, H is nonempty. Now it remains to show that G and H are separated (which contradicts E’s

connectedness).

We will show that G ∩ H = ∅; the other argument is also valid. Since G = E ∩ f−1(C), in particular we have

G ⊂ f−1(C) ⊂ f−1(C). Since C is closed and f continuous, the open set condition asserts that f−1(C) is also closed.

Hence G ⊂ f−1(C) also implies G ⊂ f−1(C). Therefore

f(G) ⊂ f (f−1(C)) Ô⇒ f(G) ⊂ C. (1)

7Thus the lecture made a small logical loophole here by directly claiming f−1(C) = f−1(C)
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In addition, since H is clearly a subset of f−1(D), we have

f(H) ⊂ f (f−1(D)) Ô⇒ f(H) ⊂D. (2)

Since C and D are separated by assumption, C ∩D = ∅ and so f(G) ∩ f(H) = ∅ by using (1) and (2). This means

that f(G) and f(H) share no common element, so indeed we have G ∩H = ∅, contradiction.

We now present a powerful application of connectedness and continuity:

Theorem 9.4: Intermediate Value Theorem (IVT) / the Bolzano Theorem

Let f ∶ [a, b] → R be continuous. If for some interval [a, b] we have f(a) ⩽ f(b) [resp. f(a) ⩾ f(b)], then for

any c ∈ [f(a), f(b)], there exists x ∈ [a, b] with f(x) = c.
Future reference: Example 9.5, Darboux Property, Theorem 11.1, MVT for integrals

Proof. Since [a, b] is connected (by Theorem 8.18) and d is continuous, f([a, b]) is also connected (by the previous

theorem). Clearly f(a), f(b) ∈ f([a, b]), so by using Theorem 8.18 once more we see that if c ∈ [f(a), f(b)] we must

have c ∈ f([a, b]), i.e., c = f(x) for some x ∈ [a, b].

Example 9.5: Applications of the IVT.

(1) If f ∶ [0,1] → [0,1] is continuous, then f has a fixed point, i.e., there exists x0 ∈ [0,1] with f(x0) = x0.

This is also the R1 case of the Brouwer Fixed-Point Theorem.

Proof. Take g(x) ∶= f(x) − x a continuous mapping with g(0) = f(0) ⩾ 0 and g(1) = f(1) − 1 ⩽ 0. Using

IVT there exists x0 ∈ [0,1] with g(0) = f(x) − x = 0, completing our proof. Note that [0,1] can be easily

replaced by [a, b]; the claim and the proof follows almost identically.

(2) There exists some x ∈ [0,4] such that 2x =
√
x + 2. Proof. Take f(x) ∶= 2x −

√
x − 2. Then f is continuous

(take 2x to be continuous for granted now... we will prove this later) with f(0) < 0 < f(4). Therefore

f(x) = 0 for some x ∈ (0,4), completing the proof.

Remark. I would personally like to add a remark here which connects to the pathological examples in Example

9.12. A differentiable function’s derivative cannot have a jump discontinuity. Otherwise, using IVT on the

derivative on a small interval containing that jump, we obtain a contradiction.

However, this doesn’t mean the derivative of a differentiable function must be continuous — our pathological

examples will show that they can indeed fail to be continuous.
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4.6 Monotonicity & Discontinuity

Beginning of March 17, 2021

Theorem 9.6: Monotonic Functions & One-Sided Limits

If f ∶ (a, b) → R is monotonic (i.e., increasing, decreasing, nonincreasing, or nondecreasing), then the

one-sided limits always exist, i.e.,

f(x−) ∶= lim
t→x−

f(t) and f(x+) ∶= lim
t→x+

f(t)

exist for all x ∈ (a, b).
If f is nondecreasing, then

sup
t∈(a,x)

f(t) = f(x−) ⩽ f(x) ⩽ f(x+) = inf
t∈(x,b)

f(t) (1)

and in addition

f(x+) ⩽ f(y−) for x < y. (Eq.9.1)

We can make analogous statements if f is nonincreasing.

Proof. Define A ∶= sup
t∈(a,x)

f(t) and B ∶= inf
t∈(x,b)

f(t). Suppose f is nondecreasing; this means that f(t) ⩽ f(x) for all

t ∈ (a, x), so f(x) is an upper bound for {f(t) ∶ t ∈ (a, x)}. In particular, since A is the least upper bound, A ⩽ f(x).
Now we show that A = f(x−). Let ϵ > 0 be given. Our goal is to show that the supremum A is arbitrarily close to

f(x−). Since A − ϵ cannot be an upper bound of {f(t) ∶ t ∈ (a, x)}, there must exist some x − δ ∈ (a, x) with

A − ϵ < f(x − δ) ⩽ A⩽ A + ϵ
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
trivially

.

Since f is nondecreasing and every f(t) for t ∈ (x − δ, x) is bounded above by A, we have

A − ϵ < f(t) ⩽ A⩽ A + ϵ
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
trivially

⇔ ∣f(t) −A∣ < ϵ for all t ∈ (x − δ, x).

This is precisely the definition of one-sided limit as shown in the footnote of Definition 7.1. We now have A = f(x−)
and A ⩽ f(x), and the other half of the equation follows analogously.

Equation 9.1 is obtained by applying (1) and monotonicity, which allows us to extend the set on which supremum

and infimum are taken:

f(x+) = inf
t∈(x,b)

f(t) = inf
t∈(x,y)

f(t) ⩽ sup
t∈(x,y)

f(t) = sup
t∈(a,y)

f(t).

Corollary 9.7

Let f ∶ (a, b)→ R be nondecreasing (in this example we allow a, b to take values of ±∞).

(1) If f is discontinuous (not continuous) at some x ∈ (a, b) then f has a jump at x, i.e., f(x−) < f(x+).

For exampmple, the graph below has two points of discontinuity, both of which are jumps.

71



MATH 425a Notes ∼ YQL 4.6 - Monotonicity & Discontinuity Current file: 3-17.tex

(2) f has at most countably many points of discontinuity.

(The claim for a nonincreasing function is similar.)

Proof. (1) If f(x−) is not strictly less than f(x+) then by the preceding theorem f(x−) = f(x+). Therefore

lim
t→x

f(t) = f(x) so f is continuous at x. Contradiction.

(2) Main idea: notice that if x < y are two discontinuity points, then we already know f(x−) < f(x+) and

f(y−) < f(y+). By the preceding theorem we also know f(x+) < f(y−), so using everything together we see that

(f(x−), f(x+)) and (f(y−), f(y+)) are two disjoint open intervals. In particular this means that any two different

discontinuity points correspond to two disjoint open intervals.

From the italicized text we see that there exists a one-to-one correspondence between x, a discontinuity point,

and (f(x−), f(x+)), an open interval. Since each open interval contains some rationals and rational numbers

are countable, there are at most countably many disjoint open intervals in R. This means that there are at

most countably many discontinuity points, proving our claim.
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Chapter 5

Differentiation

5.1 Derivatives

First, some very basic definitions that we are all familiar with...

Definition 9.8: Differentiable Functions & Derivatives

Let f ∶ [a, b]→ R. If

lim
h→x

f(x + h) − f(x)
h

or equivalently lim
y→x

f(y) − f(x)
y − x

exists and is finite for x ∈ [a, b], we say f is differentiable at x and say the derivative of f at x, written

f ′(x), equals that limit. Note that the derivative at endpoints a, b may exist.

If f is differentiable at every x ∈ E for E ⊂ [a, b] then we say f is differentiable on E; if it’s differentiable

on all of [a, b] then it is differentiable (on [a, b]).

Lemma 9.9: Differentiable ⇒ Continuous

If f is differentiable at x then it’s continuous at x.

Future reference: Higher order derivatives

Proof. If y → x, then ∣f(y) − f(x)∣ = ∣f(y) − f(x)∣
∣y − x∣

⋅ ∣y − x∣ = f ′(x)
²
∈R

⋅∣y − x∣→ 0.

Lemma 9.10

Let f, g; [a, b]→ R be functions that are differentiable at x ∈ [a, b]. Then

(1) (f + g)′(x) = f ′(x) + g′(x).

(2) (Leibniz product rule) (fg)′(x) = f ′(x)g(x) = f(x)g′(x).

(3) (Quotient rule) (f/g)′(x) = [f ′(x)g(x) − f(x)g′(x)]/g2(x) if g(x) ≠ 0.

Proof of the quotient rule. Adding and subtracting (recall this is a classic trick when dealing with limits of sequences)

f(x)g(x) in the numerator, we obtain

f(y)
g(y)

− f(x)
g(x)

= g(x)(f(y)−f(x)) − f(x)(g(y)−g(x))
g(y)g(x)

. (∆)
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As y → x, the denominator g(y)g(x)→ g2(x). On the other hand

f(y) − f(x)→ f ′(x)(y − x) and g(y) − g(x)→ g′(x)(y − x)

as y → x, so dividing (∆) by y − x yields

(f/g)′(x) = lim
y→x

(f/g)(y) − (f/g)(x)
y − x

= g(x)f
′(x) − f(x)g′(x)
g2(x)

,

as claimed.

Theorem 9.11: Chain Rule

Suppose f ∶ [a, b]→ R is differentiable at some x and g ∶ I → R is differentiable at f(x) ∈ I.1Then

(g ○ f)′(x) = g′(f(x))f ′(x).

Heuristically (after all, we haven’t justified the rigorousness of differential operator), if we write h ∶= g ○ f then

the chain rule states that
dh

dx
= dh

df

df

dx
. The chain rule “cancels out” the df . Of course, this can get more crazy:

for example a trample nested composite function gives
dh

dx
= dh

dg

dg

df

df

dx
.

Proof. By definition we want to compute
g(f(y)) − g(f(x))

y − x
. Note that by using the definition of derivative of g at

f(x), we have

g′(f(x)) = lim
f(y)→f(x)

g(f(y)) − g(f(x))
f(y) − f(x)

,

so in particular the error function

err(z) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(z) − g(f(x))
z − f(x)

− g′(f(x)) if z ≠ f(x)

0 if z = f(x)

tends to 0 as z → f(x). Now it remains to notice that

g(f(y)) − g(f(x)) = (f(y) − f(x)) [g′(f(x)) + err(f(y))] .

As y → x, continuity of f implies f(y)→ f(x), and so err(f(y))→ 0, and we obtain

g(f(y)) − g(f(x))
y − x

→ f(y) − f(x)
y − x

g′(f(x)) = g′(f(x))f ′(x).

Example 9.12: Examples of Derivatives.

(1) Some very basic examples: f(x) = c⇒ f ′ ≡ 0. The derivative of xn is nxn−1; the exponential function

ex is invariant after taking derivative (and it is the only function that is equal to its own derivative);

sin(x) has derivative cos(x); and cos(x) has derivative − sin(x).

(2) The topologist’s curve is defined by f(x) = sin(1/x). Thus

f ′(x) = −cos(1/x)
x2

,

1From now on, when saying “f ∶ [a, b] → R is continuous”, we will use the notation f ∈ C([a, b]) = C([a, b];R). This means that f is a

Continuous function with domain [a, b] and codomain R. We will see these in details later when we talk about space of continuous functions.
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so the topologist’s sine curve is differentiable on (0,∞). It is not defined at x = 0, but it cannot be

extended to a continuous function including 0 in its domain, either. (The main idea is still to use the

diagram drawn in Example 8.17.)

(3) More pathological examples involving sin(1/x):

(i) If we define

f(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x sin(1/x) x ≠ 0

0 otherwise,

it is clear that f ′(x) = sin(1/x)− 1/x ⋅ cos(1/x) for x ≠ 0, so x is differnetiable on (−∞,0)∪ (0,∞).
Moreover, since f is bounded between y = x and below by y = −x (since −1 ⩽ sin(⋅) ⩽ 1), from the

graph below it is clear that lim
x→0

f(x) exists and equals 0. Hence setting f(x) ∶= 0 at x = 0 makes

this a continuous function on all of R. However, this function is not differentiable at x = 0:

f(y) − f(0)
y − 0

= f(y)
y
= sin(1/y)

which does not converge as y → 0. (Look at the topologist’s curve again and take the ball B(1/2),
for example.) Below are the graphs for f and f ′.

0 0.05 0.1
−0.1

0

0.1

0 0.05 0.1 0.15
−300

−150

0

150

300

(ii) If we give this function enough decay (this one decays quadratically while the previous one decays

linearly) and set

f(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2 sin(1/x) x ≠ 0

0 otherwise,

then we obtain a differentiable function! That f is differentiable on R − {0} is clear; also,

f(y) − f(0)
y − 0

= y sin(1/y)

which converges to 0 as y → 0. Therefore we simply set f ′(0) ∶= 0.

However, the derivative of this function is not continuous, even though it doesn’t have a jump discon-

tinuity. (This connects with my added remark on the IVT.) For nonzero x, the derivative is

f ′(x) = 2x sin(1/x) − cos(1/x).

Yet another example showing how sometimes our intuition lead us astray. See graphs below. (f on

the left; f ′ on the right.) 2
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Future reference: Darboux Property

2The italicized remark is borrowed from Pugh’s Real Mathematical Analysis, p.156.
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5.2 The Mean Value Theorems

Lemma 9.13

If a real-valued function f is differnetiable at x ∈ [a, b] and if f ′(x) > 0, then there exists a δ > 0 such that

f(y) < f(x) < f(z) for all y, z ∈ [a, b] ∩ (x − δ, x + δ) with y < x < z.
Future reference: Darboux Property

Put informally, if f ′(x) > 0 then locally all points on the right side of x (i.e., > x) have greater function values, whereas

locally all points on the left side of x have smaller function values.

This does not imply f is locally increasing. A counterexample3is by defining f(x) ∶= x + 2x2 sin(1/x) at x ≠ 0 and

f(x) ∶= x at x = 0. This function is always positive for x > 0 [this is actually true, but at least it is bounded below by

x − 2x2 which is positive on (0,1/
√
2)] and always negative for x < 0, yet we are well aware how it oscillates like crazy

near 0. The coefficient 2 guarantees that f is never locally increasing on any (nondegenerate) interval containing 0.

Below is the graph of a more dramatic version, using f(x) ∶= x + 10x2 sin(1/x):

-0.05 -0.025 0 0.025 0.05
-0.08

-0.04

0

0.04

0.08

Proof. Since the derivative f ′(x) > 0, we can fix ϵ ∈ (0, f ′(x)/2). The existence of f ′(x) implies that

lim
h→0

f(x + h) − f(x)
h

= f ′(x),

so in particular there exists δ > 0 such that

RRRRRRRRRRR

f(x + h) − f(x)
h

− f ′(x)
RRRRRRRRRRR
< ϵ for ∣h∣ < δ.

In other words,

hf ′(x) − ∣h∣ϵ < f(x + h) − f(x) < hf ′(x) + ∣h∣ϵ.

If h > 0 then f(x + h) − f(x) ⩾ hf ′(x) − hϵ = h(f ′(x) − ϵ) > 0, so f(z) > f(x) for all z ∈ (x,x + δ).
Likewise, if h < 0 then f(x + h) − f(x) < hf ′(x) + (−h)ϵ = h(f ′(x) − ϵ) < 0, so f(z) < f(x) for any z ∈ (x − δ, x).

Theorem 9.14: “Local Optimum Theorem”

If f attains a local maximum (resp. minimum) at x ∈ (a, b) and if f is differentiable at x,then f ′(x) = 0.

3This is PS9 problem 2.
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Proof. This is immediate by the previous lemma. For example, if f ′(x) > 0 then the value of f on right-side

neighborhood (x,x + δ) is larger than f(x), contradicting f ’s local maximality.

Theorem 9.15: Rolle’s Theorem

If f ∶ [a, b] → R is continuous, if f is differentiable on (a, b)4, and if f(a) = f(b), then there exists x ∈ (a, b)
such that f ′(x) = 0.

Future reference: Taylor’s Theorem

Proof. Let x1, x2 ∈ [a, b] be points where f attains maximum and minimum on [a, b], respectively (recall that a

continuous real-valued function on a compact set attains maximum and minimum by Theorem 8.5).

(1) If x1, x2 are both at endpoints, i.e., if x1, x2 ∈ {a, b}, then f must be a constant function (the maximum and

the minimum agree, so f(x2) = f(x) = f(x1) for every x). The claim holds in this case.

(2) If (at least) one of x1, x2 lives inside (a, b) (i.e., not an endpoint), then the previous theorem asserts that

f ′ = 0 at that point. This completes the proof.

Theorem 9.16: Generalized MVT / Cauchy’s MVT

If f, g ∈ C([a, b]) ∩D((a, b)), i.e., f, g are continuous on [a, b] and differentiable on (a, b), then there exists

x ∈ (a, b) such that

(f(b) − f(a)) g′(x) = (g(b) − g(a)) f ′(x).

Future reference: L’Hôpital’s Rule

Proof. Given what we have just learned, we want to relate the equation with 0. We set

h(t) ∶= (f(b) − f(a))g(t) − (g(b) − g(a)) f(t).

Notice that here f(b) − f(a), g(b) − g(a) serve as constants. It follows that

h(a) = f(b)g(a) − f(a)g(a) − g(b)f(a) + g(a)f(a) = h(b),

and it is clear that h is a continuous function. Therefore, using Rolle’s Theorem, there exsts x ∈ (a, b) with h′(x) = 0.

It remains to notice that h′(x) has exactly the form we are looking for.

Corollary 9.17: Mean Value Theorem (MVT) / Lagrange Theorem

If f ∈ C([a, b]) ∩D((a, b)), then there exists x ∈ (a, b) such that

f(b) − f(a)
b − a

= f ′(x).

Future reference: FTC part 2

Proof. Take g ∶= x and use the previous theorem.

4We write the shorthand notation f ∈ D(a, b) to say f is differentiable on (a, b) from now on.
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Corollary 9.18: Derivative & Monotonicity

Suppose f is differentiable on (a, b). Then:

(1) f ′ ⩾ 0 if and only if f is nondecreasing,

(2) f ′ ≡ 0 if and only if f is conatant, and

(3) f ′ ⩽ 0 if and only if f is nonincreasing.

(We write f ′ ⩾ 0 as a shorthand notation for f ′(x) ⩾ 0 for all x; likewise for f ′ ⩽ 0.)

Proof. The Ô⇒ direction for all three claims follow from MVT: for example, if f ′ ⩾ 0 then for x1 > x1,

f(x2) − f(x1) = (x2 − x1)f ′(x) for some x ∈ (x1, x2),

and since both x2 − x1 > 0 and f ′(x) ⩾ 0 we see f is nondecreasing. The other two are analogous.

For ⇐Ô , we again use (1) for example. If f is nondecreasing then

f(y) − f(x)
y − x

⩾ 0

for all y > x. Since the limit exists by the assumption that f is differentiable, the limit, i.e., f ′(x), must also be

nonnegative. This proves the claim.

Theorem 9.19: IVT for Derivatives / Darboux Property

Suppose f ∈ D([a, b]), i.e., f is differentiable on [a, b], and suppose λ ∈ (f ′(a), f ′(b)), then there exists

x ∈ (a, b) such that f ′(x) = λ.

Notice that this is highly analogous to the IVT for continuous functions. However, as we have shown in the patho-

logical examples, the derivative of a differentiable function may fail to be continuous. This theorem guarantees

that the IVT still holds in those situations.

Proof. We put g(t) ∶= f(t) − λt. Since λ ∈ (f ′(a), f ′(b)), evaluating the derivative of g at endpoints gives

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g′(a) = f ′(a) − λ < 0

g′(b) = f ′(b) − λ > 0
Ô⇒ ∃δ>0 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(t) < g(a) for t ∈ (a, a + δ)

g(t) < g(b) for t ∈ (b − δ, b).

(The⇒ is given by Lemma 9.13.) In addition, since g is continuous and [a, b] compact, it attains its mimum at some

x ∈ (a, b) (the above equations already ruled out the possibility that the minimum is on endpoints). Thus we have

g′(x) = f ′(x) − λ = 0, i.e., f ′(x) = λ, which completes our proof.
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5.3 L’Hôpital’s Rule

Beginning of March 22, 2021

Theorem 9.20: L’Hôpital’s Rule

Suppose that f, g ∈ D((a, b)), −∞ ⩽ a < b ⩽ +∞ [note that we allow a, b to be ±∞] and that g(x) ≠ 0 for all

x ∈ (a, b). Suppose the quotient of derivative

f ′(x)
g′(x)

→ A as x→ a.

If f(x)→ 0 and g(x)→ 0 as x→ a, or if g(x)→∞ as x→ a [and no assumption on f needs to be made] then

f(x)
g(x)

→ A as x→ a, just like
f ′(x)
g′(x)

.

