

Math 425A Problem Sheet 9 (due 9am on Monday, 1st Nov)

Essential problems

1. (3 pts) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ has the intermediate value property (i.e. the claim of Cor. 9.4 is valid; namely that for every $c \in [f(a), f(b)]$ there exists $x \in [a, b]$ such that $f(x) = c$) and $f^{-1}(\{q\})$ is closed for every $q \in \mathbb{Q}$ then f is continuous. (*Comment: Note that the second condition alone is not sufficient for continuity by PS7.1(c).*)

2. (2 pt) Consider

$$f(x) := \begin{cases} x + 2x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Show that $f'(0) = 1$, but that it is not increasing on any neighbourhood of 0. Why does it not contradict Lem. 9.13?

3. (3 pt) Suppose that $f \in C([0, 1]) \cap D((0, 1))$ is such that $f(0) = f(1) = 0$ and that $f(x_0) = 1$ for some $x_0 \in (0, 1)$. Prove that $|f'(c)| > 2$ for some $c \in (0, 1)$.

4. (2 pt) Use the Generalized Mean Value Theorem to show that $1 - x^2/2 < \cos x$ for $x \neq 0$. Deduce that $x - x^3/6 < \sin x$ for $x > 0$.

Additional problems

5. (1 pt)

- (a) Are the sets $A := (0, 1)$, $B := \mathbb{Z}$ separated?
- (b) Are the sets $A := (-\infty, 0)$, $B := \{x \in \mathbb{R} \setminus \mathbb{Q}: x > 0\}$ separated?
- (c) Is \mathbb{Q}^2 a connected set? Is it path-connected?

6. (1 pt)

- (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and periodic with period a . Show that there exists $y \in \mathbb{R}$ such that

$$f\left(y + \frac{a}{2}\right) = f(y).$$

Deduce that there are in fact infinitely many such y 's.

- (b) Show that the equation $\sin(\cos x) = x$ has exactly one solution in $[0, \pi/2]$.

7. (1 pt) Show that if $f: [a, b] \rightarrow \mathbb{R}$ is nondecreasing and has the intermediate value property, then f is continuous.

8. (1 pt) Suppose that $f: (a, b) \rightarrow \mathbb{R}$ is differentiable at $x \in (a, b)$. Find

$$\lim_{t \rightarrow x} \frac{tf(x) - xf(t)}{t - x}.$$

9. (1 pt) Show that $f(x) := [x] \sin^2(\pi x)$ is differentiable on \mathbb{R} . Why can't one use the product rule (Lem. 9.10.2) to calculate f' ? Deduce that the function $g(x) := [x] \sin(2\pi x)$ has the intermediate value property.

10. (1 pt) Show that if $f: (a, b) \rightarrow \mathbb{R}$ attains a local maximum at (a, b) , and the one-sided derivatives $f'_-(x) := \lim_{y \rightarrow x^-} (f(y) - f(x))/(y - x)$ and $f'_+(x) := \lim_{y \rightarrow x^+} (f(y) - f(x))/(y - x)$ exist then $f'_-(x) \geq 0$ and $f'_+(x) \leq 0$. (*Comment: This is a generalization of Thm. 9.14 to the case when $f'(x)$ does not exist.*)

11. (1 pt) Let α be a real number. Show that if $f \in C([a, b]) \cap D((a, b))$ and $f(a) = f(b) = 0$ then there exists $x \in (a, b)$ such that $\alpha f(x) + f'(x) = 0$. (*Comment: This reduces to Rolle's theorem (Thm. 9.15) when $\alpha = 0$; also hint: consider $g(x) := e^{\alpha x} f(x)$.*)

WOJCIECH OŽAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA.

Email address: ozanski@usc.edu