
CSCI 567 Homework 1

Furong (Flora) Jia & Qilin Ye

September 13, 2022

Link to problem set: https://vatsalsharan.github.io/fall22/hw1.pdf.

1 Perceptron Convergence

Solution (1.1). As stated, let k be given and let xi be the one selected during that iteration (i.e., sgn(wT
k xi) ≠ yi).

By assumption yi(wT
optxi) ⩾ γ. Since wk+1 = wk + yixi, linearity gives

wT
k+1wopt = wT

k wopt + yi(xT
i wopt) ⩾ wT

k wopt + γ = wT
k wopt + γ∥wopt∥.

Solution (1.2). Following 1.1 we assume yi(wT
k xi) < 0. Using definition of wk+1 again,

∥wk+1∥2 = ∥wk + yixi∥2 = ∥wk∥2 + 2yi(wT
k xi) + ∥xi∥2

⩽ ∥wk∥2 + ∥xi∥2 ⩽ ∥wk∥2 +R2.

Solution (1.3). For the lower bound, inductively applying the inequality derived in 1.1 implies (assuming

∥wopt∥ = 1)

wT
k+1wopt ⩾ γM +wT

0 wopt = γM.

It remains to notice that by Cauchy-Schwarz

γM ⩽ wT
k+1wopt ⩽ ∥wk+1∥∥wopt∥ = ∥wk+1∥.

For the upper bound, inductively applying the inequality derived in 1.2 implies

∥wk+1∥2 ⩽ ∥w0∥2 +R2M = R2M Ô⇒ ∥wk+1∥ ⩽ R
√
M. (**)

Solution (1.4). Trivial. (*) in conjunction with (**) imply γM ⩽ R
√
M , so

√
M ⩽ R/γ and M ⩽ R2/γ2.

2 Logistic Regression

F (x;A,k, b) ∶= A

1 + e−k(x−b)
.

Solution (2.1). • A describes the asymptotic behaviors of F on the “nonzero” side, i.e.,

lim
x→−∞

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if k > 0

A/2 if k = 0

A if k < 0

and lim
x→∞

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A if k > 0

A/2 if k = 0

0 if k < 0.

1

https://vatsalsharan.github.io/fall22/hw1.pdf

CSCI 567 Homework 1 YQL

• b describes the value when F evaluates to 0.5. The graph of F is also radially symmetric across the point

(b,0.5).

• k describes (i) if the asymptotic behaviors of F are “flipped” based on k’s sign and (ii) how “steep” does

quick does the function change value between it’s two asymptotic limits near x = b. Large k corresponds to

quick shift.

Solution (2.2). From 2.1 we require A = 1 and k > 0. There is no restriction on b.

Solution (2.3). By a proposition shown in lecture, minimizing the logistic loss is equivalent to finding the MLE

for the signoid model. That is,

argmin
w

F (w) = w∗ = argmin
w

n

∑
i=1

ℓlogistic(yi(kxi − b)) = argmin
w

n

∑
i=1

log(1 + exp[−yi(kxi − b))].

This quantity is minimized when yi shares the same sign with kx − b for all i ∈ [n]. From this identity, we see

that yi > 0 if and only if F (x;A,k, b) > 0.5, so F = 0.5 is the minimizer for this classification error.

Solution (2.4). Since

∂

∂xi

1

1 + exp(−∑wixi + b)
= exp(−∑wixi + b)wi

(1 + exp(−∑wixi + b))2
,

we have
d

dx

1

1 + exp(−wTx + b)
= wT exp(−wTx + b)
(1 + exp(−wTx + b))2

.

• Level set: in order for F to stay constant, wTx needs to be constant, so the level set is orthogonal to w.

• Direction of gradient: since
exp(−wTx + b)

1 + exp(−wTx + b)
∈ R,

the gradient of F at any point is a scalar multiple of w, i.e., parallel to w.

• The level set corresponds to when −wTx + b = 0, i.e., wTx = b. Projection gives the shortest distance

∣b∣/∥w∥.

3 Learning Rectangles

Solution (3.1). Let S the set of data points be given. Let R be the rectangle proposed by our algorithm and let

R′ be an ERM.

It is clear that R′ ∩ S cannot contain points absent in R ∩ S. By assumption, any sample x ∉ R corresponds

to a negative example. Therefore, R′ ∩ S had x, R′ would have misclassified at least one more point than R,

contradicting it’s identity as an ERM.

On the other hand, since we have assumed that the training set is indeed generated by some axis-aligned rect-

angle, R ∩ S cannot contain any negative example, for otherwise it would be inside the ground-truth rectangle.

Therefore, if x ∈ R ∩ S but not R′ ∩ S, then R′ would have again misclassified a positive example as negative,

thereby increasing the empirical risk.

Combining the results of the previous two paragraphs, we see R′ ∩ S = R ∩ S, i.e., our proposed solution indeed

guarantees an ERM.