The claim also holds if x→ b or if g(x)→ −∞, and the proofs are analogous.

In particular, if f(x)/g(x) → [0/0] or [±∞/ ±∞], the theorem gives a result that we all know. This theorem

shows that it sufficiently to have only the denominator → ±∞.

Future reference: Taylor’s Theorem of Peano form

Proof. Note that since a is the left endpoint of (a, b), x → a means x → a+. Therefore we are only interested in

analyzing the behavior of f/g as x→ a from the right. The proof will follow from the following claims:

Claim (i): Suppose −∞ ⩽ A <∞ and let q be any real number with A < q. Then there exists c > a such that

f(x)
g(x)

< q if x ∈ (a, c).

Claim (ii): Suppose −∞ < A ⩽∞ and let q̃ be any real number with A > q. Then there exists c̃ > a such that

f(x)
g(x)

> q̃ if x ∈ (a, c̃).

Once we have these claims, if A = ∞ we use Claim (ii), if A = −∞ we use Claim (i), and if A ∈ R we fix ϵ > 0, use

both claims, and pick the smaller c and obtain an interval, on which the quotient is always < ϵ away from A.

Proof of Claim (i). We will only prove the first claim; the second is highly analogous. We begin by picking r ∈ (A, q).
Since f ′(x)/g′(x) → A, there exists d ∈ (a, b) such that f ′(x)/g′(x) < r for all x ∈ (a, d). (The quotient needs to

approach A so on some interval it needs to be < r.)
If we pick any two x, y ∈ (a, d) with y < x, using Generalized MVT on (y, x), there exists t ∈ (y, x) ⊂ (a, d) with

f(x) − f(y)
g(x) − g(y)

= f(y) − f(x)
g(y) − g(x)

= f
′(t)
g′(t)

< r (∆)

[where the < is because t ∈ (a, d)].

Case (a): Suppose f(y), g(y) → 0 as y → a. Since the only restriction imposed on y is that a < y < x, we are

allowed to push y to a as close as we want. Letting y → a, we get

lim
y→a

f(y) − f(x)
g(y) − g(x)

= f(x)
g(x)

⩽ r (1)

where < becomes ⩽ when taking limits. Note that the only restriction imposed on x is that a < y < x < d, and

as y → a we simply need a < x < d. In other words (1) holds for all x ∈ (a, d).
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Case (b): Suppose that g(y)→∞ as y → a. The trick is to multiply (∆) by (g(y) − g(x))/g(y) and obtain

f(y) − f(x)
g(y)

< r(g(y) − g(x))
g(y)

Ô⇒ f(y)
g(y)

< r − r g(x)
g(y)

+ f(x)
g(y)

for all x, y ∈ (a, d).

Once again, once x is picked, we can simply fix (and ignore) it and push y towards a. In particular, since

−rg(x) + f(x) has a fixed value,

−r g(x)
g(y)

+ f(x)
g(y)

can be made arbitrarily close since g(y) → ∞ as y → a. In particular we can find c > a sufficiently close to a

such that
f(y)
g(y)

< r − r g(x)
g(y)

+ f(x)
g(y)

< q for all y ∈ (a, c). (2)

The trick here helped us to obtain the quotient we want and also allowed us to bound it by q, both of which weren’t

possible if we simply tried to use the approach in Case (a).

(1) and (2) together complete the proof of Claim (i).

Example 10.1. lim
x→0

sinx

x

H= lim
x→0

cosx

1
= 1, where H= denotes the use of L’Hôpital’s rule.

Example 10.2. Let f ∈D((0,∞)) be such that lim
x→∞
(af(x) + 2

√
xf ′(x)) = L ∈ R. Find lim

x→∞
f(x).

Solution. “Note that”

lim
x→∞

f(x) = lim
x→∞

ea
√
xf(x)
ea
√
x

.

We chose this exponential because of the special form of its derivative. Since the denominator →∞, we can invoke

L’Hôpital’s rule and obtain

lim
x→∞

f(x) H= lim
x→∞

ea
√
x(f ′(x) + af(x)/2

√
x)

aea
√
x/(2
√
x)

= lim
x→∞

1

a
(af(x) + 2

√
xf ′(x)) = L

a
.
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5.4 Taylor’s Theorem

Definition 10.3: Higher Order Derivatives, Dn, & Cn

For f ∶ [a, b]→ R and n ⩾ 2, we define

f (n) ∶= (f (n−1))′ = lim
h→0

f (n−1)(x + h) − f (n−1)(x)
h

,

assuming that f (n−1) is differentiable. We define f = f (0) and f ′ = f (1).
If f (n) exists, we say f is nth order differentiable and write f ∈Dn((a, b)).
If f (n) is continuous, then f (0), ..., f (n−1), and we say f is nth order continuously differentiable or f is Cn,

written f ∈ Cn([a, b]).
Note that if f ∈ Dn((a, b)) then this automatically implies Cn−1((a, b)) since differentiability ⇒ continuity.

However, this does not necessarily imply f ∈ Cn−1([a, b]). The behaviors at endpoints may be wild!

Theorem 10.4: Taylor’s Theorem

Suppose f ∈ Cn−1([a, b])∩Dn((a, b)), i.e., f (n−1) is continuous and f (n) exists for every t ∈ (a, b) and suppose

n ∈ N. Then, for all x,x0 ∈ [a, b] there exists a ξ between x,x0 such that

f(x) =
n−1
∑
k=0

f (k)(x0)
k!

(x − x0)k +
f (n)(ξ)
n!

(x − x0)n.

The first summation is called the Taylor’s expansion (or Taylor series) of order n − 1 at x0. For convenience,

we define this sum to be Px0(x). If x0 = 0, the expansion is often called the Maclaurin expansion. The second

term is called the remainder in the Lagrange form.

Future reference: Taylor’s Theorem of Peano form, Taylor’s Theorem (summary)

Note that if we take n = 1 then this is simply the MVT: f(x) = f(x0) + f ′(ξ)(x − x0) for some ξ between x,x0.

Soon we will show what is special about Px0
(x): it is, in some sense, the best approximation of f by a polynomial of

degree ≤ n − 1 subject to the condition that both functions agree at x0. It resembles f “closely enough” by having the

same derivatives at x0 up to order n − 1 and it is also the only polynomial of degree ⩽ n − 1 that makes the remainder

“small enough”. We will discuss this more in-depth very soon.

Proof. If x = x0 the claim is trivial.

If x ≠ x0, we define M ∶= (f(x)−Px0(x))/(x−x0)n [a number]. We want to show that there exists ξ between x and

x0 (i.e., in (x,x0) if (x < x0) and in (x0, x) if x > x0) such that M = f (n)(ξ)/n!.
We define

g(y) ∶= f(y) − Px0(y) −M(y − x0)n

for y ∈ (a, b). Since Px0(y) does not have nth order derivative (its derivatives only exist up to order n − 1) and M is

merely a constant if we take derivative of M(y − x0)n with respect to y, we obtain

g(n)(y) = f (n)(y) − n!M. (∆)

On the other hand, if we evaluate g and its derivatives at x0, it is clear that the “0th order derivative”

g(x0) = f(x0) −
n−1
∑
k=0

f (k)(x0)
k!

(x0 − x0)(k) −M(x0 − x0)n = f(x0) − f(x0) = 0. (1)
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In addition, for m ⩽ n − 1,

g(m)(y) = f (m)(y) −
n−1
∑
k=m

f (k)(x0)
(k −m)!

(y − x0)k−m −Mn(n − 1)...(n −m + 1)(y − x0)n−m,

so if y = x0, the only term that gets subtracted is f (k)(x0)(y − x0)k−m/(k −m)! where k = m, and this evaluates to

f (m)(x0)00/0! = f (m)(x0). Along with (1), we see

g(m)(x0) = 0 for m = 0,1, ..., n − 1. (2)

To conclude the proof, also notice that

g(x) = f(x) − Px0(x) −M(y − x0)n = f(y) − Px0(y) − (f(x) − Px0(x)) = 0

directly by construction of M . Therefore, by Rolle’s Theorem,

[Rolle ∶ g(x) = g(x0) = 0] Ô⇒ there exists x1 between x,x0 such that g′(x1) = 0

[Rolle: g′(x0) = g′(x1) = 0] Ô⇒ there exists x2 between x1, x0 such that g(2)(x2) = 0

Ô⇒ . . .

[Rolle: g(n−1)(x0) = g(n−1)(xn−1) = 0] Ô⇒ there exists xn between xn−1, x0 such that g(n)(xn) = 0.

(∆) suggests that g(n)(xn) = 0, so of course f (n)(xn) = n!M , i.e., M = f (n)(xn)/n!, and we are done.

Beginning of March 24, 2021

Example 10.5.

(1) The Taylor series of order n − 1 at 0 of the exponential function ex is given by

ex = f(0) + f ′(0)(x − 0) + f
′′(0)
2
(x − 0)2 + ... + f

(n−1)(0)
(n − 1)!

(x − 0)n−1 + e
ξ

n!
xn

= 1 + x + x
2

2
+ ... + xn−1

(n − 1)!
+ e

ξ

n!
xn for some ξ.

Note that this is also the Maclaurin series for ex.

(2) The Taylor series / Maclaurin series for sin(x) of order n − 1 is given by

sin(x) =
n−1
∑
k=0

(−1)k

(2k + 1)!
x2k+1 +

(sin(x))(n)∣
x=ξ

(2n + 1)!
x2n+1 for some ξ.

Note that for this one the even order derivatives vanish because sin(0) = 0. Below is the graph of sin(x)
and some of its Taylor approximations on [−π,π]. We see that the approximation improves as the order

increases.
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Taylor Approx. of sin(x) at x = 0
sin(x)
x

x − x3/6
x − x3/6 + x5/120
x − x3/6 + x5/120 − x7/5040

(3) The (n − 1)th-order Taylor expansion of 1/x at 1 is given by

1

x
=

n−1
∑
k=0
(−1)k(x − 1)k + (−1)

n

ξ1+n
(x − 1)n for some ξ.

Question. Can we write infinite series, e.g., write sin(x) as
∞
∑
k=0

(−1)k

(2k + 1)!
x2k+1?

Answer. Sometimes. Wait for the section on infinite Taylor series. Infinity can be tricky and sometimes counterintu-

itive examples arise. We will need to discuss more on convergence before being able to characterize this question.

While we have previously used the Lagrange form for the remainder in Taylor’s Theorem, we can also write Taylor

expansion with another form of the remainder:

Definition 10.6: Big O and Little o Notations

Let h be a (real-valued) function. We define

(1) O(h) ∶= any function of h such that there exists c > 0 such that ∣O(h)∣ < c∣h∣ for sufficiently small h.

(2) o(h) ∶= any function of h such that o(h) = f(h)h for some f such that f(h)→ 0 as h→ 0.

In particular, if f(h) = o(h) then f(h) = O(h), meaning that little o is stronger than big O.

To make things more concrete, f ∈ O(h) if lim sup
x→∞

f(x)/h(x) <∞, and f ∈ h(h) if lim sup
x→∞

f(x)/h(x) = 0. (Usually this

is just fine if we take limit rather than limit superior, but some special functions, e.g., f(x) ∶= x (mod 5), the notion of

limit becomes meaningless. )

In the former case, f “grow in at most the same rate” as h: the asymptotic growth of f is no faster than h’s [it could

be slower though]; in the latter, f is “eventually negligible when compared to h”: the asymptotic growth of f is strictly

slower than h’s. Some examples:
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(1) x2 ∈ O(x2), x2 ∈ O(100x2), and x2 ∈ (3x2 + 2x + 1), but none of these hold if we replace O by o.

(2) x2 ∈ o(x3), x2 ∈ o(x!), and x2 ∈ (2x), and all holds if we place o by O since o(x2) ⊂ O(x2).

And... below is a fuller list of related notations:

Notation Limit Definition Asymptotic Intuition Example(s)

f ∈ o(h) lim sup
x→∞

∣f(x)/h(x)∣ = 0 f grows strictly slower than h x ∈ o(x2)

f ∈ O(h) lim sup
x→∞

∣f(x)/h(x)∣ <∞ f grows at most as fast as h x ∈ O(x2), x2 ∈ O(x2)

f ∈ Θ(h) lim sup
x→∞

∣f(x)/h(x)∣ ∈ R+ f grows at the same rate as h x2 ∈ Θ(x2)

f ∈ Ω(h) lim sup
x→∞

∣f(x)/h(x)∣ > 0 f grows at least as fast as h x2 ∈ Ω(x2), x3 ∈ Ω(x2)

f ∈ ω(h) lim sup
x→∞

∣f(x)/h(x)∣ =∞ f grows strictly faster than h x3 ∈ ω(x2)

Theorem 10.7: Taylor’s Theorem with Remainder of Peano Form

If f (n)(x0) exists then

f(x) =
n−1
∑
k=0

f (k)(x0)
k!

(x − x0)k + o ((x − x0)n−1) .

This is stronger than Lagrange form Taylor’s Theorem as the only thing it requires is nth order differentiability

atone point rather than on an entire interval. Also notice that the Lagrange form remainder

f (n)(ξ)
n!

(x − x0)n satisfies lim
x→x0

f (n)(ξ)(x − x0)n/n!
(x − x0)n−1

= lim
x→x0

f (n)(ξ)(x − x0)
n!

= 0,

so this theorem implies the previous one.

Taylor’s Theorem (summary)

Proof. Like before, we use Px0(x) to denote the (n − 1)th-order Taylor series of f at x0. We want to show that

lim
x→x0

f(x) − Px0(x)
(x − x0)n−1

= 0.

First notice that as x → x0, since f is continuous at x0 (because (n)(x0) exists), f(x) → f(x0), and so does Px0(x),
as (x − x0)k vanishes for all k but k = 0, in which case f (0)(x0) is simply f(x0). Therefore the numerator → 0 and

clearly the denominator → 0 too. We get an indeterminate form 0/0, so we invoke L’Hôpital’s Rule.

lim
x→x0

f(x) − Px0(x)
(x − x0)n−1

H= lim
x→x0

f ′(x) −∑n−1
k=1 [f (k)(x0)/(k − 1)!] (x − x0)k−1

(n − 1)(x − x0)n−2
.

Once again, as x→ x0, since f ′ is continuous at x0, f ′(x)→ f ′(x0). For the sum, all terms but f (1)(x0)(x−x0)1−1 =
f ′(x0) survives, so the numerator is f ′(x0)− f ′(x0) = 0. Clearly the denominator → 0, so we invoke L’Hôpital’s Rule

again (all the way until we cannot):

lim
x→x0

f(x) − Px0(x)
(x − x0)n−1

H= ... H= lim
x→x0

f (n−2)(x)−

(n+2)th derivative of Px0
(x)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[f (n−2)(x0) + f (n−1)(x0)(x − x0)]

(n − 1)(n − 2)... ⋅ 3 ⋅ 2 ⋅ (x − x0)
H= lim

x→x0

f (n−1)(x) − f (n−1)(x0)
(n − 1)!

(1)
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Recall the assumption states that f (n)(x0) exists. That is,

lim
x→x0

f (n−1)(x) − f (n−1)(x0)
x − x0

= f (n)(x0)

exists! Therefore, if we multiply and divide (1) by (x − x0) we obtain

... = lim
x→x0

f (n−1)(x) − f (n−1)(x)
(n − 1)!(x − x0)

⋅ (x − x0) = lim
x→x0

f (n)(x0)
(n − 1)!

(x − x0) = 0,

completing the proof. [Notice that the existence of f (n)(x0) is stronger than a sufficient condition; all we needed was

that f (n−1) is continuous at x0. If so, we are immediately done after arriving at (1).]

We have just shown rigorously that the remainder “is small enough” compared to our expansion, as we once hypothesized

when first introducing the Lagrange form Taylor’s Theorem. Now we prove the uniqueness of such approximations subject

to the constraint of order.

Lemma 10.8: Uniqueness of Local Expansions

If

f(x) = a0 + a1(x − x0) + ... + an(x − x0)n + o ((x − x0)n)

and

f(x) = b0 + b1(x − x0) + ... + bn(x − x0)n + o ((x − x0)n) ,

then ai = bi for all i ∈ [0, n].
In particular, if f admits a Taylor expansion (it may or may not!), then it is the Taylor expansion.

Remark. One thing to keep in mind is that (differentiable ⇔ expansion exists) is a false statement. This

lemma shows that⇒ holds, i.e., if f is differentiable then its expansion is the Taylor expansion. However, it

is not true that if f admits an expansion of the above form then it is the Taylor expansion. For example,

lim
x→0

x3 cos(1/x)
x2

= lim
x→0

x cos(1/x) = 0

so f(x) ∶= x3 cos(1/x) ∈ o(x2), and it admits a second-order expansion

f(x) = 0 + 0(x − x0) + 0(x − x0)2 + o ((x − x0)2)

at x0 = 0. However we can also verify that f ′′(x0) does not exist, so f ′′(x0)/2 makes no sense. This is PS10.3.

Proof. When we see two polynomials of similar forms that are equal, it is natural to consider subtraction:

0 = (a0 − b0) + (a1 − b1)(x − x0) + ... + (an − bn)(x − x0)n + o ((x − x0)n) .

(Notice that the difference between two o ((x − x0)n) functions are still o ((x − x0)n). This can be easily verified

directly using the limit definition.) Letting x → x0, all but the first term (a0 − b0) tends to 0. Therefore taking the

limit gives (a0 − b0) = 0. Now we no longer have a0 − b0 so we can divide both sides by x − x0, obtaining

0 = (a1 − b1) + (a2 − b2)(x − x0) + ... + (an − bn)(x − x0)n−1 + o ((x − x0)n−1) .

(It can also be easily proven that if we divide an o ((x − x0)n) function by (x − x0) we obtain an o ((x − x0)n−1)
function.) Letting x → x0 again we obtain a1 = b1. Doing this inductively, we obtain ai = bi for all i, completing the

proof.
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Chapter 6

The Riemann-Stieltjes Integral

Finally, Calculus I done rigorously! Prior to this point, we’ve always been told that a (Riemann) integral ∫
b

a
f is the

“area under the curve on [a, b]” (this is called the undergraph). But how do we justify (or modify) this rigorously?

Also, we know continuous functions are integrable [or do we?], but what about other functions?

6.1 Riemann and Riemann-Stieltjes Integrals

Definition 10.9: Partition

A partition P of [a, b] is a finite, nondecreasing sequence (xk)nk=0 of points such that

a = x0 ⩽ x1 ⩽ ... ⩽ xn = b.

We also set ∆xi ∶= xi − xi−1.

Remark. This is a generalization of the “dividing [a, b] into equal subintervals” which we encountered

in first course in Calculus. Here we still divide [a, b] into the disjoint union of many [xi−1, xi]’s, but we

generalize it by allowing the intervals to have different lengths.

Definition 10.10: The Riemann Integral

Suppose f ∶ [a, b]→ R is bounded. Given a partition P , we define

Mi ∶= sup
[xi−1,xi]

f mi ∶= inf
[xi−1,xi]

f

and the upper and lower finite Riemann sums

U(P, f) ∶=
n

∑
i=1
Mi∆xi L(P, f) ∶=

n

∑
i=1
mi∆xi.

We set the upper and lower Riemann integrals to be

∫
b

a
f dx ∶= inf

P
U(P, f) and ∫

b

a
f dx ∶= sup

P
L(P, f),

where the supremum and infimum are taken over all U(P, f) and all L(P, f), where P is a partition, respec-

tively. If

∫
b

a
f dx = ∫

b

a
f dx
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we define the Riemann integral of f over [a,b] to be

∫
b

a
f dx ∶= ∫

b

a
f dx = ∫

b

a
f dx,

we say f is Riemann integrable, and we write f ∈R (or f ∈R([a, b])).
Future reference: FTC part 1

This is a long and abstract definition. What it really says connects closely to our “informal” Riemann integration learned

in “Calculus” earlier. The upper sums and lower sums are analogous to the ones we have learned, the only difference

bowing that that the partition need not to be evenly spaced. We will soon see that as we refine the partition (i.e., making

the intervals smaller by adding more points to P ), the upper integral decreases and the lower integral increases; after

all, they should be better approximations of what we think ∫
b

a
f is. In Pugh’s language, the length of the largest interval

in P is called the mesh of P , written mesh P , so an integrable function should satisfy

lim
mesh P→0

∫
b

a
f dx = lim

mesh P→0
∫

b

a
f dx = ∫

b

a
f dx.

