

Math 425A Problem Sheet 7 (due 9am on Monday, 18th Oct)

Essential problems

1. (4 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$.

(a) Show that

$$f \text{ is continuous} \Leftrightarrow f^{-1}((-\infty, c)) \text{ and } f^{-1}((c, \infty)) \text{ are open for every } c \in \mathbb{R}.$$

(Comment: In other words, in the particular case of the mapping from \mathbb{R} into itself, f is continuous iff f is an open mapping on open half-lines; also hint: try mimicking the proof of Thm. 7.8)

(b) Deduce that the same equivalence holds with the intervals “ $(-\infty, c)$ ”, “ (c, ∞) ” replaced by “ $(-\infty, c]$ ”, “[$c, \infty)$ ”, respectively, and “open” replaced by “closed”. (Hint: Use Cor. 7.9)

(c) Deduce that

$$f \text{ is continuous} \Rightarrow f^{-1}(\{c\}) \text{ is closed for every } c \in \mathbb{R}.$$

(Hint: Note that $\{c\} = (-\infty, c] \cap [c, +\infty)$ and use Thm. 3.12.1 and question 5 below.) Also, show that the opposite implication is false (find a counterexample).

2. (3 pts) For each of the following conditions give an example of $f: \mathbb{R} \rightarrow \mathbb{R}$ (simply sketch the plot of f , no need for a proof) that satisfies it

(a) $\forall_x \forall_{\varepsilon > 0} \forall_{\delta > 0} \forall_y |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon$,

(b) $\forall_x \forall_{\varepsilon > 0} \exists_{\delta > 0} \text{ s.t. } \forall_y |x - y| \leq \varepsilon \Rightarrow |f(x) - f(y)| \leq \delta$,

(c) $\forall_x \forall_{\varepsilon > 0} \exists_{\delta > 0} \text{ s.t. } \forall_y |f(x) - f(y)| > \varepsilon \Rightarrow |x - y| > \delta$,

(d) $\forall_x \exists_{\varepsilon > 0} \text{ s.t. } \forall_{\delta > 0} \forall_y |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon$, but f is discontinuous,

(e) f is continuous, but it is not true that $\forall_x \forall_{\varepsilon > 0} \exists_{\delta > 0} \text{ s.t. } \forall_y |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon$,

(f) same as (e), but with “ f is continuous” replaced by $\forall_x \forall_{\varepsilon > 0} \exists_{\delta > 0} \text{ s.t. } \forall_y |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon$.

3. (3 pts) Let $f: X \rightarrow Y$ be continuous and let $E \subset X$ be dense in X .

(a) Show that $f(E)$ is dense in $f(X)$.

(b) Deduce that if $f, g: X \rightarrow Y$ are two continuous functions such that $f(x) = g(x)$ for every $x \in E$, then $f = g$. (Comment: in other words, in order to uniquely determine a continuous function, it suffices to specify it on a dense subset.)

(c) Use (b) to deduce that the function

$$f(x) := \begin{cases} x & x \text{ is irrational,} \\ 0 & x \text{ is rational} \end{cases}$$

and the function in question 7(a) below are not continuous.

Additional problems

4. (1 pt) Find the limit, or prove that it does not exist.

(a) $\lim_{x \rightarrow 0} \frac{1}{x} \cos x$,

(b) $\lim_{x \rightarrow 0} \frac{\sqrt{1+3x+x^2}-1}{x}$,

(c) $\lim_{x \rightarrow 0} \frac{1-\cos x}{x^2}$. (Comment: You can use the fact that $\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$.)

5. (1 pt) Let $f: X \rightarrow Y$ be any function. Show the following properties of the preimage:

- (a) $f^{-1}(\bigcup_{\alpha} V_{\alpha}) = \bigcup_{\alpha} f^{-1}(V_{\alpha})$ for any union $\bigcup_{\alpha} V_{\alpha} \subset Y$ of subsets of Y .
- (b) $f^{-1}(U^c) = (f^{-1}(U))^c$ for any $U \subset Y$ (Comment: recall we have used it in the proof of Cor. 7.9).
- (c) Deduce from (b) that (a) also holds with the union “ \bigcup_{α} ” replaced by the intersection “ \bigcap_{α} ”.

6. (1 pt) Show that the definition of continuity (Def. 7.5) is equivalent to the one where the “ \leq ” inequalities are replaced by the “ $<$ ” inequalities. Namely, show that, given $f: X \rightarrow Y$ is such that

$$\forall \varepsilon > 0 \exists \delta > 0 \quad d_Y(f(x), f(y)) \leq \varepsilon \quad \text{if } d_X(x, y) \leq \delta$$

then also

$$\forall \varepsilon > 0 \exists \delta > 0 \quad d_Y(f(x), f(y)) < \varepsilon \quad \text{if } d_X(x, y) < \delta,$$

and vice versa.

7. (1 pt) Find the points $x \in \mathbb{R}$ at which f is continuous.

- (a) $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) := \begin{cases} x^2 - 1 & \text{if } x \text{ is irrational,} \\ 0 & \text{if } x \text{ is rational,} \end{cases}$
- (b) $f: [0, 1] \rightarrow \mathbb{R}$, $f(x) := \sup\{1 - x^n : n \in \mathbb{N}\}$.

8. (1 pt) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and fix $x \in \mathbb{R}$. Show that if f is continuous at x then

$$\lim_{h \rightarrow 0} (f(x + h) - f(x - h)) = 0$$

(hint: add and subtract $f(x)$), but that the opposite implication is false (i.e. find a counterexample).

9. (1 pt) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Show that $|f|$, $\max(f, g)$, $\min(f, g)$ are continuous. (Hint: Use PS1.4 and PS2.7)

10. (1 pt) Let $f: X \rightarrow Y$ be continuous let $Z(f) := \{x \in X : f(x) = 0\}$ denote the zero set (or the null space or kernel) of f . Show that $Z(f)$ is closed.

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.

Email address: ozanski@usc.edu