

Math 425A Problem Sheet 8 (due 9am on Monday, 25th Oct)

Essential problems

1. (4 pts) Let $V \subset \mathbb{R}$ be a set that is not compact. Show that
 - (a) there exists a continuous function defined on V that is not bounded,
 - (b) there exists a continuous and bounded function defined on V which does not attain its supremum on V .

*(Comment: this question shows that the assumption of compactness in Lem. 8.4 and in Thm. 8.5 is necessary. In fact, it shows more: that in the case of subsets of \mathbb{R} , for **any** noncompact set we can find a counterexample; also hint: you may want to consider the cases when V is bounded/unbounded and functions of the form $1/(1 - (x - x_0)^2)$, $1/(x - x_0)$, $x^4/(1 + x^4)$. Also note that if V is bounded then there exists a limit point of V that does not belong to V .)*

2. (3 pts) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x = 0$, $f(0) = 0$ and that f is subadditive, i.e. that

$$f(x + y) \leq f(x) + f(y).$$

Show that f is uniformly continuous.

3. (3 pts) Suppose that $f: (a, b) \rightarrow \mathbb{R}$, where $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$ is continuous and that $\lim_{x \rightarrow b^-} f(x)$ and $\lim_{x \rightarrow a^+} f(x)$ exist (and are finite). Show that then f is uniformly continuous. (Hint: Use Thm. 8.11.)

Additional problems

4. (1 pt) Give an example of a bounded function on $[0, 1]$ that attains neither its infimum nor maximum. Why does it not contradict Thm. 8.5?

5. (1 pt) Let $n \in \mathbb{N}$ and let

$$P(x) := x^{2n} + a_{2n-1}x^{2n-1} + \dots + a_1x + a_0$$

for some $a_0, \dots, a_{2n-1} \in \mathbb{R}$. Show that P attains its infimum on \mathbb{R} . (Comment: This shows that one of the claims of Thm. 8.5 applies also to some continuous functions defined on **noncompact** domains.)

6. (1 pt) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and periodic (i.e. that there exists $c > 0$ such that $f(x) = f(x + c)$ for all $x \in \mathbb{R}$). Show that for any such function the claims of Thm. 8.2, Lem. 8.4, Thm. 8.5 and Thm. 8.11 remain valid; namely that the range of f is compact, that f is bounded and attains its bounds, and is uniformly continuous.

7. (1 pt) For each of the following functions determine whether it uniformly continuous. If not, is it continuous?
 - (a) $f: [1, \infty) \rightarrow \mathbb{R}$, $f(x) := \sin x$,
 - (b) $f: \mathbb{R}^n \rightarrow \mathbb{R}$, $f(x) := |x|$,
 - (c) $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) := \arctan x$,
 - (d) $f: (0, \infty) \rightarrow \mathbb{R}$, $f(x) := \cos x \cdot \cos \frac{\pi}{x}$,

(e) $f: (0, 1) \rightarrow \mathbb{R}$, $f(x) := e^{-\frac{1}{x}}$,

(Hint: you might want to use questions 3 and 6 above and Lem. 8.13; you can also use the fact that all trigonometric functions are continuous on their domains.)

8. (1 pt) Give an example of a noncompact subset U of \mathbb{R} such that every continuous $f: U \rightarrow \mathbb{R}$ is uniformly continuous.

9. (1 pt) Let $f: X \rightarrow Y$. Show that f is continuous if and only if f is uniformly continuous on every compact subset $K \subset X$. (Hint: Recall PS3.10.)

10. (1 pt) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on $(a, b]$ and on $[b, c)$, then it is uniformly continuous on (a, c) .

11. (1 pt) Give an example of two closed sets $A, B \subset \mathbb{R}$, and $f: A \cup B \rightarrow \mathbb{R}$ such that f is uniformly continuous on A and on B , but it is not uniformly continuous on $A \cup B$.

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.
Email address: ozanski@usc.edu