From Pugh, Real Mathematical Analysis, p.167

Beginning of March 26, 2021

Definition 10.11: The Riemann-Stieltjes Integral

Let α be an increasing function on [a, b]. [In particular, this implies α is bounded on [a, b], as for all x ∈ [a, b]
we have α(a) ⩽ α(x) ⩽ α(b).]
The construction of the Riemann-Stieltjes integral is highly similar to that of the Riemann integral. Suppose

f ∶ [a, b]→ R is bounded. Given a partition P , we define Mi and mi just like above, and we define

∆αi ∶= α(xi) − α(xi−1).
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For the upper and lower finite Riemann sums, we replace ∆xi’s by ∆αi’s and obtain

U(P, f,α) ∶=
n

∑
i=1
Mi∆αi and L(P, f,α) ∶=

n

∑
i=1
mi∆αi.

Once again, we set

∫
b

a
f dα ∶= inf

P
U(P, f,α) and ∫

b

a
f dα ∶= sup

P
L(P, f,α).

If they agree, we define the Riemann-Stieltjes integral1

∫
b

a
f dα ∶= ∫

b

a
f dα = ∫

b

a
f dα, (Eq.10.1)

we say f is Riemann-Stieltjes integrable with respect to α, and we write f ∈ R(α) (i.e., it is Riemann

integrable with respect to α).

Immediately, we see that the R-S integral is a generalization of the Riemann integral, as the latter is a special

case of the R-S integral where α(x) = x.

There are multiple geometric approaches to interpret the R-S integral, for example this article or this post (which also

cites the same article). Equivalently, from a different (but essentially the same) perspective, we can also view the R-S

integral as “area under the curve”, where the curve is given by (α(x), f(x)) instead of (x, f(x)). Below is an example

of a polynomial f and α(x) ∶= x2: heuristically, if we replace the x-axis by the “α(x)-axis”, the R-S integral reduces to

the Riemann integral.

0 1 2 3 4 5 6
0

1

2

3

4

f(x) Plotted Against x

Graph of (f(x), x)

1 4 9 16 25 36
0

1

2

3

4

m5∆α5

M6∆α6

f(x) Plotted Against α(x) ∶= x2

Graph of (α(x), f(x))

There are many applications of the R-S integral, some of which we have already encountered: the line integrals of form

F ⋅ dr,F ⋅ dS from Calculus III are both examples.

Question. For what kind of functions does (Eq.10.1) hold?

We will first examine the behaviors of U(p, f,α) and L(P, f,α).

1We will use “R-S integral” as an abbreviation of “Riemann-Stieltjes integral” from now on.
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Definition 10.12: Refinement

A partition P ∗ is called a refinement of P if P ⊂ P ∗. (Some intervals produced by P get further subdivided

into smaller intervals, hence the word “refinement.”)

We say P ∗ is a common refinement of P1 and P2 if P ∗ = P1 ∪ P2.

(Of course, the elements in P ∗ are ordered and increasing by the definition of a partition.)

Theorem 10.13

If P ∗ is a refinement of P , then

L(P, f,α) ⩽ L(P ∗, f, α) and U(P, f,α) ⩾ U(P ∗, f, α).

Heuristically, this shows that refinements make Riemann sums closer to the actual integral, should it exist.

Future reference: Characterization of Riemann-Stieltjes integrability, Corollary 10.16

Main idea of the proof, informally illustrated by one diagram:

0.5 1 1.5 2
0

0.5

1

1.5

2

0.5 1 1.5 2
0

0.5

1

1.5

2

U ↓

U ↓

Proof. We will show L(P, f,α) ⩽ L(P ∗, f, α) only.

(1) Suppose that the refinement P ∗ only differs from P by one point, i.e., P ∗ − P = {x∗} for some x∗ ∈ (a, b).
We write P ∶= {x1, ..., xn}, and we pick k ∈ {1, ..., n} such that xk−1 < x∗ < xk (so the extra x∗ is in [xk−1, xk]).

Then, by definition,

L(P, f,α) =∑
i≠k
mi∆αi +mk∆αk

=∑
i≠k
mi∆αi + inf

[xk−1,xk]
f ⋅ (α(xk) − α(xk−1))

=∑
i≠k
mi∆αi + inf

[xk−1,xk]
f ⋅ [(α(xk) − α(x∗)) + (α(x∗) − α(xk−1))]

⩽∑
i≠k
mi∆αi + inf

[xk−1,x∗]
f ⋅ (α(xk) − α(x∗)) + inf

[x∗,xk]
f ⋅ (α(x∗) − α(xk−1))

= L(P ∗, f, α).

This is basically the same idea as shown in the diagram; we focus on the interval in which a new point is added

by refinement; if we divide this interval into two, then the two new infima we obtain cannot be smaller than the

original infimum, and so the new lower Riemann sum we obtain cannot be smaller.
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(2) If P ∗ and P differ more than one points, we simply need to apply case (1) multiple times, removing one

point in P ∗ −P each time, and eventually obtain our desired result. Recall that P ∗ is itself a partition, so it can

only have finitely many points. Therefore the difference is finite, meaning we only need to apply (1) finitely many

times. This is valid.

Theorem 10.14: Lower Integral ⩽ Upper Integral

∫
b

a
f dα ⩽ ∫

b

a
f dα.

Future reference: Characterization of Riemann-Stieltjes integrability

Proof. Heuristically, the lower integrals are taken over infima whereas the upper integrals are taken over suprema.

We let P1 and P2 be any partitions of [a, b] and define P ∗ ∶= P1 ∪ P2. Then,

L(P1, f, α) ⩽ L(P ∗, f, α) ⩽ U(P ∗, f, α) ⩽ U(P2, f, α),

where the first and third ⩽ are given by the previous theorem on refinement and the second because mi ⩽ Mi for

each i corresponding to an element in the partition P ∗. Thus

L(P1, f, α) ⩽ U(P2, f, α). (1)

Since P1 is arbitrarily chosen with respect to P2 (i.e., given any P2, U(P2, f, α) is an upper bound for all the lower

sums, so it is in particular no smaller than the least upper bound), we are allowed to let the argument on the LHS

vary and take the supremum of all such lower sums and obtain

sup
P1

L(P1, f, α) ⩽ U(P2, f, α). (2)

On the other hand, since P2 is also arbitrarily chosen, (2) holds for any P2, so taking the infimum over all partitions

gives us

∫
b

a
f dα = sup

P1

L(P1, f, α) ⩽ inf
P2

U(P2, f, α) = ∫
b

a
f dα,

as claimed. The key in this proof is that P1, P2 are chosen arbitrarily.

Theorem 10.15: Criterion for R-S Integrability

A function f is R-S integrable, i.e., ∫
b

a
f dα = ∫

b

a
f dα, if and only if

for all ϵ > 0, there exists a partition P such that U(P, f,α) −L(P, f,α) < ϵ. (Eq.10.22)

Future reference: Corollary 10.16, continuous functions are R-S integrablem Theorem 11.1, Theorem 11.3,

FTC part 2

Proof. We first show Ô⇒ . Let ϵ > 0 be given. By the definitions of supremum and infimum, there exists a partition

P1 such that

U(P1, f, α) ⩽ ∫
b

a
f dα + ϵ

2
, (1)

2Not an equation though, but whatever...
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since the upper integral is the infimum of these upper sums. Similarly there exists P2 with

L(P2, f, α) ⩾ ∫
b

a
f dα − ϵ

2
. (2)

We define a refinement P ∗ ∶= P1 ∪ P2. It follows that

U(P ∗, f, α) − ϵ
2
⩽ U(P1, f, α) −

ϵ

2
⩽ ∫

b

a
f dα ⩽ L(P2, f, α) +

ϵ

2
⩽ L(P ∗, f, α) + ϵ

2
,

where the first and last ⩽ are by Theorem 10.13 and the middle two by (1), (2), and the assumption that ∫
b

a
=

∫
b

a
= ∫

b

a
. Hence U(P ∗, f, α) and L(P, f,α) are ⩽ ϵ apart (and since ϵ is arbitrary of course we can make the

difference < ϵ).

For the converse, we also let ϵ > 0 (and we want to show that ∫
b

a
−∫

b

a
< ϵ for any ϵ.) This is immediate, as now we

have the assumption that there exists P satisfying (the first ⩽ is by Theorem 10.14, independent of ϵ)

0 ⩽ ∫
b

a
f dα − ∫

b

a
f dα = inf

P̃
U(P̃ , f, α) − sup

P̃

L(P̃ , f, α)3 ⩽ U(P, f,α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽supL

−L(P, f,α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾inf L

< ϵ.

Corollary 10.16

Let ϵ > 0. Suppose Equation 10.2 holds for some partition P = {x0, ..., xn}. Then,

(1) Equation 10.2 also holds for any refinement P ∗ of P . (Immediate by Theorem 10.13 and Theorem

10.15. The upper sum decreases whereas the lower sum increases, so the difference is still < ϵ.)

(2) Let {s0, ..., sn} and {t0, ..., tn} be two sequences of points. If for all i we have si, fi ∈ [xi−1, xi] then

n

∑
i=1
∣f(si) − f(ti)∣∆αi < ϵ.

(Also immediate since ∣f(si) − f(ti)∣ cannot exceed Mi −mi, so the sum ⩽ U(P, f,α) −L(P, f,α) < ϵ.)

(3) If f ∈R(α) and {t0, ..., tn} are such that ti ∈ [xi−1, xi], then

∣
n

∑
i=1
f(ti)∆αi − ∫

b

a
f dα∣ < ϵ.

Proof. Since mi ⩽ f(ti) ⩽ Mi we have L(P, f,α) ⩽
n

∑
i=1
f(ti)∆αi ⩽ U(P, f,α). Also, since L ⩽ ∫

b
a ⩽ U by

definitions of supremum and infimum, putting everything together, we have

−ϵ < L(P, f,α) −U(P, f,α) ⩽
n

∑
i=1
f(ti)∆αi − ∫

b

a
f dα ⩽ U(P, f,α) −L(P, f,α) < ϵ.

Future reference: FTC part 2

Beginning of March 29, 2021

3I hope the notation P̃ here doesn’t cause more confusion than all the mess already going on here. I chose to write P̃ rather than P for the

mere purpose to show that here P̃ is like a “dummy variable” in integration when we take inf U and supL.
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Theorem 10.17: Continuous Functions are R-S Integrable

If f ∈ C([a, b]) then f ∈R(α) on [a, b] (for all α).

Future reference: Future reference: Example 11.9

Proof. Let α > 0 be given and fix ϵ > 0. We can pick a sufficiently small η > 0 such that η(α(b) − α(a)) < ϵ. Since f

is continuous on a compact domain, Theorem 8.11 states that it is uniformly continuous. Therefore there exists a

δ > 0 such that

∣f(x) − f(y)∣ < η whenever ∣x − y∣ < δ, x, y ∈ [a, b].

Now we pick a partitioxn P = {x0, ..., xn} such that ∆xi < δ for all i, i.e., mesh P < δ. It follows that Mi −mi < η for

all i. Also, since f is continuous and [xi−1, xi] compact, Mi and mi are attained. Therefore,

U(P, f,α) −L(P, f,α) =
n

∑
i=1
(Mi −mi)∆αi ⩽ η

n

∑
i=1

∆αi = η(α(b) − α(a)) < ϵ.

By Theorem 10.15 we are done, as U(P, f,α) and L(P, f,α) can be arbitrarily close.

Theorem 11.1

If f is monotonic on [a, b] and α ∈ C([a, b]) (and nondecreasing by definition), then f ∈R(α).

Proof. We will only prove the case where f is nondecreasing. Let ϵ > 0 be given. For sufficiently large n (whose

exact condition we will specify later), we can define a partition P ∶= {x0, ..., xn} of [a, b] such that {α(x0), ..., α(xn)}
forms an arithmetic sequence, i.e.,

∆αi =
α(b) − α(a)

n

for all i. (Such partition exists because α is continuous and we can use the IVT.) Then, since f is nondecreasing,

the supremum of f on each interval is attained at the right endpoint whereas the infimum is attained at the left

endpoint. Hence Mi −mi = f(xi) − f(xi−1), and

U(P, f,α) −L(P, f,α) =
n

∑
i=1

∆αi [f(xi) − f(xi−1)]

= α(b) − α(a)
n

n

∑
i=1
[f(xi) − f(xi−1)]

= (α(b) − α(a))(f(b) − f(a))
n

. (1)

We see that n needs to be sufficiently large such that (1) < ϵ in the first place. Then the claim follows from Theorem

10.15.

As a side note: if α is strictly increasing, then the choice of partition is unique.

Theorem 11.2

If f is bounded on [a, b] and has only finitely many points of discontinuity y1, ..., yk on [a, b] and α is contin-

uous at yi, then f ∈ R(α). Note that we do not require α to be continuous on all of [a, b]; it only needs to be

continuous at points where f is not.

We will omit the proof, but the main idea is that, even at a point of discontinuity, since f is bounded, the jump is

finite. Then if we have sufficiently small ∆α, we can make the difference between Mi∆αi and mi∆αi arbitrarily

93



MATH 425a Notes ∼ YQL 6.1 - Riemann and Riemann-Stieltjes Integrals Current file: 3-29.tex

small. Therefore U and L can be made arbitrarily small, proving the R-S integrability of f . For a full proof, see

Rudin, Theorem 6.10.

Theorem 11.3: Continuous Images of R-S Integrable Functions are R-S Integrable

Suppose that f ∈R(α) on [a, b] and f(x) ∈ [m,M] for all x ∈ [a, b] (i.e., R-S integrable with respect to α and

bounded). If φ ∈ C([m,n]), then the composite φ ○ f ∈R(α).
Future reference: Theorem 11.5

Proof. Let ϵ > 0 be given. Since φ is uniformly continuous (continuous on compact domain), there exists a δ ∈ (0, ϵ)
[this means that we can WLOG take δ to be smaller than ϵ; if for some δ ⩾ ϵ the condition holds, then the same condition

clearly holds for a smaller δ] such that

∣φ(x) − φ(y)∣ < ϵ whenever ∣x − y∣ < δ and x, y ∈ [m,M]. (1)

By Theorem 10.15, since f ∈R(α), there exists a partition P such that

U(P, f,α) −L(P, f,α) < δ2 (2)

Since we want to show the R-S integrability of φ ○ f with respect to α, it is natural that we define

M∗
i ∶= sup

[xi−1,xi]
φ ○ f and m∗i ∶= inf

[xi−1,xi]
φ ○ f

where the xi’s come from the partition P . This leads to

U(P,φ ○ f,α) −L(P,φ ○ f,α) =
n

∑
i=1
(M∗

i −m∗i )∆αi. (3)

For each index i, we either have Mi −mi < δ or Mi −mi ⩾ δ (not starred, just Mi,mi).4 Thus (3) becomes

U(P,φ ○ f,α) −L(P,φ ○ f,α) =∑
Mi−mi<δ

(M∗
i −m∗i )∆αi +∑

Mi−mi⩾δ
(M∗

i −m∗i )∆αi.

(i) For every i in the first term, since f(x), f(y) ∈ [mi,Mi] for all x, y ∈ [xi−1, xi], we have ∣f(x) − f(y)∣ < δ.
Using (1) on the above inequality we obtain

∣φ(f(x)) − φ(f(y))∣ < ϵ for all x, y ∈ [xi−1, xi].

Therefore, taking supremum on LHS then infimum on RHS give

φ(f(x)) < φ(f(y)) + ϵ Ô⇒ sup
x∈[xi−1,xi]

φ(f(x)) ⩽ φ(f(y)) + ϵ

Ô⇒ sup
x∈[xi−1,xi]

φ(f(x)) ⩽ inf
y∈[xi−1,xi]

φ(f(y)) + ϵ

Ô⇒ M∗
i ⩽m∗i + ϵ.

Therefore the first term ⩽ ϵ
n

∑
i=1

∆αi = ϵ(α(b) − α(a)).

4Dividing a sum into two parts as such and bounding each of them separately is a very useful trick when trying to obtain a bound of

something. We will encounter this again in the Weierstraß Approximation Theorem later.
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(ii) For the second term, there is not much option for us. Fortunately, since φ is continuous on a compact

domain [m,M], it is in particular bounded (Lemma 8.4). If we set K ∶= ∣supφ∣ it is clear that Mi,mi are both

in [−K,K], so (M∗
i −m∗i ) is bounded by 2K. Since

2K = 2Kδ

δ
⩽ 2K(Mi −mi)

δ
,

the second term is bounded by

∑
Mi−mi⩾δ

(M∗
i −m∗i )∆αi ⩽

2K

δ
⋅ ∑
Mi−mi⩾δ

(Mi −mi)∆αi ⩽
2K

δ

n

∑
i=1
(Mi −mi)∆αi < 2Kδ

where the last < is by (2). This explains why we wanted to bound U − L by δ2 in (2). As 1/δ can get very large,

we need something much smaller — δ2 in this case — to counter it.

Summarizing what we computed in cases (i) and (ii),

U(P,φ ○ f,α) −L(P,φ ○ f,α) < ϵ(α(b) − α(a) + 2K).

Since the coefficient α(b)−α(a)+ 2K is some constant, U −L can be made arbitrarily small, and so φ ○ g ∈R(α) by

Theorem 10.15. Done!
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6.2 Properties of the Riemann-Stieltjes Integral

Lemma 11.4

(1) The sum of two R-S integrable functions is R-S integrable, and so is any scalar multiple of a R-S

integrable function, i.e.,

f1, f2 ∈R(α) Ô⇒ f1 = f2 ∈R(α)

and

f ∈R(α) and c ∈ R Ô⇒ cf ∈R(α).

In addition,

∫
b

a
(f1 + f2) dα = ∫

b

a
f1 dα + ∫

b

a
f2 dα and ∫

b

a
cf dα = c∫

b

a
f dα.

(In other words, the set of R-S integrable functions forms a vector space.)

(2) If f1 ⩽ f2 on [a, b] (i.e., f1(x) ⩽ f2(x) for all x ∈ [a, b]), then

∫
b

a
f1 dα ⩽ ∫

b

a
f2 dα,

if they exist.

(3) If f ∈R(α) on [a, b] and c ∈ [a, b], then

∫
b

a
f dα = ∫

c

a
f dα + ∫

b

c
f dα,

and in particular f ∣[a,c], f ∣[c,b] (i.e., f restricted to these two intervals) are both R-S integrable.

(4) If f ∈R(α) on [a, b] and ∣f(x)∣ ⩽M (i.e., bounded by [−M,M]), then

∣∫
b

a
f dα∣ ⩽M(α(b) − α(a)).

(5) If f ∈ R(α1) and f ∈ R(α2) on [a, b], then f ∈ R(α1 + α2), and f ∈ R(cα1) for any c > 0 (positive c

because we need cα1 to be nondecreasing). In addition,

∫
b

a
f d(α1 + α2) = ∫

b

a
f dα1 + ∫

b

a
f dα2 and ∫

b

a
f d(cα1) = c∫

b

a
f d(α2).

(6) If c is a constant (function), then ∫
b

a
c dα = c(α(b) − α(a)).

Future reference: Example 11.9, FTC part 1, integration by parts, MVT for integrals, proof of the Picard-

Lindelöf Theorem

Theorem 11.5

If f, g ∈R(α) on [a, b], then so far fg and ∣f ∣. Also,

∣∫
b

a
f dα∣ ⩽ ∫

b

a
∣f ∣ dα.

For the inequality, think heuristically about the triangle inequality but applied to a continuum.
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Future reference: FTC part 1, integration by parts, uniform convergence & R-S integrals, proof of the Picard-

Lindelöf Theorem

Beginning of March 31, 2021

Proof. Notice that (f(x) + g(x))2 − (f(x) − g(x))2 = 4f(x)g(x), so

fg = ((f + g))
2
4 − (f − g)

2

4
.

Therefore, by the previous lemma, f + g, f − g ∈ R(α). Then using φ(t) ∶= t2 from Theorem 11.3, we see that

(f + g)2, (f − g)2 ∈R(α). Finally, using the previous lemmas a few more times we get fg ∈R(α).
For ∣f ∣, simply take φ(t) ∶= ∣t∣ from Theorem 11.3.

Finally, letting c ∶= ±1 be such that

∣∫
b

a
f dα∣ = c∫

b

a
f dα

(the absolute value either flips the sign or not), we have

∣∫
b

a
f dα∣ = c∫

b

a
f dα = ∫

b

a
(cf) dα ⩽ ∫

b

a
∣f ∣ dα.

Now we look at worse examples. We begin by looking at α that is discontinuous: zero all the way until one point

where it jumps to some value.

