Math 425A Problem Sheet 7 (due 9am on Monday, 18th Oct)

Essential problems

1. (4 pts) Let f: R > R.
(a) Show that
f is continuous < f~((—o0,¢)) and f~'((c,00)) are open for every ¢ € R.

(Comment: In other words, in the particular case of the mapping from R into itself, [ is continuous
iff f is an open mapping on open half-lines; also hint: try mimicking the proof of Thm. 7.8)
(b) Deduce that the same equivalence holds with the intervals “(—o0, ¢)”, “(¢, 00)” replaced by “(—o0, ¢]”,

“[c, 00)”, respectively, and “open” replaced by “closed”. (Hint: Use Cor. 7.9)
(c¢) Deduce that

f is continuous = f~*({c}) is closed for every c € R.
(Hint: Note that {c} = (—00,c] N [¢,+0) and use Thm. 3.12.1 and question § below.) Also, show

that the opposite implication is false (find a counterexample).

2. (3 pts) For each of the following conditions give an example of f: R — R (simply sketch the plot of f, no
need for a proof) that satisfies it

(a) vxve>0v5>0vy |JJ - y| <éi= |f($) - f(y)| <e,

(b) VaVesodsso st Vy |z —yl <e = |f(z) - f(y) <0,
() VaVesodsso st Vy |f(2) = f(y)| > e =[x —y| >0,
(d) Vedeso 8.t VosoVy |2 —y| <0 = |f(x) — f(y)] <e, but f is discontinuous,
(e) [ is continuous, but it is not true that V;V.s03ss0 s.t. Vy 2 —y <0 = |f(z) — f(y)| <e,
f) same as (e), but with “f is continuous” replaced by = V;Ves03s550 s.t. ¥y 2 —y <d = f(z) — f(y) <e.

(
3. (3 pts) Let f: X — Y be continuous and let E C X be dense in X.

(a) Show that f(F) is dense in f(X).

(b) Deduce that if f,g: X — Y are two continuous functions such that f(z) = g(x) for every x € E,
then f = g. (Comment: in other words, in order to uniquely determine a continuous function, it
suffices to specify it on a dense subset.)

(¢) Use (b) to deduce that the function

x x is irrational,
f@) =

0 x is rational

and the function in question 7(a) below are not continuous.

Additional problems

4. (1 pt) Find the limit, or prove that it does not exist.

(a) limg_q % cos T,
(b) limy_o 7\/1%?&271’



1— cos;v

(¢) limg—o (Comment: You can use the fact that lim,_,o 22 =1.)

5. (1 pt) Let f: X — Y be any function. Show the following properties of the preimage:

)

U, Vo) = U, f1(V,) for any union U,V, C Y of subsets of Y.
YU = (f~Y(U))¢ for any U CY (Comment: recall we have used it in the proof of Cor. 7.9).
Deduce from (b) that (a) also holds with the union “J,” replaced by the intersection “(,”.

e

(a)
(b)
(c)

6. (1 pt) Show that the definition of continuity (Def. 7.5) is equivalent to the one where the “<” inequalities
are replaced by the “<” inequalities. Namely, show that, given f: X — Y is such that

Vesods>o dy (f(2), f(y)) <e ifdx(x,y) <o

then also
V5>035>0 dy(f(l‘), f(y)) <e if dx(l',y) < 6,

and vice versa.

7. (1 pt) Find the points z € R at which f is continuous.

22 -1 z is irrational,
(a) R R, f(z) = e
0 x is rational,

(b) f:10,1] = R, f(x) :=sup{l —z": n € N}

8. (1 pt) Let f: R — R, and fix x € R. Show that if f is continuous at z then
lim (f(x+h)— fx—h))=0
h—0

(hint: add and substract f(x)), but that the opposite implication is false (i.e. find a counterexample).

9. (1 pt) Let f,g: R — R be continuous functions. Show that |f|, max(f,¢g), min(f,g) are continuous.
(Hint: Use PS1.4 and PS2.7)

10. (1 pt) Let f: X — Y be continuous let Z(f) := {z € X: f(x) = 0} denote the zero set (or the null space
or kernel) of f. Show that Z(f) is closed.
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