

Math 425A Problem Sheet 2 (due 9am on Monday, 13th Sep)

Essential problems

1. (3 pts) Let X be a subset of \mathbb{R} . We say that $x \in X$ is *semi-isolated* if there exists a number $\varepsilon > 0$ such that at least one of the intervals $(x - \varepsilon, x)$ and $(x, x + \varepsilon)$ is disjoint with X . Prove that the set of semi-isolated points of X is at most countable. Give an example of a bounded subset of \mathbb{R} with infinitely many semi-isolated points.

2. (5 pts)

- (a) Show that \mathbb{Q} is dense in \mathbb{R} , that is for every $x \in \mathbb{R}$, $\varepsilon > 0$ there exists $q \in \mathbb{Q}$ such that $q \in (x - \varepsilon, x + \varepsilon)$.
(Hint: Use Example 1.17)
- (b) Set $k \in \mathbb{N}$. Deduce from (a) that \mathbb{Q}^k is *dense* in \mathbb{R}^k , that is for every $x \in \mathbb{R}^k$, $\varepsilon > 0$ there exists $q \in \mathbb{Q}^k$ such that $q \in B(x, \varepsilon) := \{y \in \mathbb{R}^k : |x - y| < \varepsilon\}$ (the *open ball centered at x of radius ε*).
- (c) Fix $y \in \mathbb{R}^k$ and an open ball $B(x, r) \subset \mathbb{R}^k$ containing y (i.e. such that $|x - y| < r$). Show that there exists an open ball $B(\tilde{x}, \tilde{r})$ such that $\tilde{x} \in \mathbb{Q}^k$, $\tilde{r} \in \mathbb{Q}$ and $y \in B(\tilde{x}, \tilde{r}) \subset B(x, r)$.
- (d) Let E be a subset of \mathbb{R}^k , and let $\{B_\alpha\}_{\alpha \in A}$ be an uncountable collection of open balls $B_\alpha \subset \mathbb{R}^k$ that covers E , i.e.

$$E \subset \bigcup_{\alpha \in A} B_\alpha$$

and A is uncountable. Show that there exists a countable subcollection that still covers E , i.e. that there exists a countable subset $A_0 \subset A$ such that $E \subset \bigcup_{\alpha \in A_0} B_\alpha$. *(Hint: Consider the family of all open balls in \mathbb{R}^k with centers in \mathbb{Q}^k and rational radii, and use (c).)*

*(Comment: Question 2(d) shows that, for **any set** in \mathbb{R}^k , we can extract a countable subcover from any given open cover. One should compare this fact with the notion of a compact set.)*

3. (2 pts)

- (a) Use the Cauchy-Schwarz inequality to show that $x + y \leq \sqrt{x^2 + 1}\sqrt{y^2 + 1}$ for all $x, y \in \mathbb{R}$.
- (b) Deduce from (a) that

$$\sqrt{a^2 - 1} + \sqrt{b^2 - 1} + \sqrt{c^2 - 1} \leq \frac{ab + bc + ca}{2}$$

for all $a, b, c \geq 1$.

Additional problems

4. (1 pt) Use question 2(a) to show that the irrational numbers (i.e. $\mathbb{R} \setminus \mathbb{Q}$) are dense in \mathbb{R} .

5. (1 pt) Use the Cauchy-Schwarz inequality to prove the inequality between the arithmetic and quadratic means,

$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \geq \frac{a_1 + a_2 + \dots + a_n}{n} \quad \text{for all } a_1, \dots, a_n \geq 0.$$

When does this inequality becomes an equality?

6. (1 pt) Let $a_1, \dots, a_n > 0$ be given. Find

$$\min \left\{ \sum_{k=1}^n a_k x_k^2 : x_k \in \mathbb{R} \text{ for all } k = 1, \dots, n, \text{ and } \sum_{k=1}^n x_k = 1 \right\}.$$

7. (1 pt) Show that

$$||x| - |y|| \leq |x - y| \quad \text{for all } x, y \in \mathbb{R}^k, k \in \mathbb{N}.$$

Deduce that $|\sqrt{a^2 + b^2} - \sqrt{b^2 + c^2}| \leq |a - c|$ for all $a, b, c \in \mathbb{R}$.

8. (1 pt) Show that $|z + iw|^2 + |w + iz|^2 = 2(|z|^2 + |w|^2)$ for all $z, w \in \mathbb{C}$, and deduce that $|z + iw|^2 \leq 2(|z|^2 + |w|^2)$.

9. (1 pt) Find all solutions of the equation $z^2 - 2z + 10 = 0$ in \mathbb{C} . (*Comment: this question demonstrates an important property of the complex field \mathbb{C} that every n -th degree (real or complex) polynomial has exactly n roots in \mathbb{C} (counting multiplicity). This is known as the Fundamental Theorem of Algebra and as the fact that \mathbb{C} is an algebraically closed field. (Recall that a real polynomial of degree n has at most n real roots.)*)

10. (1 pt) Let $\{B_\alpha\}_{\alpha \in A}$ be any collection of pairwise disjoint open balls in \mathbb{R}^2 . Show that A is at most countable.

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.
Email address: ozanski@usc.edu