Theorem 11.6

Suppose s ∈ (a, b) and f is bounded on [a, b] and continuous at s. If

α(x) ∶= I(x − s),

the unit step function defined by I(z) = 0 for z ⩽ 0 and I(z) = 1 for z > 1, then

∫
b

a
f dα = f(s).

Future reference: Example 11.9

Proof. Let ϵ > 0. Since f is continuous at s, there exists δ > 0 such that ∣f(x)− f(s)∣ < ϵ/2 if ∣x− s∣ < δ. (We assume δ

is small enough that (s − δ, s + δ) ⊂ [a, b].) Now we pick any partition P ∶= {a, x1, x2, b} such that

s − δ < x1 < s and s < x2 < s + δ.

Notice that I(a) = I(s − δ) = 0 and I(b) = I(s + δ) = 1, so ∆α1 = ∆α3 = 0. Also, ∆x2 = I(s + δ) − I(s − δ) = 1 − 0 = 1.

Therefore,

U(P, f,α) = sup
[x1,x2]

f ⋅ 1 < f(s) + ϵ
2
Ô⇒ ∫

b

a
f dα < f(s) + ϵ

2
(1)

and

L(P, f,α) = inf
[x1x2]

f ⋅ 1 > f(s) − ϵ
2
Ô⇒ ∫

b

a
f dα > f(s) − ϵ

2
. (2)
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Combining (1) and (2), we obtain

U(P, f,α) −L(P, f,α) < ϵ
2
+ ϵ
2
= ϵ Ô⇒ f ∈R(α)

and in particular f(s) − ϵ
2
⩽ ∫

b

a
f dα ⩽ f(s) + ϵ

2
. Since ϵ is arbitrary, taking ϵ→ 0 gives

∫
b

a
f dα = f(s).

Corollary 11.7

This is a generalization of the previous theorem. Let ∑ cn be a convergent series with cn ⩾, and let {sn} be a

sequence of distinct points in (a, b). Define

α(x) ∶=
n

∑
i=1
cnI(x − sn).

(For example, if a < s1 < s2 < ... < b then α equals 0 on (a, s1), c1 on [s1, s2), c1 + c2 on [s2, s3), and so on.) If

f is continuous on [a, b], then

∫
b

a
f dα =

n

∑
i=1
cnf(sn).

Proof: see Rudin, Theorem 6.16.

Theorem 11.8

Suppose α is (strictly) increasing on [a, b] and suppose α is differentiable with a Riemann integrable deriva-

tive α′. Let f be a bounded function. Then

f ∈R(α) ⇐⇒ fα′ is Riemann-integrable,

and if so then

∫
b

a
f dα = ∫

b

a
f(x)α′(x) dx.

This is basically the u-substitution stated formally.

Proof: see Rudin, Theorem 6.17.

Example 11.9: Why R-S Integral?. Let us consider a wire of length one and a mass function

m(x) ∶= mass of the wire contained in [0, x].

Note that m is nondecreasing and m(0) = 0. The total mass is (by Lemma 11.4.6)

M ∶= ∫
1

0
1 dm =m(1) −m(0) =m(1),

and the center of mass is given by
1

M
∫

1

0
x dm

(which is well-defined by Theorem 10.17 since x is continuous).

(1) If the wire has a continuous density, i.e., m′(x) = ρ(x) for some continuous ρ, then

M = ∫
1

0
m′(x) dx = ∫

1

0
ρ(x) dx
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and so

center of mass = 1

M
∫

1

0
xm′(x) dx = ∫

1

0
ρ(x) dx.

(2) If the wire is composed only of point masses (i.e., only has mass at some points) {m1, ...,mn} at points

{x1, ..., xn} respectively, then we need to use to use Theorem 11.6 and get

m(x) =
n

∑
i=1
miI(x − xi)

(where I is defined similarly as I but I(z) = 1 for z = 0 too, since our mass function m(x) increases

immediately as x touches one of the point masses). It follows that the center of mass is

1

M

n

∑
i=1
ximi =

n

∑
i=1
ximi /

n

∑
i=1
mi.

The R-S integral covers both cases, and it can also cover more extreme cases where the mass function m is

continuous but not differentiable. The formulae for total mass and center of mass remain well-defined.
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6.3 Riemann-Integration & Differentiation

From now on we will primarily focus on Riemann integration only and “forget about” Stieltjes.

Theorem 11.10: Fundamental Theorem of Calculus (FTC), Part 15

Let f ∈R, i.e., let f be Riemann-integrable (or R-S integrable with α(x) ∶= x). Let

F (x) ∶= ∫
x

a
f(t) dt for x ∈ [a, b].

Then F ∈ C([a, b]). Furthermore, if f is continuous at x0 then F is differentiable at x0 with F ′(x0) = f(x0).
Future reference: Definition 12.2, proof of the Picard-Lindelöf Theorem

Proof. Since f ∈ R, it is by definition bounded. Therefore there exists M > 0 such that ∣f(x)∣ ⩽M for all x ∈ [a, b].
Thus, for all x, y ∈ [a, b] with x < y, we have

∣F (y) − F (x)∣ = ∣∫
y

x
f(t) dt ∣ ⩽M(y − x) ⩽M ∣y − x∣

where the first ⩽ is by Lemma 11.4.3 and second by Lemma 11.4.4. This shows F is Lipschitz and therefore

continuous (Lemma 8.13).

Now we show the second claim. Suppose f is continuous at x0 and let ϵ > 0 be given. Then there exists δ > 0

(assuming WLOG that this δ is sufficiently small with (y − x0, y + x0) ⊂ [a, b]) such that

∣f(y) − f(x0)∣ < ϵ whenever ∣y − x0∣ < δ.

We claim that the “derivative quotient” for small h is close enough to f(x0). For 0 < h < δ, we have

∣F (x0 + h) − F (x0)
h

− f(x0)∣ = ∣
1

h
∫

x0+h

x0

f(t) dt − 1

h
∫

x0+h

x0

f(x0) dt ∣

= ∣ 1
h
∫

x0+h

x0

(f(t) − f(x0)) dt ∣

(where we have used the fact that
1

h
∫

x0+h

x0

1 dt = 1). By Theorem 11.5, we can move the absolute value inside,

which gives

... ⩽ 1

h
∫

x0+h

x0

∣f(t) − f(x0)∣ dt <
1

h
∫

x0+h

x0

ϵ dt = ϵ

(where the < is by Lemma 11.4.2). Clearly we can also do the same computation for 0 > h > −δ, and so F ′(x0) is

arbitrarily close to f(x0), i.e., F ′(x0) = f(x0), completing our proof.

Beginning of April 1, 2021

Theorem 11.11: FTC Part 2

If f ∈R on [a, b] and there exists F , a primitive function of f , such that F ′ = f , then

∫
b

a
f dx = F (b) − F (a).

Future reference: Definition 12.2, Taylor’s Theorem of integral form, minimization problems

5In the lectures, FTC part 1 didn’t have its name, and FTC part 2 was simply regarded as the FTC. I renamed them following the more

popular way on Internet.
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Proof. Fix ϵ > 0. Let P = {x0, ..., xn} be a partition of [a, b] such that U(P, f) − L(P, f) < ϵ [note that we are using

Riemann sums or equivalently Riemann-Stieltjes sums with α(x) ∶= x; also, such partition exists by Theorem 10.15].

Since x0 = a and xn = b, “adding and subtracting” multiple terms yields

F (b) − F (a) =
n

∑
i=1
[F (xi) − F (xi−1)] .

Since F is differentiable, by MVT, each F (xi)−F (xi−1) is equal to some F ′(ti)∆xi for some ti ∈ [xi−1, xi]. Therefore,

using Corollay 10.16.3, since U −L for this partition is already < ϵ, we have

∣ [F (b) − F (a)] − ∫
b

a
f dx∣ = ∣

n

∑
i=1
f(ti)∆xi − ∫

b

a
f dx∣ < ϵ.

Since ϵ is arbitrary, we see F (b) − F (a) = ∫
b

a
f dx, proving the claim.

Corollary 11.12: Integration by Parts

Suppose F,G ∈D([a, b]) are such that F ′ = f and G′ = g. Further suppose f, g ∈R. Then

∫
b

a
Fg dx = F (b)G(b) − F (a)G(a) − ∫

b

a
fG dx.

This is the “∫ udv dx = uv − ∫ vdu dx” which we are all familiar with.

Proof. It suffices to notice that this is merely the reverse direction of chain rule. If we define H(x) ∶= F (x)G(x), then

H ′ = F ′G + FG′ which is Riemann integrable (R-S integrable with respect to α) by Lemma 11.4.1 and Theorem

11.5. Then

∫
b

a
H ′ dx =H(b) −H(a),

and rearranging the terms gives our desired equation.

Example 11.13. ∫
2

1
lnx dx = ∫

2

1
lnx ⋅ 1 dx = ln 2 ⋅ 2 − ln 1 ⋅ 1 − ∫

2

1

1

x
⋅ x dx = 2 ln 2 − 1, where we have

chosen F (x) ∶= lnx, G(x) ∶= 1, F ′(x) = 1/x, and G′(x) = 0.

Theorem 11.14: Change of Variables

We will state and prove this theorem using the more general Riemann-Stieltjes integrals. Suppose α is increasing

on [a, b], f ∈ R(α), and φ ∶ [A,B] → [a, b] is increasing, continuous, and onto (in particular this implies φ is

bijective, so φ(A) = a and φ(B) = b). Then

∫
b

a
f dα = ∫

B

A
g dβ where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(y) ∶= f(φ(y))

β(y) ∶= α(φ(y)).

In the special case where α(x) ∶= x and β = φ, we obtain the “u-substition formula”:

∫
b

a
f(x) dx = ∫

B

A
f(φ(y))φ′(y) dy. (Eq.11.1)

Future reference: Lemma 11.16

101



MATH 425a Notes ∼ YQL 6.3 - Riemann-Integration & Differentiation Current file: 4-2.tex

Proof. Let P ∶= {x0, ..., xn} be any partition of [a, b]. Since φ is an increasing bijection, {φ−1(x0), ..., φ−1(xn)} is

an increasing sequnece with φ−1(x0) = φ−1(a) = A and φ−1(xn) = φ−1(b) = B. Thus, {φ−1(x0), ..., φ−1(xn)} is a

partition of [A,B]. For notational convenience we denote this set as Q and define yk ∶= φ−1(xk). [In particular, all

partitions of [A,B] can be obtained this way since φ is a bijection.]

Directly following this definition, we have

im[xi−1,xi] f = im[yi−1,yi] g,

so the suprema of both sides agree and so do the infima. Thus,

U(P, f,α) =
n

∑
i=1

Mi
°
of f

[α(xi) − α(xi−1)] =
n

∑
i=1

Mi
°
of g

[α(φ(yi)) − α(φ(yi−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

β(yi)−β(yi−1)

] = U(Q,g, β) (1)

and similarly

L(P, f,α) = L(Q,g, β). (2)

Since f ∈R, we have sup
P
L(P, f,α) = ∫

b

a
f dα = inf

P
U(P, f,α) by definition, so (1) and (2) give

sup
Q
L(Q,g, β) = ∫

b

a
f dα = inf

Q
U(Q,g, β). (3)

On the other hand, supL = inf U of g also means g ∈R(β) on [a, b] with Riemann-Stieltjes integral equaling to supL

and inf U . This, along with (3), implies

∫
b

a
f dα = ∫

B

A
g dβ.

Example 11.15. ∫
π/2

0
sin3(y)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
φ3(y)

cos(y)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
φ′(y)

dy = ∫
1

0
x3 dx = 1

4
.

Lemma 11.16

Equation 11.1 is also true for decreasing φ if we add a “−”: ∫
b

a
f dx = −∫

B

A
f(φ(y))φ′(y) dy.

Future reference: Characterization of odd functions

Proof. First notice that

∫
b

a
f(x) dx = ∫

−a

−b
f(−x) dx (Eq.11.2)

(the proof of this claim is similar to that of Theorem 11.14 where we need to work with images and preimages of

partitions). Then if we take ψ(y) ∶= −φ(y) [note that −φ is increasing], Equation 11.1 gives

∫
b

a
f dx = ∫

−a

−b
f(−x) dx = ∫

B

A
f(−(−φ(y))) − (φ)′(y) dy = −∫

B

A
f(φ(y))φ′(y) dy.

Example 11.17.

(1) Similar to the previous example, we consider ∫
π/2

0
cos3(y) sin(y) dy. Note that cos(⋅) is decreasing on

[0, π/2]. If we define φ(y) ∶= cos(y) and correspondingly −φ′(y) = sin(y), we get

∫
π/2

0
cos3(y) sin(y) dy = ∫

1

0
x3 dx = 1

4
.
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(2) If f is continuous on [−a, a] and is odd (i.e., f(−x) = −f(x)), then

∫
a

−a
f dx = 0.

Proof. ∫
a

−a
f dx = ∫

0

−a
f dx + ∫

a

0
f dx = ∫

a

0
f(−x) dx + ∫

a

0
f(x) dx = 0, where the second = used

Equation 11.2 (right above).

We will show that the converse holds too, i.e., if ∫
a

−a
f dx = 0 for all a > 0 then f is odd.
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6.4 MVT and Taylor’s Theorem with Integrals

Lemma 11.18: MVT for Integrals

If f ∈ C([a, b]), g ⩾ 0 (i.e., a nonnegative function) integrable, and g ∈ R, then there exists a ξ ∈ (a, b) such

that

∫
b

a
f(x)g(x) dx = f(ξ)∫

b

a
g(x) dx.

(Think of this as the “weighted average”.) In particular, if g ≡ 1, then

∫
b

a
f(x) dx = f(ξ)(b − a).

Proof. If the integral of g is 0 then we are immediately done, since any ξ works. Now we suppose the integral of g

is not 0 (so it’s positive). Define

m ∶= inf
[a,b]

f and M ∶= sup
[a,b]

f.

It follows that m ⩽ f(x) ⩽M for all x ∈ [a, b]. Therefore,

m∫
b

a
g dx ⩽ ∫

b

a
fg dx ⩽M ∫

b

a
g dx

by using Lemma 11.4.2 twice. Since ∫
b

a
g(x) dx ≠ 0, we can divide the above inequalities by it and obtain

m ⩽ ∫
b

a
fg dx /∫

b

a
g dx ⩽M.

Since f is continuous on a compact domain, it attains its bounds, so there exist x1, x2 such that f(x1) = m and

f(x2) =M . The existence of ξ with f(ξ) = ∫
b

a
fg dx/∫

b

a
g dx then follows from the IVP.

Beginning of April 5, 2021

Lemma 11.19

Suppose that f ∈ C([a, b]) and ∫
β

α
f dx = 0 for all a < α < β < b. Then f ≡ 0.

Proof. Clearly, it suffices to prove that f(x0) = 0 for all x0 ∈ [a, b], so let us first pick an arbitrary x0 ∈ [a, b]. We

also define a sequence (hn)∞n=1 ⊂ (0, b − x0) [i.e., each lying inside (0, b − x0)] such that hn → 0. It follows that each

x0 + hn is still in [a, b], so by the previous Lemma (MVT for integrals), to each n corresponds a ξn ∈ (0,1) such that

0 = ∫
x0+hn

x0

f dx = f(x0 + ξnhn)hn.

(Here any point in (x0, x0 + hn) can obviously be written as x0 + khn for k ∈ (0,1), and (x0 + hn) − x0 = hn.) Since

hn ≠ 0, we obtain f(x0 + ξnhn) = 0 for all n. Since ∣ξn∣ is bounded by 1 and hn → 0, we see ξnhn → 0 as n →∞, and

so x0 + ξnhn → 0. Using Heine’s sequential definition of continuity, f(x0) = 0. This proves the claim.

Example 12.1: Characterization of Odd Functions. If f ∈ C([−a, a]) is such that ∫
α

−α
f dx = 0 for all

α ∈ (0, a), then it is an odd function, i.e., f(−x) = −f(x).
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Proof. We begin by picking any α and α′ satisfying 0 < α′ < α < a. On one hand, using Equation 11.2,

0 = ∫
α

−α
f dx = ∫

α

0
f(x) dx + ∫

α

0
f(−x) dx = ∫

α

0
[f(x) + f(−x)] dx. (1)

On the other hand, since 0 < α′ < alpha, we also have

0 = ∫
α′

−α′
f dx = ∫

α′

0
[f(x) + f(−x)] dx. (2)

Subtracting (2) from (1), we obtain

∫
α

α′
[f(x) + f(−x)] dx = 0 for all 0 < α′ < α < a.

The claim then follows from the previous lemma. (At first we will only obtain the claim for x ∈ [0, α], but since the

function is odd, the claim can be extended to x ∈ [−a, a].)

Definition 12.2

If a > b, we define ∫
b

a
∶= −∫

a

b
.

In particular, the theorems we have previously proven still holds for this new definition.

If x ⩽ b and F (x) ∶= ∫
x

b
f(t) dt, then F (x) = −∫

b

x
f(t) dt so F is continuous and F ′(x0) = f(x0) for all points of

continuity of f . This is FTC part 1, and the proof is analogous. Also, FTC part 2 holds as (assuming a > b)

∫
b

a
f(t) dt = −∫

a

b
f(t) dt = −(F (a) − F (b)) = F (b) − F (a).

Theorem 12.3: Taylor’s Theorem with Remainder of Integral Form

Let x0 ∈ R and suppose that f ∶ R→ R is such that f (n) ∈ C(I) for some open interval containing x0. Then,

f(x) =
n−1
∑
k=0

f (k)(x0)
k!

(x − x0)k + ∫
x

x0

f (n)(t)(x − t)
n−1

(n − 1)!
dt for all x ∈ I.

Future reference: Taylor’s Theorem (summary)

Proof. By the FTC part 2,

f(b) = f(a) + ∫
b

a
f ′(t) dt = f(a) + ∫

b

a
f ′(t) d

dt
(t − b) dt

[integrate by parts] = f(a) + f(a)(b − b) − f(a)(a − b) − ∫
b

a
f ′′(t)(t − b) dt

= f(a) + f(a)(b − a) + ∫
b

a
f ′′(t)(b − t) dt.

Note that we can iteratively integrate by parts:

∫
b

a

f (k)(t)
(k − 1)!

(b − t)k−1 dt = ∫
b

a

f (k)(t)
(k − 1)!

d

dt
[−(b − t)

k

k
] dt

= f
(k)(a)
k!

(b − a)k + ∫
b

a

f (k+1)(t)
k!

(b − t)k dt.
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Putting everything together, since f (n) ∈ C(I), we obtain

f(b) = f(a) + ... + f
(n−1)(a)
(n − 1)!

(b − a)n−1 + ∫
b

a

f (n)(t)
(n − 1)!

(b − t)n−1 dt,

and the claim follows by letting a = x0, b = x.

Remark. We actually recover the Peano form from this integral. By PS11.4 (the Second Mean Value Theo-

rem), the integral is equal to

(x − x0)n−1

(n − 1)! ∫
ξ

x0

f (ξ)(t) dt for some ξ ∈ (x0, x).

This is o(x − x0)n−1, since continuity of f (n−1) implies f (n−1)(ξ) − f (n−1)(x0)→ 0 as x→ 0 as ξ ∈ (x0, x).
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6.5 Improper Integrals

Definition 12.4: Improper Integrals

If f ∈R on [a, b] for all b > a, then we define

∫
∞

0
f dx ∶= lim

b→∞∫
b

a
f dx, (1)

when such limit exists.

If b > a0 and f ∈R on [a, b] for all a ∈ (a0, b), then we define

∫
b

a0

f dx ∶= lim
a→a0

∫
b

a
f dx. (2)

We can also define ∫
b

−∞
f dx. Finally, we define

∫
∞

−∞
f dx ∶= lim

a→−∞∫
0

a
f dx + lim

b→∞∫
b

0
f dx, (3)

when both limits exist.

If an integral of any form above exists, we say that that improper integral converges. If it converges with

f replaced by ∣f ∣ then we say it converges absolutely.

Lemma 12.5

(1) If ∫
∞

0
f dx converges absolutely then it converges.

(2) If ∫
∞

0
g dx converges and g ⩾ ∣f ∣, i.e., g(x) ⩾ ∣f(x)∣ for all x, then ∫

∞

0
f dx converges absolutely.

Future reference: Integral test

Proof of (2). Since g ⩾ ∣f ∣, it is in particular nondecreasing. In particular, this means

F nondecreasing Ô⇒ lim
x→∞

F (x) = sup
x>0

F (x). (Eq.12.1)

Thus,

∫
x

0
∣f ∣ dx ⩽ ∫

x

0
g dx ⩽ sup

y>0
∫

y

0
g dx = lim

y→∞∫
y

0
g dx = ∫

∞

0
g dx.

