

Math 425A Problem Sheet 5 (due 9am on Monday, 4th Oct)

Essential problems

1. (3 pts) Let $a_0 := 2021$ and

$$a_{n+1} := \frac{1}{2} \left(a_n + \frac{1}{a_n} \right).$$

Show that a_n converges (in \mathbb{R}) and find the limit.

2. (3 pts) Let $q \in \mathbb{Q}$. Find the set of limit points (recall (5.2)) of the sequence $(x_n) \subset \mathbb{R}$, where

$$x_n := nq - [nq].$$

(Here $[y] := \sup\{m \in \mathbb{N} : m \leq y\}$ denotes the “floor function”.) Find $\limsup_{n \rightarrow \infty} x_n$ and $\liminf_{n \rightarrow \infty} x_n$.
(Hint: Use the division algorithm, recall the solution to Ex. 5.12, for example.)

3. (4 pts) Let $(x_n), (y_n) \subset \mathbb{R}$ be sequences bounded below.

(a) Show that

$$\limsup_{n \rightarrow \infty} (x_n + y_n) \leq \limsup_{n \rightarrow \infty} x_n + \limsup_{n \rightarrow \infty} y_n.$$

(b) Give an example of a pair of sequences $(x_n), (y_n)$ for which the inequality in (a) is sharp (i.e. it holds with “ $<$ ”).
(c) Show that if (x_n) converges (i.e. $\lim_{n \rightarrow \infty} x_n = x$ for some $x \in \mathbb{R}$) then the inequality in (a) becomes an equality, i.e. $\limsup_{n \rightarrow \infty} (x_n + y_n) = x + \limsup_{n \rightarrow \infty} y_n$.
(d) State and prove an analogous (to (a)) claim about the lower limit. *(Hint: you may use question 7 below.)*

Additional problems

4. (1 pt) Prove the analogue of Ex. 4.13 and the squeeze theorem (Cor. 5.9) for infinite limits in \mathbb{R} , i.e. show that:

(a) If $x_n \rightarrow x \in \mathbb{R}$ and $y_n \rightarrow +\infty$ then $x_n + y_n \rightarrow +\infty$.
(b) If $x_n \rightarrow -\infty$ and $y_n \rightarrow +\infty$ then $x_n y_n \rightarrow -\infty$. *(Comment: note that this is what we (almost) used in the solution to Ex. 5.2.)*
(c) If $x_n \rightarrow -\infty$ and $m \in \mathbb{N}$ then $x_n^m \rightarrow +\infty$ (if m is even) or $x_n^m \rightarrow -\infty$ (if m is odd),
(d) If $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $a_n \rightarrow \infty$, then $b_n \rightarrow \infty$.

5. (1 pt) Let $x_1 := 1$ and $x_{n+1} := 2 \left(2 - \frac{5}{x_n + 3} \right)$ for $n \geq 1$.

(a) Use induction to prove that $x_n \in (0, 2)$ for all $n \geq 1$.
(b) Deduce that x_n is nondecreasing.
(c) Use Theorem 5.1 to show that x_n converges, and find the limit. *(Hint: use the conclusion of question 8 below.)*

6. (1 pt) Find the set of limit points (recall (5.2)), $\liminf_{n \rightarrow \infty}$ and $\limsup_{n \rightarrow \infty}$ of the following sequences

(a) $a_n := \frac{2n^2}{7} - \left[\frac{2n^2}{7} \right]$,

(b) $b_n := \frac{1}{2} (n - 2 - 3 \lceil \frac{n-1}{3} \rceil) (n - 3 - 3 \lceil \frac{n-1}{3} \rceil)$,
 (c) $c_n := (-1 - \frac{1}{n})^n + \sin \frac{n\pi}{4}$.

7. (1 pt) Show that

$$\limsup_{n \rightarrow \infty} (-x_n) = -\liminf_{n \rightarrow \infty} x_n.$$

8. (1 pt) Let (x_n) be a sequence of positive real numbers. Show that

$$\liminf_{n \rightarrow \infty} \frac{1}{x_n} = \frac{1}{\limsup_{n \rightarrow \infty} x_n}.$$

(Here we use the convention that $\frac{1}{+\infty} = 0^+$ (i.e. 0 approached by nonnegative numbers) and that $\frac{1}{0^+} = +\infty$.)
 Deduce that if $x_n \rightarrow x$ for some $x \in \mathbb{R} \setminus \{0\}$ then $\frac{1}{x_n} \rightarrow \frac{1}{x}$.

9. (1 pt) Let $(x_n) \subset (0, \infty)$ be a sequence such that $x_n \rightarrow \infty$. Prove that

$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{x_n}\right)^{x_n} = e,$$

where e is the Euler number (recall (5.1)). (*Hint: If (x_n) is a sequence of integers apply Ex. 5.3. If not consider the sequence $([x_n])$, and use some inequalities (you can use the fact that exponential functions are monotonic (i.e. $a^x \leq a^y$ for $a > 0$, $x < y$)) to apply the squeeze theorem (Cor. 5.9).)*)

10. (1 pt) Let $m \in \mathbb{N}$. Prove that

$$\lim_{n \rightarrow \infty} \left(1 - \frac{m}{n}\right)^{-n} = e^m.$$

(*Hint: Use question 9 and Ex. 4.13.4.*)

11. (1 pt) Show that $\sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$. (*Hint: Try a similar idea as in Ex. 5.10.*)

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.
 Email address: ozanski@usc.edu