

Math 425A Problem Sheet 6 (due 9am on Wednesday, 13th Oct)

Essential problems

1. (4 pts) Suppose that (x_n) is a sequence such that

$$\lim_{n \rightarrow \infty} ((x_1 + 1)(x_2 + 1) \dots (x_n + 1)) = y,$$

where $y > 0$ or $y = +\infty$. Show that

$$\sum_{n \geq 1} \frac{x_n}{(x_1 + 1)(x_2 + 1) \dots (x_n + 1)} = 1 - \frac{1}{y},$$

where we use the convention that $\frac{1}{+\infty} = 0$. (*Hint: Use the fact that $x_n = (x_n + 1) - 1$ to obtain an explicit formula for S_n (the partial sum).*) Use this fact to find the sum of

$$\sum_{n \geq 1} \frac{2n-1}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}.$$

2. (3 pts) Show that

$$\sum_{n \geq 1} \frac{1}{(2n-1)^2} = \frac{3}{4} \sum_{n \geq 1} \frac{1}{n^2}.$$

3. (3 pts) Determine whether the series

$$\sum_{n \geq 1} \frac{n^n}{e^n n!}$$

converges. (*Hint: use question 5 below and the fact that (y_n) from Ex. 5.3 is decreasing.*)

Additional problems

4. (1 pt) For each of the following series determine whether or not it converges.

$$\begin{aligned} \text{(a)} \quad & \sum_{n \geq 1} \left(\frac{n}{n+1} \right)^{n(n+1)}, \\ \text{(b)} \quad & \sum_{n \geq 1} \left(1 - \cos \frac{1}{n} \right), \\ \text{(c)} \quad & \sum_{n \geq 1} \frac{1}{n^2 - \log n}. \end{aligned}$$

(*Hint: Recall that $1 - \cos 2x = 2 \sin^2 x$, and that $\sin x, \log x \leq x$ for $x > 0$.*)

5. (1 pt) Let $\sum a_n$ and $\sum b_n$ be series of positive terms such that for some $N \in \mathbb{N}$

$$\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n} \quad \text{for } n \geq N.$$

Show that convergence of $\sum b_n$ implies convergence of $\sum a_n$. (*Hint: Note that a_n/b_n is a nonincreasing sequence, and use the comparison test, Lem. 6.4.2.*) Explain why we cannot use the ratio test in this question (i.e. the fact that $\limsup_{n \rightarrow \infty} a_{n+1}/a_n \leq \limsup_{n \rightarrow \infty} b_{n+1}/b_n$).

6. (1 pt) For which values of $\alpha \in \mathbb{R}$ does the series

$$\sum_{n \geq 2} \frac{1}{n(\log n)^\alpha}$$

converge? (*Hint: Use Cauchy condensation test and the fact that $\log x$ is an increasing function.*)

7. (1 pt) Let $\sum_{n \geq 1} a_n$ be a convergent series of positive elements. Show that then

$$\sum_{n \geq 1} \frac{a_1 + \dots + a_n}{n}$$

diverges.

8. (1 pt) Show that the series

$$\sum_{n \geq 1} (-1)^n \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$

converges.

9. (1 pt) For which values of $\alpha \in \mathbb{R}$ does the series

$$\sum_{n \geq 1} \left(\frac{\alpha n}{n+1} \right)^n$$

converge? For which $\alpha \in \mathbb{R}$ does it converge absolutely?

10. (1 pt) Show that the series

$$\sum_{n \geq 1} (-1)^n \sin \frac{\alpha}{n}$$

converges for any $\alpha \in \mathbb{R}$, but it converges absolutely only for $\alpha = 0$.

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.

Email address: ozanski@usc.edu