(The first ⩽ is because ∣f ⩽ g∣, and the first = is by Equation 12.1.) Therefore, ∫
x

0
∣f ∣ dx is bounded, so

sup
y>0
∫

y

0
∣f ∣ dx exists and = lim

y→∞∫
y

0
∣f ∣ dx = ∫

∞

0
∣f ∣ dx.

Therefore ∫
∞

0
f dx converges absolutely, proving the claim.

Example 12.6.

(1) ∫
∞

1

1

x4
dx = lim

b→∞∫
b

1

1

x4
dx = lim

b→∞

1

3
(1 − 1

b3
) = 1

3
.
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(2) ∫
∞

−∞

sinx

1 + x4
dx converges absolutely, since

∫
∞

−∞
∣ sinx
1 + x4

∣ dx = ∫
−1

−∞
+∫

1

−1
+∫

∞

1

= 2∫
∞

1
∣ sinx
1 + x4

∣

®
⩽∣sinx/x4∣⩽1/x4

dx + ∫
1

−1
∣ sinx
1 + x4

∣

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
⩽∣sinx∣⩽1

dx

⩽ 2∫
∞

1
x−4 dx + 2 = 8

3
.

Beginning of April 9, 2021

Theorem 12.7: Integral Test / Maclurin-Cauchy Test

Suppose that for some N ∈ N, f(x) is nonincreasing and nonnegative for all x ⩾ N . Then

∑
n⩾N

f(n)6 converges ⇐⇒ ∫
∞

N
f dx converges.

Proof. The proof is similar to the Calc II version, only to be more rigorous. For Ô⇒ ,

∫
∞

N
f dx = lim

b→∞∫
b

N
f dx = sup

b>N
∫

b

N
f dx

where the last = is by Equation 12.1. The integral on the RHS can be bounded by

⌊b⌋−1

∑
n=N
∫

n+1

n
f dx + ∫

b

⌊b⌋
f dx ⩽

⌊b⌋−1

∑
n=N
∫

n+1

n
f(n) dx + ∫

b

⌊b⌋
f(⌊b⌋) dx ⩽ ∑

n⩾N
f(n) <∞.

Therefore the supremum is finite and the integral converges.

For ⇐Ô , notice that f(n) ⩽ f(n − 1). Therefore, the partial sums

Sm ∶=
m

∑
n=N

f(n) = f(N) +
m

∑
n=N+1

∫
n

n−1
f(n) dx ⩽ f(N) + ∫

m

N
dx ⩽ f(N) + ∫

m

N
f dx.

Taking the supremum over m gives

sup
m
Sm ⩽ f(N) + sup

m
∫

m

N
f dx = f(N) + lim

m→∞∫
m

N
f dx = f(N) + ∫

∞

N
f dx <∞.

Therefore the series ∑ f(n) converges, as claimed.

6The summation ∑
n⩾N

is a shorthand notation for
∞
∑
n=N

.
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Chapter 7

Sequences & Series of Functions

7.0 The Moore-Smith Theorem

Recall in Example 0.3 we stated that the interchange of limits can sometimes cause trouble:

If am,n ∶=
m

m + n
then lim

n→∞
lim
m→∞

am,n = 1 ≠ 0 = lim
m→∞

lim
n→∞

am,n.

It turns out that the mere convergence of (am,n)n⩾1 and (am,n)m⩾1 are insufficient for our desired result. Instead,

we need what is called uniform convergence with respect to the other variable, a stronger condition.

Theorem 12.8: Moore-Smith Theorem

Suppose (am,n) is a sequence with two indices, and suppose that there exist sequences (yn)n⩾1, (zn)n⩾1 such

that

(1) (am,n)m⩾1 → zn pointwise, i.e., when n is fixed, the sequence (a1,n, a2,n, ...) converges to zn, and

(2) (am,n)n⩾1 → ym uniformly, i.e.,

Given ϵ > 0, there exists N ∈ N such that ∣am,n − ym∣ < ϵ for all n ⩾ N and for all m.

Alternatively, the condition can be written as sup
m
∣am,n − ym∣ ⩽ ϵ if n ⩾ N .

(Compare the difference between two modes of convergence with two modes of continuity; they bear sim-

ilarities, in particular the choice of N ∈ N and the δ > 0 and what their relation to ϵ and the other

variable.)

Then the limit of the doubly indexed sequence is interchangeable, i.e.,

lim
n→∞

lim
m→∞

am,n = lim
m→∞

lim
n→∞

am,n = lim
n,m→∞

am,n.

(We say g = lim
n,m→∞

am,n is the limit of the doubly indexed sequence if for all ϵ > 0, there exists N ∈ N such that

∣am,n−g∣ < ϵ when m,n ⩾ N . In other words, “the sequence is arbitrarily close to g when both indices are large.”)

Future reference: Uniform convergence and limit points

Proof. (Completed on 4/12.) The prove consists of three steps.
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Step 1. The sequence (ym) converges. The proof uses a very common and useful “ϵ/3” argument (which we will

encounter later too). Since (am,n)n⩾1 → ym uniformly, there exists some N ∈ N such that

∣am,n − ym∣ <
ϵ

3
for all n ⩾ N and for all m. (1)

On the other hand, since (am,N)m⩾1 converges to zN pointwise, they form a Cauchy sequence in particular, so

there also exists a large M ∈ N such that

∣am1,N − am2,N ∣ <
ϵ

3
for all m1,m2 ⩾M. (2)

Combining (2) with (1) with m =m1 and m =m2, we obtain

∣ym1 − ym2 ∣ ⩽ ∣ym1 − am1,N ∣ + ∣am1,N − am2,N ∣ + ∣am2,N − ym2 ∣ < ϵ for m1,m2 ⩾M.

Therefore (ym)m⩾1 is Cauchy in R and therefore converges to some y ∈ R.

Step 2. We now show that y = lim
m,n→∞

am,n, i.e., am,n is close to y when m,n are both large. Easy. Let ϵ > 0 be

given. Since ym → y, there exists M ∈ N such that ∣ym − y∣ < ϵ/2 for m ⩾ M . Also, since (am,n)m⩾1 → ym

uniformly, there exists N ∈ N such that ∣am,n − ym∣ < ϵ/2 for all n ⩾ N and all m. Thus, for m,n ⩾max(M,N),
both conditions are simultaneously satisfied, and so

∣am−n − y∣ ⩽ ∣am,n − ym∣ + ∣ym − y∣ < ϵ.

Step 3. Finally, we show zn → y. From Step 2, we pick K ∈ N such that ∣am,n − y∣ < ϵ for all m,n ⩾ K. If we let

m→∞, then am,n (for this fixed n) converges to zn. Therefore,

∣zn − y∣ = lim
m→∞

∣am,n − y∣ ⩽ ϵ for n ⩾ N

(where < becomes ⩽ by Theorem 5.8). This shows zn → y and concludes the proof of the theorem.

Example 12.9. The sequence am,n ∶= (m + n)2/2mn satisfies

lim
n→∞

lim
m→∞

am,n = lim
m→∞

lim
n→∞

am,n = 0.

Proof. It is clear that am,n → 0 at least pointwise with respect to either variable. By the previous theorem, it suffices

to show that one of the convergence is uniform. (In fact, both are.) Using AM-GM,

∣am,n∣ =
(m + n)2

2mn
⩽ 4(mn)2

2mn

which can be made arbitrarily small, as

lim
x→∞

x2

2x
H= ... H= 0.

Therefore, we just need to make the product of mn sufficiently large to ensure ∣am,n∣ < ϵ. In particular, since n ⩾ 1,

we can pick a sufficiently large m such that mn is always sufficiently large regardless of the value of n. This shows

uniform convergence with respect to m, and the claim follows by Moore-Smith.
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7.1 Introduction – Why Uniform Convergence of Functions?

A short history1 of why we need a stronger mode of convergence of functions called uniform convergence and in

particular why pointwise convergence of functions isn’t sufficient:

(1) In 1821, Cauchy hypothesized that if fn ∶ R → R are continuous and
∞
∑
n=1

fn converges to f pointwise, i.e., if

∞
∑
n=1

fn(x)→ f(x) for all x ∈ R, then f is continuous.

(2) In 1826, Abel provided a counterexample to above: consider the Fourier series of the discontinuous function

f(x) = x/2 on (−π,π) but extended 2π-periodically to R with f(2π) = 0. (The graph consists of parallel line

segments. See graph below.)

It was known that

f(x) = sin(x) = 1

2
sin(2x) + 1

3
sin(3x) − ... =

∞
∑
n=1

(−1)n−1

n
sin(nx).

−3π −2π − π 0 π 2π 3π

−π/2

0

π/2
n = 1
n = 5
n = 50

From this we see that the pointwise limit of a sequence of continuous functions may be discontinuous. We would

also run into problems if we try to differentiate the series term by term, obtaining

cos(x) − cos(2x) + cos(3x) − ...

which diverges for most x, whereas the derivative of f exists almost everywhere and equals to 1/2.

We will now formally introduce the notion of uniform convergence and derive many of its nice properties — for

example, how uniform convergence interacts with limits, series, integrals, and derivatives in ways that (standard)

convergence may fail to.

7.2 Uniform Convergence of Functions

Definition 12.10: Pointwise and Uniform Convergence of Functions

Let (fn)n⩾1 be a sequence of functions. We say that fn ∶ X → Y converges to f ∶ X → Y pointwise if

fn(x) → f(x) for each x ∈ X. We say fn converges to f uniformly (on X)2 if sup
x∈X
∣fn(x) − f(x)∣ → 0.

Equivalently, given ϵ > 0, there exists N ∈ N such that ∣fn(x) − f(x)∣ < ϵ for all x ∈ X and all n ⩾ N . (In

particular, uniform convergence implies pointwise convergence.)

1From my 425b, taught by Prof. Andrew Manion. Lecture notes, sample HWs, and exams can be found on my website.
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To illustrate the difference between convergence and uniform convergence: if fn → f uniformly, then for all large enough

n’s, the corresponding fn’s need to be contained by the “ϵ-tube3” of f , as shown in the left figure. Letting ϵ → 0, it

becomes clear that all x ∈X need to synchronously approach their corresponding limits on f , hence the word “uniform”.

The counterexample provided by Abel clearly fails to satisfy this criterion: near π, every single fn jumps out of the green

ϵ-tube, so the convergence is not uniform, which is (we’ll show soon) precisely why Cauchy’s hypothesis is false.

ϵ

ϵ

A random f n = 1
n = 5
n = 50
n =∞

Example 12.11: Examples Where Convergence isn’t Good Enough.

(1) (Another example that) continuity may fail if only assuming pointwise convergence: define

fn(x) ∶= x2
n

∑
k=0
(1 + x2)−k and f(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x2

1 − 1/(1 + x2)
= 1 + x2 x ≠ 0

0 x = 0

(Note that (1 + x2) > 1 as x ≠ 0, and since −k < 0, the sum forms a geometric series, so indeed

fn(x) → f(x) pointwise.) However, it is clear that although each fn is continuous (they are in fact

C∞, i.e., smooth!), f is not at 0 (not even C1).

−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3
n = 1
n = 50
n = 250
n = 1000
y = 1 + x2

(2) Limit of integral need not equal integral of limit if only assuming pointwise convergence: if

fn(x) ∶= n2x(1 − x2)n on [0,1],

2Notations include fn ⇉ f , but I will instead say “fn → f uniformly” every time to strengthen memory.
3I first saw this in Pugh’s book, and I loved this description. Vivid, intuitive, and self-explanatory.
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then fn(x)→ 0 for all x ∈ [0,1] (see Rudin, Theorem 3.20(d)). However,

∫
1

0
fn(x) dx = n2 ∫

1

0
(1 − x2
²
=∶y

)n dx = n
2

2
∫

1

0
yn dy = n2

2n + 1
→∞,

so this example demonstrates

∫
1

0
lim
n→∞

fn(x) dx = 0 ≠ lim
n→∞∫

1

0
fn(x) dx.

Theorem 12.12: Uniformly Convergent & Cauchy w.r.t. Sup Metric

For the space of real-valued functions on X, we define a metric, called the sup metric, written ∥ ⋅ ∥sup, by

∥f∥sup ∶= sup
x∈X
∣f(x)∣.

Then (think of completeness, i.e., convergence⇔ Cauchy-ness but w.r.t. function norms; we will talk about this

in detail in Theorem 13.3.)

fn → f uniformly ⇐⇒ (fn)n⩾1 forms a Cauchy sequence w.r.t. ∥ ⋅ ∥sup.

In other words, the RHS states that, for all ϵ > 0, there existsN ∈ N such that ∥fn−fm∥ = sup
x∈X
∣fn(x)−fm(x)∣ < ϵ

for all m,n ⩾ N .

Future reference: Uniform convergence & derivatives, Weierstraß M -Test, Arzelá-Ascoli Theorem and its

proof

Proof. We first show ⇐Ô using an ϵ/2 argument. Given ϵ > 0 there exists N ∈ N such that ∥fn − f∥ < ϵ/2 for all

n ⩾ N . Therefore, for m,n ⩾ N , and any x, we have

∣fn(x) − fm(x)∣ ⩽ ∣fn(x) − f(x)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ϵ/2

+ ∣f(x) − fm(x)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ϵ/2

< ϵ.

Therefore, taking supremum over all x, we obtain

∥fn − fm∥sup = sup
x∈X
∣fn(x) − fm(x)∣ ⩽ ϵ.

For ⇐Ô , also let ϵ > 0 be given. By “Cauchy-ness”4, there exists N ∈ N such that

∣fn(x) − fm(x)∣ < ϵ for all x ∈X and all m,n ⩾ N. (∆)

In particular, this means that, for all x, the sequence of real numbers (fn(x))n⩾1 is Cauchy. Since R is complete,

there exists some real number, which we call f(x), such that fn(x) → f(x). Therefore we can define a function f by

setting its value at x to be f(x), the limit of (fn(x))n⩾1.

Taking lim
m→∞

in (∆), we see that fm(x) → f , and since ∣ ⋅ ∣ is continuous, ∣fn(x) − fm(x)∣ → ∣fn(x) − f(x)∣. By

Theorem 5.8, we obtain

∣fn(x) − f(x)∣ ⩽ ϵ for all x ∈X and n ⩾ N.

which proves the uniform convergence.

4I quoted this “Cauchy-ness” because we haven’t taken a rigorous approach to prove the important properties of ∥ ⋅ ∥sup.
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7.3 Uniform Convergence & Continuity

Beginning of April 12, 2021

Theorem 13.1: Uniform Convergence & Limit Points

Suppose that fn → f uniformly (both functions are from X to R). Also suppose that there exists a limit point

x ∈X such that lim
y→x

fn(y) = αn for all n. Then αn → α ∶= lim
y→x

f(y).

Notice that we did not make any assumption on continuity; the α’s only needed to be limit points.

Future reference: Uniform convergence & derivatives, uniform convergence & series

Proof. Let (ym)m⩾1 ⊂ X be any sequence that converges to x. We need to show that f(ym) → α. We define

am,n ∶= fn(ym). By assumption, as m →∞, fn(ym) → αn for all n, so this gives the first condition in Moore-Smith.

The uniform convergence of fn gives the second condition. Therefore by Moore-Smith, lim
n→∞

αn exists and limits are

interchangeable, i.e.,

α = lim
n→∞

αn = lim
n→∞

lim
m→∞

fn(ym) = lim
m→∞

lim
n→∞

fn(ym) = lim
m→∞

f(ym).

Corollary 13.2: Uniform Convergence Preserves Continuity

Following the previous theorem: if in particular fn converges uniformly to f and if each fn is continuous at

x, then f is continuous at x. If each fn is continuous on all of X, then f is continuous on all of f . Continuity

is preserved by uniform convergence!

Future reference: Uniform convergence & series, radii of convergence & derivatives

Corollary 13.3

Let K ⊂ X be a compact set. Then (C(K), ∥ ⋅ ∥sup) [i.e., the space of continuous functions on K with sup

norm as metric] is a complete metric space.

Proof. It is quite easy to show that this is indeed a metric space (directly by definition). Note that since functions

on a compact domain are bounded, the corresponding ∥ ⋅ ∥sup is always finite.

Now for completeness, suppose that (fn) ⊂ C(K) is Cauchy. By Theorem 12.12, fn → f uniformly for some f , and

by the previous corollary, this f is continuous! This concludes the proof.

I would like to include an interlude here, inspired by Pugh’s book, my 425a, and also an exercise from Rudin’s Real

and Complex Analysis (RCA). Since we have shown the superiority of uniform convergence, it is natural to attempt to

“upgrade” convergence to uniform convergence. However, this process turns out to be not easy. Let fn → f pointwise.

(1) Can we upgrade it if fn and f are on a compact domain (recall compactness is nice)? The answer is no. This

should be obvious from the examples plotted before. Compact domain upgrades continuity to uniform continuity

but not convergence to uniform convergence!
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(2) What if in addition we require f to continuous? Still no. For example, Pugh mentiond the growing steeple,

fn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n2x 0 ⩽ x ⩽ 1/n

2n − n2x 1/n ⩽ x < 2/n

0 2/n ⩽ x ⩽ 1.

In other words, the graph of fn connects (0,0), (1/n,n), (2/n,0), and (1,0). See the first figure below. As spikes

keep coming up, there is no way to make fn uniformly close to the zero function, the pointwise limit of fn.

(3) What if in addition we require lim
n→∞∫X

fn dx = ∫
X
f dx? Still no. I have come up with a “modified growing

steeple” while solving a problem from Rudin’s RCA:

fn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(n + 2)(n + 3) 1/(n + 3) ⩽ x < 1/(n + 2)

n 1/(n + 2) ⩽ x < 1/(n + 1)

n(n + 1) − n2(n + 1)x 1/(n + 1) ⩽ x < 1/n

0 1/n ⩽ x ⩽ 1.

The graph of fn connects (0,0), (1/(n + 3),0), (1/(n + 2), n), (1/(n + 1), n), (1/n,0), and (1,0). In addition to

not converging uniformly, the pointwise supremum of fn, sup fn defined by

(sup fn)(x) ∶= sup
n∈N

fn(x)

is “not L1”, meaning that the integral ∫
1

0
sup fn dx is in fact∞, even though lim

n→∞∫
1

0
fn dx→ 0[!]

(4) What if in addition we require fn to be uniformly bounded, i.e., there exists M ∈ R+ such that ∣fn(x)∣ ⩽M for all

x ∈ [0,1] and all n ∈ N? You might have guessed... still no. Consider

fn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

nx 0 ⩽ x ⩽ x < 1/n

2 − nx 1/n ⩽ x < 2/n

0 2/n ⩽ x ⩽ 1.

The graph of fn connects (0,0), (1/n,1), (2/n,0), and (1,0). It is similar to the growing steeples except it is no

longer growing – all of them peak at 1.

0.2 0.4 0.6 0.8 1

1

2

3

4

Growing Steeples

f1
f2
f3
f4

0.2 0.4 0.6 0.8 1

1

2

3

4

5

Growing Steeples, Modified

f1
f2
f3
f4
f5

However, persistence does pay off — what we are missing is monotonicity, and this leads to the following theorem.
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Theorem 13.4: Dini’s Theorem

Let K be compact. Suppose that fn ∶ K → R are continuous and nonincreasing (or monotone decreasing,

i.e., fn ⩾ fn+1). If fn → f for some continuous f ∶K → R, then fn → f uniformly.

To sum up: compact domain + monotone pointwise convergence + continuous limit = uniform convergence.

Proof. WLOG assume f ≡ 0 (otherwise we can consider gn ∶= fn − f whose limit is still the zero function). Let ϵ > 0
and define Kn ∶= {x ∈ K ∶ f(x) ⩾ ϵ}. Since [ϵ,∞) is closed in R and f continuous, the closed set condition implies

that Kn is closed. Since K is compact, we see Kn is also compact (Example 4.1). Also, it is clear that Kn+1 ⊂ Kn,

since fn is monotone decreasing, so if fn+1(x) ⩾ ϵ⇒ fn(x) ⩾ fn+1(x) ⩾ ϵ.
Since for all x, fn(x) < ϵ for sufficiently large n (it needs to converge to 0 and ϵ > 0), so x cannot lie in the infinite

intersection of Kn’s. Since this holds for all x ∈X,

∞
⋂
n=1

Kn = ∅.

By the contrapositive of Corollary 4.4, this implies that someKN (andKN+1, ...) must be empty. Therefore, fn(x) < ϵ
for all x ∈K and n ⩾ N , which is precisely the condition for uniform convergence of fn → f ≡ 0.

Beginning of April 14, 2021

Example 13.5: Dini’s Theorem Fails Without Compact Domain. For x ∈ (0,1), consider

fn(x) ∶=
1

nx + 1
.

It follows that fn → 0 pointwise, fn+1 ⩽ fn, but fn does not converge uniformly to 0. Think of the graph of

1/x. Near zero, the function is close to 1, not 0. To justify rigorously, given ϵ > 0, we have

1

nx + 1
> ϵ if x < 1 − ϵ

nϵ
.
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7.4 Uniform Convergence & Derivatives

To connect uniform convergence with derivatives, we need stronger conditions than what we used previously. First,

a non-example showing that insufficient conditions can lead to undesired results:

Example 13.6. Define fn(x) ∶= n−1/2 sin(nx) for x ∈ R, n ∈ N. It follows that ∣fn(x)∣ ⩽ n−1/2 → 0 as n →∞,

so indeed fn → 0 uniformly as n→∞. However,

f ′n(x) =
√
n cos(nx)

which approaches∞ as n→∞. In particular, the derivatives do not even converge pointwise, not to mention

uniformly.

This is because we cannot control derivatives using only f (or lower-order derivatives).

Theorem 13.7: Uniform Convergence & Derivatives

Let fn ∶ [a, b]→ R be such that

(1) Each fn is differentiable, with f ′n → g uniformly for some g ∶ [a, b]→ R, and

(2) fn converges (pointwise) at least at one point x0.

Then, fn → f uniformly for some f with f ′ = g. In particular, the real number fn(x0) converges to is f(x0).
(Note that convergence at at least one point is necessary here – otherwise we can define fn(x) ≡ n, the

constant functions, which clearly don’t converge to any function, even though their derivatives are uniformly

0.)

To sum up, convergence at one point + uniform convergence of derivatives = preservation of derivatives.

Future reference: Uniform convergence & series

Proof. This proof also uses the “ϵ/3” trick.

Step 1. We first show that fn converges uniformly. Let ϵ > 0 be given. By pointwise convergence at x0 and

uniform convergence of derivatives, there exists N ∈ N such that

(1) (convergence at x0) ∣fn(x0) − fm(x0)∣ < ϵ/2 for all m,n ⩾ N , and

(2) (uniform convergence of derivatives) ∣f ′n(x) − f ′m(x)∣ < ϵ/(2(b − a)) for all m,n ⩾ N and all x.

Then, for all x ∈ [a, b] and m,n ⩾ N , we have

∣fn(x) − fm(x)∣ ⩽ ∣(fn − fm)(x) − (fn − fm)(x0)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣(fn−fm)′(ξ)∣⋅∣x−x0∣ by MVT

+∣(fn − fm)(x0)∣

< ϵ

2(b − a)
(b − a) + ϵ

2
= ϵ.

(The existence of ξ is guaranteed since fn − fm is differentiable.) Therefore fn → f uniformly.

Step 2. We now show that f ′(x) = g(x) for all x ∈ [a, b]. We pick and fix x ∈ [a, b] and define two functions

φn(t) ∶=
fn(t) − fn(x)

t − x
and φ(t) ∶= f(t) − f(x)

t − x
for t ∈ [a, b] − {x}.

Note that as t→ x, φn(t)→ f ′n(x) and φ(t)→ f ′(x) (if it exists).
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First observe that φn → φ uniformly on [a, b] − {x}: for all t ∈ [a, b] − {x},

∣φn(t) − φm(t)∣ =
1

∣t − x∣
∣(fn − fm)(t) − (fn − fm)(x)∣

[MVT] = 1

∣t − x∣
∣(fn − fm)′(ξ)∣ ⋅ ∣t − x∣

which can be made arbitrarily small, as shown in Step 1. Hence φn forms a Cauchy sequence with respect

to ∥ ⋅ ∥sup, and Theorem 12.12 asserts that it converges to some function. Since the numerator converges to

f(t) − f(x), φn converges to φ.

On the other hand, for all n, φn(t)→ f ′n(x) as t→ x.

Note that now we have a sequence of functions φn such that

(1) they converge uniformly to φ, and

(2) there exists a limit point x such that φn(t) converges (to f ′n(x)) as t→ x, for all n.

This means that we can invoke Theorem 13.1 and interchange the limits!

g(x) = lim
n→∞

f ′n(x) = lim
n→∞

lim
t→x

φn(t) = lim
t→x

lim
n→∞

φn(t) = lim
t→x

φ(t) = f ′(x) [so it exists!]

Remark. With an extra assumption that each f ′n is continuous, we can prove the theorem faster.
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7.5 Uniform Convergence & Series

Since series are closely related to sequences, many claims we made on sequences can be translated into series

versions.

Theorem 13.8: Uniform Convergence & Series

(1) If fn ∈ C(X) and ∑
n⩾1

fn converges uniformly (i.e., the partial sums converge uniformly) to some

function S, then

fn(x) ∶= ∑
n⩾1

fn(x)

is continuous (by Corollary 13.2), and Theorem 13.1 applied to Sm ∶=
m

∑
n=1

fn gives

lim
y→x

f(y) = ∑
n⩾1

lim
y→x

fn(y).

(2) If fn ∈ C1([0,1]) [i.e., continuous differentiable], ∑
n⩾1

f ′n [partial sum of derivatives] converges uni-

formly, and ∑
n⩾1

fn converges at some x0 ∈ [a, b], then

f ∶= ∑
n⩾1

fn converges uniformly, f ∈ C1([a, b]), and f ′ = ∑
n⩾1

f ′n.

This is basically Theorem 13.7 but applied to the partial sums.

Future reference: Example 13.11, radii of convergence & derivatives, infinite series for e, Weierstraß’ Mon-

ster

Theorem 13.9: Weierstraß M -Test / Weierstraß Criterion

Consider fn ∶X → R, a sequence of functions. If there exists a convergent series of real numbers ∑
n⩾1

Mk such

that ∥fn(x)∥sup ⩽Mn for each n then ∑
n⩾1

fn converges uniformly (on X, and absolutely as well).

(Heuristically, if ∑Mk converges and dominates ∑ fn, then ∑ fn needs to converge.)

Future reference: Example 13.11, Theorem 13.16, Weierstraß’ Monster

Proof. By Theorem 12.12, ∑ fn converges if and only if the series is Cauchy with respect to ∥ ⋅ ∥sup , i.e., for all ϵ > 0,

there exists N > 0 such that

sup
x∈X
∣

m

∑
k=n+1

fk(x)∣ < ϵ for all m,n ⩾ N.

Since

sup
x∈X
∣

m

∑
k=n+1

fk(x)∣ ⩽ sup
x∈X

m

∑
k=n+1

∣fk(x)∣ ⩽
m

∑
k=n+1

Mk

where the last term can be made < ϵ for large enough m,n according to the CCC, we are done.

Beginning of April 16, 2021
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Example 13.10: Converse of Weiwestraß M -Test is False. We will consider an example where ∑ fn con-

verges uniformly to some function f , but there does not exist a convergent ∑Mk dominating the functions.

We define the characteristic function (also called the indicator function, with notation 1A)

χA(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x ∈ A

0 x ∉ A

and consider

fn(x) ∶=
n

∑
k=1

χ[1/(k+1),1/k](x)
√
x.

(The graph roughly looks like the diagram above, but I only plotted the nonzero parts of each function and

ignored the zero parts, so it only serves as a visual representation.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

∥f − f5∥sup

f1
f2
f3
f4
f5

f −∑5
n=1 fn

Clearly ∥f − fn∥sup → 0, so fn → f ≡
√
x uniformly. However,

∞
∑
n=1

sup
x∈[0,1]

fn(x) =
∞
∑
n=1

1√
n

diverges by Example 6.8.

Example 13.11. Compute
∞
∑
n=1

n

2n
.

Solution. Notice that this looks almost like a geometric series. In fact, if we define fn(x) ∶= xn/2, then

f ′n(1/2) =
n

2n−2
⋅ 1
2
= n

2n
.

To connect derivatives with convergence, we want to use Theorem 13.8.2, so we need to verify (1) convergence of

fn at at least one point and (2) uniform convergence of the derivatives f ′n.

(1) Each fn is clearly differentiable, and in particular fn ∈ C1([0,3/4]). (We chose 3/4 because (i) the geometric

series correpsonding to xn/2 converges if and only if ∣x∣ < 1 and (ii) our special point 1/2 is contained in [0,3/4].)
The convergence at x0 ∶= 0 is clear, as ∑0 = 0.

(2) To show the uniform convergence of f ′n, we invoke the Weierstraß M -test. Since (on [0,3/4])

∣f ′n(x)∣ =
nxn−1

2
⩽ 10(8

7
)
n

⋅ 1
2
⋅ (3

4
)
n−1
⩽ 20

3
(6
7
)
n

∶=Mn,
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we see that ∥f ′n∥ are bounded by a convergent geometric series. (Note the smart choice of numbers here! The key

is that (3/4) ⋅ (8/7) is still < 1, thereby creating a geometric series. The constant 10 is to ensure that n ⩽ 10(8/7)n

on [0,3/4].) Therefore ∑ f ′n converges uniformly on [0,3/4].

Thus, by Theorem 13.8.2,

∞
∑
n=1

f ′n(x) = (
∞
∑
n=1

fn(x))
′
= (1

2
⋅ x

1 − x
)
′
= 1

2(1 − x)2
for all x ∈ [0,3/4].

Taking n ∶= 1/2, we obtain
∞
∑
n=1

n

2n
=
∞
∑
n=1

f ′n(1/2) = 2.
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7.6 Uniform Convergence & Integration

Theorem 13.12: Uniform Convergence & Riemann-Stieltjes Integrals

Suppose fn → f uniformly on [a, b] and each fn ∈R(α) on [a, b]. Then

∫
b

a
f dα = lim

n→∞∫
b

a
fn dα.

(This tells us that (1) f is R-S integrable and (2) the limit of the RHS exists!)

To sum up, uniform convergence + R-S integrability = preservation of R-S integrability.

Proof. The main idea is that as fn gets uniformly close to f , the integral also gets close to that of f . Think of Riemann

integrals for example, in which case the difference is bounded by 2∥fn − f∥sup(b − a).
Let ϵ > 0 be given. By uniform convergence, there exists N > 0 such that

sup
x∈[a,b]

∣fn(x) − f(x)∣ < ϵ for all n ⩾ N.

Since

0 ⩽ ∫
b

a
f dα − ∫

b

a
f dα ⩽ ∫

b

a
2ϵ dα = 2ϵ (α(b) − α(a)) ,

Letting ϵ→ 0, we see that f ∈R(α).
Also, we claim that the RHS integral converges:

∣∫
b

a
f dα − ∫

b

a
fn dα∣ ⩽ ∫

b

a
∣f − fn∣ dα ⩽ ∫

b

a
∣f − fn∣ dα ⩽ ϵ (α(b) − α(a))

where the first ⩽ is by Theorem 11.5. Letting ϵ→ 0, we obtain fn → f as well, which concludes the proof.

Corollary 13.13

A direct consequence of the previous theorem: if f ∶=
∞
∑
n=1

fn converges uniformly on [a, b] and each fn is in

R(α), then

∫
b

a
f dα = ∫

b

a

∞
∑
n=1

fn dα =
∞
∑
n=1
∫

b

a
fn dα,

i.e., uniform convergences allows us to interchange integration and summation operators.

Proof: consider the sequence Sm ∶= ∫
b

a

m

∑
n=1

fn dα.
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7.7 Infinite Taylor Series & Power Series

Previously we have always been analyzing finite Taylor expansions involving a finite sum and a remainder. Now,

having discussed the notion of uniform convergence, we are finally ready to study infinite Taylor series, as done

(unrigorously) in Calc II!

First, let us restate Example 6.17:

Definition 13.14: Power Series

If fn(x) = an(x − x0)n then
∞
∑
n=0

fn =
∞
∑
n=0

an(x − x0)n is a power series centered at x0.

Theorem 13.15: Cauchy-Hadamard Theorem

A power series converges (pointwise) inside its interval of convergence (x0 −R,x0 +R), where

R ∶= 1

lim sup
n→∞

n
√
∣an∣

.

If the denominator is 0, we set R =∞, and if the denominator is∞, we set R = 0. The power series diverges

if x ∈ (−∞, x0 −R) ∪ (x0 +R,∞). If x = x0 −R or x0 +R, the theorem is indeterminate.

For simplicity we will let x0 ∶= 0. (The general case follows right away.)

Theorem 13.16

Suppose ∑anxn converges for x = z ≠ 0. Then:

(1) it converges absolutely for x ∈ (−∣z∣, ∣z∣), and

(2) it converges uniformly on [−a, a] for any a ∈ (0, ∣z∣).

Proof. (1) We want to show that
∞
∑
n=0
∣anxn∣ converges. Indeed, notice that

∞
∑
n=0
∣anxn∣ =

∞
∑
n=0
∣anzn∣ ⋅ ∣x/z∣n ⩽M

∞
∑
n=0
∣x/z
°
<1

∣n for some M > 0.

(Since ∑anxn converges, the tail must converge to zero, i.e., anzn → 0, so the entire sequence (anxn)n⩾1 is

bounded by Lemma 4.12 by M , say.) Since the RHS is a geometric series with ∣x/z∣ < 1, we are done.

(2) For this one, we use the Weierstraß M -test. For all x ∈ [−a, a], we have

∣anxn∣ ⩽M ∣x/z∣n ⩽M
an

∣z∣n
=∶ An

where ∑An is a convergent geometric series. The claim then follows.

Beginning of April 19, 2021
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Corollary 14.1: Radii of Convergence & Derivatives

Suppose f(x) ∶=
∞
∑
n=0

anx
n has a radius of convergence R ∈ (0,∞]. Then:

(1) f ∈ C((−R,R)).

(2)
∞
∑
n=1
(anxn)′ has the same radius of convergence R, and it converges uniformly to f ′ on every compact

interval [−a, a] ⊂ (−R,R). Furthermore, f ′ ∈ C((−R,R)).

(3) Repeating (1) and (2), for all k ∈ N,
∞
∑
n=k
(anxn)(k) has the same radius of convergence and converges

uniformly to f (k) on any [−a, a] ⊂ (−R,R). Also, f (k) ∈ C((−R,R)).

Put informally, power series are infinitely differentiable, i.e., smooth, inside its interval of convergence.

Future reference: Infinite series for e, Taylor’s Theorem (summary)

Proof. (1) The key is to show that f is continuous on [−R + ϵ,R − ϵ] for any ϵ > 0. If a ∈ (0,R), then we can pick

any z ∈ (a,R). Since z is still in the radius of convergence, ∑anxn converges, so by the previous theorem (part

2), [−a, a] ⊂ [z, z] implies uniform convergence on [−a, a]. Since a can be arbitrarily close to R, we conclude

that the series converges uniformly to f on (−R,R). Then since uniform convergence preserves continuity of

series, we conclude that f ∈ C((−R,R)).

(2) By definition

R = 1

lim sup
n→∞

n
√
∣an∣

.

We now compute R′, the radius of convergence of the series of derivatives. Since (anxn)′ = nanxn−1,

R′ = 1

lim sup
n→∞

n
√
∣nan∣

= 1

lim sup
n→∞

n
√
n n
√
∣an∣

.

This is because n
√
n as n1/n = exp((1/n) log(n))5, L’Hôpital’s rule suggests that the exponent (1/n) log(n)

satisfies

lim
n→∞

logn

n

H= lim
n→∞

1

n
= 0,

so lim
n→∞

n1/n = exp(0) = 1. This limit is finite, so we have

lim sup
n→∞

n
√
n n
√
∣an∣ = lim sup

n→∞

n
√
n lim sup

n→∞

n
√
∣an∣ = lim sup

n→∞

n
√
∣an∣.

(For proof, see this excellent answer on Math SE.) Therefore R′ is really just R. Using (1) again, we see that f ′

is also continuous on (−R,R). (f ′ is the limit since (1) the derivatives converge uniformly and (2) the series

of the (original) power series converge at least at the origin. Then use Theorem 13.8.)

(3) Induction!

5Since many steps in the lecture simply said “cf. problem sheet”, I decided to write them for completeness. However, I am assuming some

basic properties of the exponential and logarithmic functions, e.g., ab = exp(b log a) which are not entirely trivial.
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Definition 14.2: Analytic Functions

Let I be an open interval. We say f ∶ I → R is (real) analytic at x0 ∈ I if

There existsR > 0 and (an)n⩾0 ⊂ R such that f(x) =
∞
∑
n=0

anx
n for x ∈ (x0−R,x0+R) ⊂ I.

Note that R > 0, since if R = 0, f(x0) = 1 ⋅ f(x0) + 0 + ... which holds trivially. We say f is analytic in I if f is

analytic at every x0 ∈ I.

Corollary 14.3: Analytic ⇒ Smooth

If f is analytic at x0, then f ∈ C∞(I) for some open interval I containing x0. In particular, this means that if

f is analytic in I then f is smooth on I — being analytic is stronger than being smooth!

Proof. Within the radii of convergence of each point, we can take derivatives, and since the radii does not change,

we can do this as many times as we want.

Example 14.4: Euler Number as an Infinite Taylor Series. Finally, we can show that ex =
∞
∑
n=0

xn

n!
[!]

Proof. Notice that n! easily outgrows xn, so the radius of convergence R =∞. It follows that the series

f(x) ∶=
∞
∑
n=0

xn

n!
∈ C∞(R)

by Corollary 14.1. We will now show that f(x) is precisely ex. Notice that the series converge to f at x = 0. Also, for

any x, since it is in the radius of convergence (of the series and therefore of its derivatives, as they share the same

R), the derivatives converge uniformly. Therefore by Theorem 13.8.2 f ′ is equal to the infinite sum of derivatives.

This gives

f ′(x) =
∞
∑
n=1

nxn−1

n!
=
∞
∑
n=1

xn−1

(n − 1)!
=
∞
∑
n=0

xn

n!
= f(x).

To show that f(x) = ex, it suffices to show that f(x)/ex = 1 for all x. Notice that we have

(f(x)e−x)′ = f ′(x)e−x − f(x)e−x = 0

so f(x)/ex is a constant C. Taking x ∶= 0, we get f(0)e0 = C; since f(0) = e0 = 1, C = 1, and we are done.

Summary of Infinite Taylor Expansions at x0

We now briefly summarize our discussions on Taylor expansions so far.
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(1) Consider f ∈ Cn(I) and let x0 ∈ I. For x ∈ I, the finite Taylor expansion gives

f(x) =
n−1
∑
k=0

f (k)(x0)
k!

(x − x0)k +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (n)(ξ)
n!

(x − x0)n Lagrange form, Theorem 10.4

o ((x − x0)n−1) Peano form, Theorem 10.7

∫
x

x0

f (n)(t)(x − t)
n−1

(n − 1)!
dt integral form, Theorem 12.3.

(2) If, in addition to (1), we also have f ∈ C∞(I), then we define

R ∶= 1

lim sup
n→∞

n
√
f (n)(x0)/n!

.

If R > 0, then the infinite Taylor series f̃(x) ∶=
∞
∑
n=0

f (n)(x0)
n!

(x − x0)n converges on (x0 − R,x0 + R). More

importantly, it converges to a C∞ function f̃(x). (In fact f̃ is analytic by Corollary 14.1.)

(3) Directly from construction we see f̃(x0) = f(x0) and f̃ (k)(x0) = f (k)(x0) for all k ∈ N. However, there is

nothing more we can assert. If we want these equations to hold for x ≠ x0, we need to repeat (1) and (2) at x,

not x0. This is because not all smooth functions are analytic. See the example below.

Example 14.5: A Smooth but Non-analytic Function. Consider the bump function

f(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(−1/x2) x ≠ 0

0 x = 0.

Using the quotient-limit definition of derivative and L’Hôpital’s rule, all derivatives of f are 0, i.e.,

f(0) = f ′(0) = ... = f (n)(0) = ... = 0[!]

Therefore the infinite Taylor expansion gives the zero function, but clearly f is not the zero function! This is

because f is not analytic at 0 (but it is everywhere else).

−5 −4 −3 −2 −1 1 2 3 4 5

−4

−2

2

4
f(x)
f ′(x)
f ′′(x)
f ′′′(x)
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Chapter 8

Some Selected Topics

8.1 ODEs & Banach Contraction Principle

We are now equipped with the knowledge for a sneak peak of ordinary differential equations, ODEs. We are given

a function f of time t, and we are asked to solve for another function x of t, subject to the condition that the rate of

change of x is precisely described by f(t). Also, we are given an initial condition.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d

dt
x(t) = f(x(t))

x(0) = x0
(Eq.14.1)

A most basic example is
d

dt
x(t) = 2x and x(0) = 1. Just by inspection we see that x(t) is x2 +C, the antiderivative

of x. The initial condition implies 02 +C = 1, so C = 1 and our solution is x(t) = x2 + 1.

ODEs are ubiquitous in applications such as chemistry, economics, physics, and so on. They tell us another aspect of

these functions – the rate of change – which, in some situations, are more useful than the functions themselves. For

example, consider a simplified biological model of a forest that only consists of one species of predator and one of

producer, say wolves and deers, for example. If there are too many wolves, they will overhunt the deers, resulting

in a decline of deer population. But then since there are not enough preys, the wolf population starves, resulting

in a decrease in their population too. The deer population would then increase as a result of decreasing number of

predators, and subsequently the wolf population would increase as food sources once become ample. The cycle goes

on, and it is much more convenient to look at the differential equations modelling these phases than the equations

of populations if we want to know what phase the forest is at.

Questions in the theory of ODEs. What kind of functions f and x do we require? Do we want C1? Do we want

D1? When do the solutions exist? When are they locally or globally unique1? The list goes on.

Definition 14.6: Integral Solutions to ODEs

Let f ∈ C(R) [a sufficient but not necessary condition]. We say that x ∈ C([0, T ]) satisfies Equation 14.1 if

x(t) = x0 + ∫
x

0
f(x(s)) dx for all t ∈ [0, T ]. (Eq.14.2)

[Note that f is continuous so the integral is well-defined. Furthermore, x ∈ C1([0, T ]).]
Future reference: Proof of the Picard-Lindelöf Theorem

1The Picard-Lindelöf Theorem analyzes existence and uniqueness under some conditions. This is covered in 425b. Pure magic!
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Beginning of April 21, 2021

Theorem 14.7: Picard-Lindelöf Theorem

If f is Lipschitz with ∣f(x) − f(y)∣ ⩽ L∣x − y∣ for L > 0 and if T < 1/L, then there exists a unique x ∈ C([0, T ])
satisfying the above Equation 14.2. In fact this holds for all T . To be prove later.

Theorem 14.8: Banach Contraction Principle / Banach Fixed-Point Theorem (Banach FPT)

Let (X,d) be a complete metric space, let c be constant satisfying c < 1, and let S ∶X →X be such that

d(S(x), S(y)) ⩽ c ⋅ d(x, y) for all x, y ∈X.

(Such S is called a (strong) contraction; if we only require d(S(x), S(y)) < d(x, y), such S is called a weak

contraction. I will briefly mention an example at the end of this section.) Then there exists a unique fixed

point z ∈X of S, i.e., S(z) = z for some unique z.

Future reference: Devil’s Staircase

Proof. The main idea is to construct a Cauchy sequence using this contractive property of S and then use completeness

of X to show that the sequence converges. Then we will (magically) show that the limit is the fixed point!

For existence, we start by picking any x0 ∈ X, and for n ⩾ 1 we define iteratively xn ∶= S(xn−1) [i.e., the sequence

starts off by (x0, S(x0), S(S(x0)), ...)]. We will show that this sequence is Cauchy.

Let ϵ > 0 be given. For n ⩾ m, we can repeatedly use d(S(x), S(y)) ⩽ c ⋅ d(x, y) and reduce every single term

consisting of d(xk, xk+1) to some power of c times d(x0, x1):

d(xn, xm) ⩽ d(xm, xm+1) + d(xm+1, xm+2) + ... + d(xn−1, xn)

= d(S(xm−1), S(xm)) + d(S(xm) + S(xm+1)) + ... + d(S(xn−2), S(xn−1))

⩽ c ⋅ d(xm−1, xm) + c ⋅ d(xm, xm+1) + ... + c ⋅ d(xn−2, xn−1)

⋮

⩽ cm ⋅ d(x0, x1) + cm ⋅ d(x1, x2) + ... + cm ⋅ d(xn−m−1, xn−m)

⋮

⩽ cm ⋅ d(x0, x1) + cm+1 ⋅ d(x0, x1) + ... + cn−1 ⋅ d(x0, x1).

This is a geometric series, and the sum can can be bounded:

d(xn, xm) ⩽
n−1
∑
k=m

ck ⋅ d(x0, x1) ⩽
∞
∑
k=m

ck ⋅ d(x0, x1) = d(x0, x1) ⋅
cm

1 − c
.

Note that the RHS → 0 as n → ∞, so by picking sufficiently large N (in particular, large enough N satisfying

cN ⋅ d(x0, x1)/(1 − c) < ϵ), we obtain d(xn, xm) < ϵ whenever m > n ⩾ N . Cauchy-ness!

Thus, since (X,d) is assumed to be complete, (xn)n⩾1 converges to some z ∈X. Since

d(S(z), z) ⩽ d(S(z), S(xn)) + d(S(xn), xn+1) + d(xn+1, z)

⩽ c ⋅ d(z, xn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

+d(xn+1, xn+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

+d(xn+1, z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

we see that d(S(z), z) can be bounded above by any positive number [letting n → ∞, the RHS becomes arbitrarily

small, whereas the ⩽ still needs to hold], so d(S(z), z) = 0, as claimed. 2

2Another magical proof that I feel obliged to introduce: S(z) = S( lim
n→∞

xn) = lim
n→∞

S(xn) = lim
n→∞

S(xn+1) = lim
ñ−1→∞

S(xñ) = z, where the
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Uniqueness is obvious: if S(z1) = z1 and S(z2 = z2), then

d(z1, z2) = d(S(z1), S(z2)) ⩽ c ⋅ d(z1, z2),

so d(z1, z2)(1− c) ⩽ 0. Since 1− c ≠ 0 we must have d(z1, z2) = 0, i.e., z1 = z2. After all, if they are apart, S sends them

closer to each other, but how can fixed points move under S?

Back to proving the previous theorem:

Proof of Picard-Lindelöf Theorem. Given a function x of t, we define a new function S(x), often times written as Sx

[because it is a function of time and we need to save the parentheses for Sx(t)] by

Sx(t) ∶= x0 + ∫
t

0
f(x(s)) ds.

(Un)surprisingly, this theorem can be proven by the Banach FCT. Assuming S is a strong contraction, if x is a fixed

point of S, i.e., x = Sx or equivalently x(t) = Sx(t) for all t ∈ [0, T ], then it is a solution to Equation 14.2, and since

Banach FPT asserts the uniqueness of such fixed point, the unique existence of x follows directly.

We shall now show that the conditions for Banach FPT indeed apply. Right away we know that S is a mapping from

C([0, T ]) into itself, as x ∈ C([0, T ]) implies that Sx is also continuous, by Theorem 11.10. Therefore, our work

reduces to verifying that S is a strong contraction.

For all t ∈ [0, T ] and all x, y ∈ C([0, T ]) [continuous functions, inputs of S], we have

∣Sx(t) − Sy(t)∣ = ∣ (x0 + ∫
t

0
f(x(s)) ds) − (x0 + ∫

t

0
f(y(s)) ds) ∣

= ∣∫
t

0
[f(x(s)) − f(y(s))] ds∣ (by Lemma 11.4.1)

⩽ ∫
t

0
∣f(x(s)) − f(y(s))∣ ds (by Theorem 11.5)

⩽ ∫
t

0
L∣x(s) − y(s)∣ ds (by Lipschitz assumption)

⩽ ∫
t

0
L∥x − y∥sup ds = ∥x − y∥sup ⋅Lt ⩽ ∥x − y∥sup ⋅LT. (by Lemma 11.4.2 & .6)

Since we have assumed int he first place that T < 1/L, CL < 1, and thus S is a strong contraction, as claimed. This

completes the proof.

Weak Contraction ⇏ Banach FPT

I would like to end this section by supplementing the discussion of contraction with an example showing that Banach

FPT may not work for weak contractions. To come up with a weak contraction, we consider a mapping a real function

f such that

(1) ∣f(x) − f(y)∣ < ∣x − y∣ for all x ≠ y, but

(2) the quotient ∣f(x) − f(y)∣/∣x − y∣ can be made arbitrarily close to 1 for certain x, y.

Since the quotient resembles the derivative, one natural construction is to design a function f(x) whose derivative never

reaches 1 but nevertheless approaches 1 as x→∞. The easiest example is of course setting the derivative to 1− 1/x. The

antiderivative is x − log(x) +C, and if we define

f ∶ (1,∞)→ (1,∞) by f(x) ∶= x − log(x),
second = is because (S Lipschitz⇒ S continuous) and the fourth by a “change of dummy variable” ñ ∶= n − 1.
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we obtain a weak contraction, but since log(x) ≠ 0 on (1,∞), it is impossible that x = x− log(x), so f does not admit a

fixed point. Another example is an antiderivative of 1 minus the Signoid function (a frequent visitor to my 425a),

f ′(x) ∶= 1 − 1

e + e−x
Ô⇒ f(x) = x − ln(ex + 1) on (−∞,∞).
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8.2 Equicontinuity & the Arzelá-Ascoli Theorem

Recall that we demonstrated just how nice and useful compactness can be, and we have analyzed compact sets

in Euclidean spaces (intervals, boxes, etc). Now, moving to function spaces (e.g., C([a, b])), can we still identify

compact sets?

Definition 14.9: Equicontinuity

Let F be a collection of functions f ∶ X → R. (It is customary to say that F is a family of functions.) We say

F is equicontinuous if they are “equally continuous”:

Given ϵ > 0, there exists δ > 0 such that the ϵ-δ continuity condition holds for all

f ∈ F, i.e., for all x, y ∈X and all f ∈ F, if d(x, y) < δ then ∣f(x) − f(y)∣ < ϵ.

Note that each f is already uniformly continuous given the condition above. The extra assumption that δ works

for all f ∈ F makes the family, in some sense, uniformly uniformly continuous.

Example 14.10. If F consists of Lipschitz functions with Lipschitz constant L, then they are equicontinuous.

(For ϵ > 0 simply take δ ∶= ϵ/L).

Theorem 14.11: Arzelá-Ascoli Theorem

If K is compact and if F ⊂ C(K) (a collection of continuous functions on K) is precompact (i.e., the closure

F of F is compact; the closure is taken with respect to ∥ ⋅ ∥sup, i.e., fn → f if ∥fn − f∥sup → 0) if

(1) F is equicontinuous, and

(2) F is bounded, i.e., there exists M > 0 such that sup
f∈F
∥f∥sup ⩽M , one bound for all f .

For example, if we let F to be the collection of constant functions 1/n, n ∈ N, then it safiesfies (1) and (2) but is

not compact: the zero function is in F − F.

We will prove this remarkable theorem later. For now, we will first see an application.

Remark. The Arzelá-Ascoli Theorem characterizes compact sets of C(K). In particular, it says when we

can extract a uniformly convergent sequence in C([a, b]) (recall that convergence in ∥ ⋅ ∥sup is the same

as uniform convergence of functions by Theorem 12.12). This is similar to how the Heine-Borel Theorem

characterizes compact sets in Rn.

Beginning of April 23, 2021

Example 14.12: Application: Calculus of Variations. The calculus of variations is a field of mathematical

analysis [...] that finds maxima and minima of functionals (real-valued functions).3

Given a continuous function f ∈ C1([0,1]), we define

I[f] ∶= 1

2
∫

1

0
((f ′(x))2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

energy of
the system

+V (f(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

potential

) dx
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where V (y) ⩾ 0 for all y ∈ R.

(For example, think of a heavy, elastic rope hanging on two endpoints. The further it drops down, the higher the

rope’s elastic energy is. In the mean time, as it drops down, the rope has a lower gravitational potential energy.

The system (rope) would always want to minimize its energy, so it needs to find a minimizer of I[f].)
Given a subset Γ ⊂ C1([0,1]), can we minimize I[f] where f ∈ Γ? In other words, is there a u ∈ Γ that

attains the infimum, i.e.,

I[u] = inf
f∈Γ

I[f]?

A minimization problem like this is often (but not always) solved by using compactness.

A baby example of minimization: suppose we are given g ∈ C([0,1]). How can we find a minimizer u ∈ [0,1] satisfying

g(u) = inf
x∈[0,1]

g(x)?

Solution 1. Use compactness and invoke Theorem 8.5 Solution 2. Note that the infimum is a limit point of g([0,1]).Therefore

we can pick a sequence (xn)n⩾1 ⊂ [0,1] such that g(xn) converges to inf g. By the Bolzano-Weierstraß Theorem, we

can extract a subsequence xnk
→ u for some u ∈ [0,1]. Since g is continuous, g(u) is the limit of a subsequence of

(g(xn))n⩾1, so the mother sequence (i.e., (g(xn))n⩾1 itself) must also converge to the same limit (because limits are

unique and the mother sequence converges). Therefore,

g(u) = lim
k→∞

g(xnk
) = inf

x∈[0,1]
g(x).

(We have again used compactness to find a minimizer.) Clearly, for some g, the minimizer needs not to be unique.

Solution. We consider a special case where K > 0 and Γ ∶= {f ∈ C1([0,1]) ∶ ∣f(x)∣ ⩽ K for all x}. Let (fn) ⊂ Γ be

such that

I[fn]→ inf
f∈Γ

I[f].

(In particular I[fn] is a sequence of real numbers.) Since V (y) ⩾ 0, rewriting the original equation of I[f] gives

∫
1

0
(f ′n)2 = 2I[fn] − ∫

1

0
V ⩽ 2I[fn] ⩽ C for some C > 0,

where the last ⩽ is because I[fn] is assumed to be convergent and convergent sequences are bounded.

Also, for all n and all 1 ⩾ t > s ⩾ 0, by FTC part 2 and Cauchy-Schwarz inequality of integral form (this is because

(∫
b

a
∣g(x)∣2 dx)

1/2

define a so-called 2-norm of a function and ∫
b

a
g(x)h(x) dx defines an inner product between

functions g and h), we have

∣fn(t) − fn(s)∣ = ∣∫
t

s
f ′n(x) dx∣ ⩽ ∫

t

s
∣f ′n(x)∣ dx

⩽ (∫
t

s
∣f ′n(x)∣2 dx)

1/2
(∫

t

s
1 ds)

1/2
⩽
√
C
√
t − s.

This shows that (fn)n⩾1 is equicontinuous (for a given ϵ, pick δ ∶= ϵ2/C). Also, (fn)n⩾1 is bounded (because Γ

consists only of bounded functions – continuous functions on compact domain). By Arzelá-Ascoli (which we are

about to show right away), there exists a subsequence (fnk
)k⩾1 that converges to f in ∥ ⋅ ∥sup. It is guaranteed that

3From Wikipedia.
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f ∈ C([0,1]), but there is no guarantee that f ∈ C1([0,1]) (Arzelá-Ascoli gives precompactness, not compactness, if we

do not have further assumption). Therefore we have obtained a candidate f for minimizer. If in addition f ∈ C1 then

it is the minimizer.

Proof of the Arzelá-Ascoli Theorem. Since part of the proof is covered in discussion sessions and omitted by lectures, I

will try to reconstruct them based on the version I learned. They should be mostly the same. For a remarkable theorem

like this, the proof is long and is therefore broken into smaller steps.

Step 1. We first show that if K is compact then it admits a countable dense subset.

Let δn ∶= 1/n and so (δn)n⩾1 forms a sequence. For each δn, we claim that there exist finitely many balls of

radii 1/n that covers K. To see this, first notice that

K = {x ∶ x ∈K} ⊂ ⋃
x∈K

B1/n(x),

so the RHS forms an open cover of K. By covering compactness it admits a finite cover, so

K ⊂
m

⋃
i=1
B1/n(xi)

for some finite m. It follows that K can be covered by finitely many 1/n-balls. We define En ∶= {x1, ..., xm},
the corresponding centers of these 1/n-balls.

Letting n ∈ N vary, we obtain different En’s, but all of them are finite. Taking the countable union of these

finite sets, we obtain a countable collection of points

E ∶=
∞
⋃
i=1
En

and we claim that E is dense in K. Indeed, if x ∈ K then x is contained in some arbitrarily small open balls

(since the balls of this radius cover K), so x is arbitrarily close to the ball’s center, which is a point in E. This

completes Step 1.

Step 2. If (fn)n⩾1 is a bounded sequence with respect to (∥ ⋅ ∥sup), and E ⊂ K is dense, then there exists a subsequence

(fnk
)k⩾1 that converges pointwise at every x ∈ E. The proof is done by using the Bolzano-Weiwestraß Theo-

rem along with Cantor’s diagonalization argument. We first let {ei}i⩾1 be an enumeration of the countable

dense subset E, and we look at the real-valued sequence (fn(e1))n⩾1. Since ∥fn∥sup are (uniformly) bounded

[i.e., one bound for all fn], so is the sequence evaluated at e1. Thus, by Bolzano-Weierstraß there exists a

subsequence (f1,n(e1)) that converges to some y1 ∈ R.

Then, we look at the subsequence f1,n and evaluate them at e2, which forms another bounded real-valued

sequence. By Bolzano-Weierstraß again, there exists a subsequence of f1,n, or a sub-subsequence of fn, which

we call f2,n, such that (f2,n(e2)) converges to some y2 ∈ R. Notice that f2,n not only converges at e2 but also

e1[!]

Doing this iteratively, for each sub-sub-...-subsequence fk−1,n, we can further extract fk,n that converges at

e1, ..., ek.

Finally, we define a diagonal sequence (of functions) (gn)n⩾1 such that g1 is the first element(function) in f1,n,

g2 is the second element in f2,n, and gk is the kth element in fk,n. It follows that (gn) is a subsequence of all

(fi,n)’s, so it converges at e1 as f1,n (and all other sequences) does, at e2 as f2,n does, and at ek as fk,n does.

This means that (gn)n⩾1 converges at all points of E, completing Step 2.

Step 3. This step known as the Arzelá-Ascoli Propagation Theorem. (I will fully state it.)
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If (gn)4is a sequence of equicontinuous functions on X, if E ⊂ X is dense, and if

gn converges pointwise on E, then the pointwise limit on E can be propagated to

some function on all of X, to which (gn) converges uniformly!

Proof of the A-A Propagation Theorem (Step 3). By Theorem 12.12 it suffices to show that (gn) forms a Cauchy

sequence with respect to ∥ ⋅ ∥sup . Let ϵ > 0. By equicontinuity, there exists δ > 0 such that

∣gn(x) − gn(y)∣ <
ϵ

3
for all n ∈ N if d(x, y) < δ (and x, y ∈K). (1)

Also, by Step 1, we are able to cover K by finitely many δ-balls, so let x1, ..., xk ∈ E be such that

K ⊂
m

⋃
i=1
Bδ(xi).

Now, since (gn(x1))n⩾1 converges, it in particular forms a Cauchy sequence, so there exists N1 ∈ N such

that ∣gn(x1) − gm(x1)∣ < ϵ/3 whenever m,n ⩾ N1. Likewise, there exists N2,N3, ...,Nk satisfying the Cauchy

condition respectively. Since there are only finitely many Ni’s, N ∶=max{N1, ...,Nk} is well-defined and finite.

More importantly, we have

∣gn(xi) − gm(xi)∣ <
ϵ

3
for all m,n ⩾ N and xi ∈ {x1, ..., xk}. (2)

Finally, using (1) twice and (2) once, for m,n ⩾ N and any x ∈X, we obtain

∣fm(x) − fn(x)∣ ⩽ ∣fm(x) − fm(xi)∣ + ∣fm(xi) − fn(xi)∣ + ∣fn(xi) − fn(x)∣ <
ϵ

3
+ ϵ
3
+ ϵ
3
= ϵ,

where xi is chosen from {x1, ..., xk} such that d(x,xi) < δ. Therefore, for large m,n, ∥fm − fn∥sup ⩽ ϵ,
completing both the proof of A-A Propagation Theorem and the A-A Theorem itself!

4I chose to write (gn) instead of (fn) to stress the fact that these gn ’s come from the previous step and to avoid potential confusion.
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8.3 The Weierstraß Approximation Theorem

Previously, we have shown that Q is dense in R; by the same token we can easily show that Qn is dense in Rn. Now

that we have shifted our focus to the space of continuous functions, a natural question arises –

Is there a dense and countable subset of C([a, b]), in particular C([0,1])?

Answer: yes!

Theorem 14.13: Weierstraß Approximation Theorem

The set of all polynomials is dense in C([0,1]). In particular, given f ∈ C([0,1]), the Bernstein polynomials

Pn(x) ∶=
n

∑
k=0

f(k/n)(n
k
)xk(1 − x)n−k

approximate f uniformly on [0,1].5

Remark 1. This is a global approximation on the entire interval [a, b], stronger than the Taylor expansion, which

only gives local approximation near some x0.

Remark 2: Probabilistic Interpretation of the Bernstein Polynomials. Before moving to the proof, I would like to

give a probabilistic interpretation of why and how these seemingly arbitrary pn’s approximate f . Let f ∈ C([0,1]) be

given.

(1) Suppose we have a loaded coin with probability p ∈ [0,1] of showing up heads.

(2) Suppose we have a game in which we toss this coin n times. Obviously, the head will show up k times, where k

can be any integer between 0 and n. Whatever k is, we will be awarded f(k/n) amount of money. [For example,

if all were tails, we earn f(0/k) = f(0) amount of money; if all were heads, we earn f(k/k) = f(1).]

(3) In a game of tossing n coins, what would the expected value En(p) be? In other words, how much money, on

average, are we going to earn? A basic formula in probability says we need to sum up the weighted average,

En(p) =
n

∑
k=0
(money earned with k heads) ⋅ (probability of getting exactly k heads).

(4) Translating the above expression into mathematical equation, the probability of getting precisely k heads is

(n
k
)pk(1 − p)n−k.

Thus,

En(p) =
n

∑
k=0

f(k/n)(n
k
)pk(1 − p)n−k. (1)

(5) What happens if n is really large? We digress a bit to think of a very basic example. If we have a fair coin and

we only toss it once, we either get head or tail (assuming it doesn’t land on its side!), so the “head rate” is either

100% or 0%, very far from the 50% as suggested by the name “fair”. However, if we toss this fair coin 100 times

or a million times, it is completely understandable that the “head rate” is going to be much, much closer to 50%.

This is a heuristic example of the Law of Large Numbers, LLN.

5The notation (
n

k
) refers to the binomial coefficient n!/(k!(n − k)!).

135



MATH 425a Notes ∼ YQL 8.3 - The Weierstraß Approximation Theorem Current file: 4-26.tex

Back to our loaded coin – when n is large, it becomes increasingly likely that the head will come up around np

times (number of tosses ⋅ probability). Thus, it becomes increasingly likely that we will be awarded

f(np/n) = f(p) amount of money.

This means that En(p) approaches f(p) as n→∞[!]

(6) Now we can pick another p ∈ [0,1] and do exactly the same thing. Thus, En → f (at least) pointwise on [0,1].
Also notice that each En is indeed a polynomial of degree (⩽)n:

f(k/n)(n
k
)

is really just some fixed constant once n and k have been prescribed, and pk(1 − p)n−k is a polynomial of degree

(⩽)n. Then
n

∑
k=0

simply adds up these polynomials.

To facilitate probabilistic intuition, I used the letter p and E to denote probability and expectation. Now we shall

go back to proving our Weierstraß Approximation Theorem, adopting the notation Pn(x) rather than En(p).

Proof of the Weierstraß Approximation Theorem. For notational convenience, we will write rk(x) to denote “the

probability of exact k heads showing up among n tosses of a loaded coin with head probability x”, i.e.,

rk(x) ∶= (
n

k
)xk(1 − x)n−k.

Step 1. We shall first derive some equations involving rk(x), which will be useful later on.

Using the binomial identity, for x, y we have

(x + y)n =
n

∑
k=0
(n
k
)xkyn−k. (2)

Taking
d

dx
on both sides and multiplying by x, we obtain

nx(x + y)n−1 =
n

∑
k=0
(n
k
)kxkyn−k. (3)

Taking
d2

dx2
on both sides of (2) and multiplying by x2, we obtain

n(n − 1)x2(x + y)n−2 =
n

∑
k=0
(n
k
)k(k − 1)xkyn−k. (4)

Setting y ∶= 1 − x, (2), (3), and (4) give us

n

∑
k=0

rk(x) = 1
n

∑
k=0

krk(x) = nx and
n

∑
k=0

k(k − 1)rk(x) = n(n − 1)x2. (5)

Therefore, by (5),

n

∑
k=0
(k − nx)2rk(x) =

n

∑
k=0

k2rk(x) −
n

∑
k=0

2knx ⋅ rk(x) +
n

∑
k=0

n2x2rk(x)

=
n

∑
k=0
[k(k − 1) + k] rk(x) − 2nx

n

∑
k=0

krk(x) + n2x2
n

∑
k=0

rk(x)

= n(n − 1)x2 + nx − 2nx2x2 + n2x2 = nx(1 − x). (6)
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(That
n

∑
k=0

rk(x) = 1 is a direct consequence of the fact that the probability of all events is 1;
n

∑
k=0
(k−nx)2rk(x) is

called the 2nd central moment, or the variance, and in this case it’s the variance of the binomial distribution

B(n,x).)

Step 2. Now we proceed to the main step of the proof. Let ϵ > 0 be given. Since f is continuous on the compact

domain [0,1], it is uniformly continuous by Theorem 8.11 and bounded by Lemma 8.4. Therefore, uniform

continuity says there exists some δ > 0 such that ∣f(x) − f(x′)∣ < ϵ/2 for all x,x′ ∈ [0,1] with ∣x − x′∣ < δ, and

boundedness says there exists there exists M such that ∣f(x)∣ ⩽M for all x ∈ [0,1].

Let N ⩾M/(ϵδ2) be a sufficiently a large integer. We claim that if n ⩾ N then ∣Pn(x)−f(x)∣ < ϵ for all x ∈ [0,1].

Notice that we can re-write f(x) as f(x)
n

∑
k=0

rk(x) by (5). Then,

∣Pn(x) − f(x)∣ = ∣
n

∑
k=0

f(k/n)(n
k
)rk(x) −

n

∑
k=0

f(x)rk(x)∣

= ∣
n

∑
k=0
(f(k/n) − f(x))rk(x)∣

⩽
n

∑
k=0

∣x− k
n<δ∣

∣(f(k/n) − f(x))rk(x)∣ +
n

∑
k=0

∣x− k
n⩾δ∣

∣(f(k/n) − f(x))rk(x)∣ for convenience, denote as ∑
1

&∑
2

6

<∑
1

(ϵ/2)rk(x) +∑
2

2Mrk(x) ϵ/2 by uni. cont; 2M b/c bounded

⩽ ϵ
2
+∑

2

2M ⋅ ∣k − nx∣
2

(nδ)2
since 1 ⩽ ( ∣k/n − x∣

δ
)
2

= ∣k − nx∣
2

(nδ)2

⩽ ϵ
2
+ 2M

(nδ)2∑2
∣k − nx∣2rk(x)

⩽ ϵ
2
+ 2M

nδ2
x(1 − x) since ∑

2

⩽ ∑
1+2
⩽ nx(1 − x) by (6)

⩽ ϵ
2
+ 2M

nδ2
⋅ 1
4
= ϵ
2
+ M

2nδ2
< ϵ
2
+ ϵ
2
= ϵ for sufficiently large n.

Corollary 15.1

Even better, C([a, b]) admits a countable dense subset

P ∶= {polynomial with rational coefficients}.

Proof. By the previous theorem, we know at least that there exists a polynomial (of real coefficients) Pn(x) =
anx

n + ... + a0 such that

∥Pn − f∥sup <
ϵ

2
.

Now we need to find a polynomial with rational coefficients that is sufficiently close to Pn. We pick rationals q0, ..., qn ∈
Q such that

∣qk − ak ∣ <
ϵ

2(n + 1) sup{xk ∶ x ∈ [a, b]}
.

6Recall how we used the “splitting the sum” trick in Theorem 11.3?
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We claim that the polynomial defined by Qn(x) ∶= qnxn + ... + q0 is the one we are looking for:

∣Qn(x) − Pn(x)∣ = ∣(qn − an)xn + ... + (q0 − a0)∣

⩽ ∣(qn − an)xn∣ + ... + ∣q0 − a0∣

< ϵ

2(n + 1)
xn

sup{xn ∶ x ∈ [a, b]}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽1

+ ... + ϵ

2(n + 1)
< ϵ
2
.

Thus ∥Qn − Pn∥sup ⩽ ϵ/2 and triangle inequality gives ∥Qn − f∥sup < ϵ.
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8.4 Function Algebra & the Stone-Weierstraß Theorem

Having shown that the family of polynomials are dense in (C([a, b]), ∥ ⋅ ∥sup), our next question is, are there other

families of functions that are also dense in this space? Maybe trig functions, for example?

Definition 15.2: Function Algebra

We call a family A of functions a function algebra on K ([a, b] or any compact domain) if:

f + g ∈ A af ∈ A, and fg ∈ A for all f, g ∈ A and a ∈ R.

(The product fg is defined by (fg)(x) ∶= f(x)g(x), not in other ways.)

Example 15.3.

(1) The set of all polynomials is a function algebra on any [a, b].

(2) C(K), where K is compact, is a function algebra.

(3) The set of all affine functions (of form ax + b, “translation of linear functions”) is not a function

algebra: x ⋅ x = x2 which is not affine, for example.

Definition 15.4

Let A be a function algebra on K and fix some point p ∈K.

(1) We say A vanishes at p if f(p) = 0 for all f ∈ A.

(2) We say A separates points if for each distinct pair of points p1, p2 ∈ K, there exists f ∈ A such that

f(p1) ≠ f(p2).

Theorem 15.5: Stone-Weierstraß Theorem

If A is a function algebra on K that vanishes nowhere and separates points, then A is dense in C(K).
This is an equally remarkable theorem! Unfortunately we are running out of time, so the proof is omitted. See

Rudin’s Theorem 7.32 or Pugh’s Theorem 4.20, for example.

Remark. There is an analogous version for complex functions, in which we need to replace “function

algebra” by a C-function algebra: closed under sums, C-scalar multiples, function multiplication, and in

addition complex conjugation, i.e., if f ∈ A then f ∈ A where f(x) ∶= f(x).

Example 15.6. The trigonometric polynomials are dense in C([a, b]). The trig polynomials are of form

Tn(x) =
n

∑
k=0

ak sin(kx) + bk cos(kx).
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8.5 Devil’s Staircase

Beginning of April 28, 2021

Now we finally have enough knowledge to analyze Example 0.2 rigorously.

Example 15.7: Devil’s Staircase / Cantor Function. The construction of Devil’s Staircase is done itera-

tively. We let f0(x) ∶= x on [0,1]. Then we let

fn+1(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fn(3x)/2 x ∈ [0,1/3]

1/2 x ∈ (1/3,2/3)

1/2 + fn(3x − 2)/2 x ∈ [2/3,1].

We claim that these fn’s converge to some limit function f , and this limit is the Devil’s Staircase.
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1

Existence

By construction, f0 ∈ C([0,1]) and so is each fn. Notice that ∥fn+1 − fn∥sup ⩽ ∥fn − fn−1∥sup/2:

(1) If x ∈ [0,1/3] then

∣fn+1(x) − fn(x)∣ = ∣
fn(
∈[0,1]
ª
3x)
2

− fn−1(
∈[0,1]
ª
3x)

2
∣ ⩽
∥fn − fn−1∥sup

2
.

(2) If x ∈ (1/3,2/3) then ∣fn+1(x) − fn(x)∣ = 0.

(3) If x ∈ [2/3,1] then again

∣fn+1(x) − fn(x)∣ = ∣
fn(

∈[0,1]
³¹¹¹¹¹·¹¹¹¹µ
3x − 2)
2

− fn−1(

∈[0,1]
³¹¹¹¹¹·¹¹¹¹µ
3n − 2)
2

∣ ⩽
∥fn − fn−1∥sup

2
.

This should remind us of the Banach FPT. In fact, if we define a mapping S ∶ C([0,1])→ C([0,1]) by

S(fn) ∶= fn+1

then (fn) is Cauchy in C([0,1]). Therefore there exists a f ∈ C([0,1]) to which fn converges uniformly! The limit is

what we define to be the Devil’s Staircase (and it is a fixed point of S, which shows that f has a fractal, self-similar

property: if we only look at f on [0,1/3] and scale it, we can recover f).

Uniform Continuity and Monotonicity

Since each fn is continuous and they converge uniformly, the limit f is also continuous, and since the domain [0,1]
is compact, we see that the Devil’s Staircase, despite its fractal appearance, is uniformly continuous!
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Since f is the pointwise limit of a sequence of nondecreasing functions, it is also nondecreasing.

Also, f is constant outside the Cantor Set C. Notice that the complement [0,1] − C is the union of the open

“middle-third” intervals:

[0,1] − C =
∞
⋃
k=1

2k−1

⋃
i=1

Ik,i = I1,1 ∪ I2,1 ∪ I2,2 ∪ ... ∶= (
1

3
,
2

3
)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
first iteration

∪

second iteration
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1
9
,
2

9
) ∪ (7

9
,
8

9
)∪ ...

By construction, all intervals are pairwise disjoint! The first interval has length 1/3, the second and third together

have 2 ⋅ 1/32, the next 4 together have 22/33, so the total length is given by the geometric series

Total length =
∞
∑
k=1

2k−1

3k
= 1

3

∞
∑
k=0
(2
3
)
k

= 1. (1)

This shows that f is constant “almost everywhere” yet somehow f(0) = 0 and f(1) = 1[!]

Differentiability

We will now show that f is not differentiable. In particular, it is not differentiable at 2/3, for example.

Proof. Suppose f ′(2/3) exists. Then in particular the right limit

lim
x→2/3+

f(x) − f(2/3)
x − 2/3

exists. Recall that f is a fixed “point” of S, i.e., S(f) = f , so we can rewrite f(x) as Sf(x) [or [S(f)](x), but we

drop the parentheses for convenience]. Using the definition for x ∈ [2/3,1], this gives

f(x) = 1

2
+ f(3x − 2)

2
.

Also, f(2/3) = 1/2. Therefore,

lim
x→2/3+

f(x) − f(2/3)
x − 2/3

= lim
x→2/3+

f(3x − 2)/2
x − 2/3

= lim
x→2/3+

3

2

f(3x − 2)
3x − 2

. (2)

Defining y ∶= 3x − y, (2) is equivalent to
3

2
⋅ lim
y→0+

f(y)/y. We claim that such limit does not exist. Consider yn ∶= 3−n,

which gives

f(yn)
yn

= Sf(
∈[0,1/3]
ª
yn )
yn

= f(
=yn−1«
3yn)/2
yn
¯
=3yn−1

= 3

2

f(yn−1)
yn−1

= ... = (3
2
)
n f(1)

1
= (3

2
)
n

,

so as n→∞, f(yn)/yn also →∞. Therefore the limit does not exist!

It turns out that, for a weird example like the Devil’s Staircase, uniform continuity is not good enough. It is missing

what is called the —

Absolute Continuity
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Definition 15.8: Absolute Continuity

We say f ∶ I → R is absolutely continuous if

Given ϵ > 0, there exists δ > 0 such that any finite collection of pairwise disjoint

intervals (xk, yk) ⊂ I satisfies the following ϵ-δ condition:

n

∑
k=1
∣yk − xk ∣ < δ Ô⇒

n

∑
k=1
∣f(yk) − f(xk)∣ < ϵ.

(In other words, we generalize the notion of ϵ-δ condition to beyond just one open interval.)

It is clear that absolute continuity ⇒ uniform continuity: if the absolute continuity condition holds, then of

course it holds for a single open interval, which is precisely the condition for uniform continuity. The converse,

however, is false —

Theorem 15.9: Devil’s Staircase is Not Absolutely Continuous

The Devil’s Staircase is uniformly but not absolute continuous, thereby serving as a counterexmple to the⇍
direction above.

Proof. The following diagram basically illustrates the proof: with the green segments removed, the remaining

intervals has shorted length, but∑∣f(yk) − f(xk)∣ is still 1, as f is constant on every single green segment.

0 1
9

2
9

1
3

2
3

7
9

8
9

1

0.25

0.5

0.75

1

To put formally, let us take ϵ ∶= 1/2. We claim that no δ works! By (1), for any δ > 0, however small, we can find a

sufficiently large N such that
1

3

N

∑
k=0
(2
3
)
k

,

the total length of all “middle-third” intervals is sufficiently sloe to 1 (> 1 − δ, in particular). If we take away

these finitely many “middle-third” intervals (the green ones in the figure), the remaining ones have total length

< δ. However, these removed intervals have no effect on ∑∣f(yk) − f(xk)∣ as f is constant on all of them. Hence

∑∣f(yk) − f(xk)∣ = 1 > ϵ, even though δ is small. Thus no δ works, i.e., f is not absolutely continuous.
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8.6 Weierstraß’ Monster

Having just studied the Devil, we now conclude the course with a monster[!]

Theorem 15.10: Weierstraß’ Monster

There exists f ∈ C(R) that is nowhere[!] differentiable.

When Weierstraß first published this result in 1872, his contemporaries denounced such construction and consid-

ered it a monster. Henri Poincaré griped that it was “an outrage against common sense,” and Charles Hermite

famously wrote:

I turn with terror and horror from this lamentable scourage of continuous functions with no derivatives.

While the original Weierstraß’ monster involves an infinite series of transcendental functions (cosines), we will

investigate a purely algebraic one, as seen in both Rudin’s Theorem 7.18 and Pugh’s Theorem 4.31.

The main idea is simple — we will add up some sawtooth functions to make the partial sum non-differentiable at

more and more points, eventually resulting in all of R.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

Zoom in to see its craziness! This graph consists of 47 + 1 = 16385 data points. This (and almost all other diagrams

in this notes) is a vector graph and zooming in will not blur the image, only to make it clearer.

Construction of the Monster

We begin with a sawtooth function φ0(x) defined by

φ0(x) ∶= ∣x − 2n∣ for x ∈ [2n − 1,2n + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − 2n x ∈ [2n,2n + 1)

2n + 2 − x x ∈ [2n + 1,2n + 2)

The graphs clearly illustrates why it is called the “sawtooth function”. Next, we define φn(x) iteratively by

φn(x) = (
3

4
)
n

φ0(4nx).

Below are the graphs for φ0, φ1, φ2, and φ3 on [−2,2]. The exponential growth is just scary...
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We define the monster function to be

f(x) ∶=
∞
∑
n=0

φn(x) =
∞
∑
n=0
(3
4
)
n

φ0(4nx).

I have plotted n = 1,2,3, and n = 5; the graphs below are put in this order. (The one above is n = 6.)
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Continuity and Differentiability

By the Weierstraß M -Test, each φn is bounded by Mn ∶= (3/4)n, so ∑φn converges uniformly to f . Then, since each

φn is continuous, Theorem 13.8.1 asserts that the limit f is continuous.

Now we show that f is nowhere differentiable. We pick x ∈ R and show that, by setting δm ∶= ±4−m/2, the quotient

f(x + δm) − f(x)
δm

blows up (just like the 3−n sequence in Devil’s Staircase). The sign of δm is determined by requiring that no integer

lies in the interval between 4mx and 4m(x + δm) = 4mx ± 1/2. (This is always possible!)

Next, we define

γn ∶=
φ0(4n(x + δm)) − φ0(4nx)

δm

(so the quotient (f(x + δm) − f(x))/δm is just ∑γn). Now we bound γ accordingly:

(1) If n >m, then 4nδm = 4n−m/2 is an even integer. Since φ0 is 2-periodic (i.e., periodic with period 2; check the

first sawtooth graph), φ0(4nx + 4nδm) = φ0(4nx), so the numerator = 0 and γn = 0.

(2) If n =m, 4nδm is precisely 1/2, so in this case

∣γn∣ = ∣
1/2

4−m/2
∣ = 4m.
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(3) Finally, if n <m, notice that φ0 is Lipschitz with Lipschitz constant = 1. Then,

∣φ0(4n(x + δm)) − φ0(4nx)∣ ⩽ ∣4n(x + δm) − 4nx∣ = 4nδm.

Therefore ∣γn∣ ⩽ 4nδm/δm = 4n.

Finally, using (reverse) triangle inequality ∣a +∑ bi∣ ⩾ ∣a∣ −∑∣bi∣, we have

∣f(x + δm) − f(x)
δm

∣ = ∣
m

∑
n=0
(3
4
)
n

γn∣

[∆] ⩾ (3
4
)
m

∣γm∣
±
=4m

−
m−1
∑
n=0
(3
4
)
n

∣γn∣
°
⩽4n

⩾ 3m −
m−1
∑
n=0

3n = 3m − 1 − 3m

2
= 3m − 1

2

which blows up as n→∞. Therefore f ′(x) exists nowhere, and we are done!!
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