2

CSCI 567 Homework 1 YQL

Solution (3.2). Let D be uniform on [0,1]2. Let B∗ be the right half, i.e., [0.5,1] × [0,1]. Let S′ be such that

S′ ∩B∗ = {(0.5,0.5)}, i.e., all but one point in S′ is in the right half. In this case BS′ would be the degenerate

singleton rectangle [0.5,0.5] × [0.5,0.5], which leads to risk

R(fERM
S′) = P(x ∈ B∗, x ≠ (0.5,0.5) ∣ x ∈ [0,1]2) = 0.5

since the algorithm will classify all points but (0.5,0.5) as outside the rectangle and any points in B∗ will get

misclassified (except (0.5,0.5), but a singleton is of null measure in a continuous distribution).

Solution (3.3). Let Bi, 1 ⩽ i ⩽ 4, be given as suggested in the hint. Let n be the sample size. With probability

⩽ (1−ϵ/4)n, all n samples will fall outside B1. Applying the same reasoning to other Bi’s and using union bound,

we see that with probability 4(1 − ϵ/4)n, S fails to contain points in at least Bi’s, i.e., S ∩ Bi = ∅ for some Bi.

Setting an upper bound δ to the probability of such event and using the inequality 1 − x ⩽ e−x, we obtain a

sufficient bound

4(1 − ϵ/4)n ⩽ 4e−nϵ/4 ⩽ δ

which, with some algebra, yields

n ⩾ 4 log(4/δ)
ϵ

.

For sufficiently large n as specified above, with probability ⩾ 1 − δ, S will contain points in Bi for all i, and in

doing so

B/
4

⋃
i=1

Bi ⊂ BS ⊂ B∗ Ô⇒ 1 − ϵ ⩽ P(B/
n

⋃
i=1

Bi) ⩽ P(BS ∣ B∗) Ô⇒ R(fERM
S) ⩽ ϵ.

Solution (3.4). In this case, we need to consider 2k k-dimensional boxes. Similar to how each strip in the

R2 case shares one edge with the rectangular B∗, here we require each k-dimensional Bi to share one ((k − 1)-
dimensional) facet with the k-dimensional B∗. In addition the height of each Bi is chosen such that P(Bi) ⩽ ϵ/2k.

The lower bound for n = n(ϵ, δ) is correspondingly

n ⩾ 2k log(2k/δ)
ϵ

.

4 k-Nearest Neighbor

compute_l2_distance

1 def compute_l2_distances(Xtrain, X):

2 dists = np.zeros((X.shape[0], Xtrain.shape[0]))

3 for index, _ in enumerate(X):

4 dists[index, :] = np.linalg.norm(X[index, :] - Xtrain, axis=1) # auto shape broadcast

5 return dists

predict_labels

1 def predict_labels(k, ytrain, dists):

2 for index in range(dists.shape[0]):

3 # arg sort all distances between training labels and the corresponding test label (index)

4 # take the first k elements after sorting

5 # bincount find the number of occurences of labels 0 and 1

6 # argmax find the label with more occurences

7 ypred[index] = np.argmax(np.bincount(ytrain[np.argsort(dists[index])[:k]]))

3

CSCI 567 Homework 1 YQL

8 return ypred

compute_error_rate

1 def compute_error_rate(y, ypred):

2 return np.sum(y != ypred) / y.shape[0]

Result (4.1): the error rate of our k-NN algorithm in the validation set with k = 4 and ∥ ⋅ ∥2 is ≈ 0.34667.

data_processing_with_transformation

1 # Min-Max scaling

2 def minmax(Xtrain, Xval, Xtest):

3 Xtrain_min = np.min(Xtrain, axis=0)

4 Xtrain_max = np.max(Xtrain, axis=0)

5 Xtrain = (Xtrain - Xtrain_min) / (Xtrain_max - Xtrain_min)

6 Xval = (Xval - Xtrain_min) / (Xtrain_max - Xtrain_min)

7 Xtest = (Xtest - Xtrain_min) / (Xtrain_max - Xtrain_min)

8 return Xtrain, Xval, Xtest

9 if do_minmax_scaling:

10 Xtrain, Xval, Xtest = minmax(Xtrain, Xval, Xtest)

11

12 # Normalization

13 def normalization(X):

14 for i in range(X.shape[0]):

15 X[i, :] = X[i, :] / np.linalg.norm(X[i, :]) if np.linalg.norm(X[i, :]) != 0 else X[i, :]

16 return X

17

18 if do_normalization:

19 Xtrain = normalization(Xtrain)

20 Xval = normalization(Xval)

21 Xtest = normalization(Xtest)

Results (4.2): with the same settings as in (4.1), normalized featured vectors yield an error rate of 1/3 and min-max

scaling 0.30667, assuming the scaling on the training data is applied to all three sets.

compute_cosine_distances

1 def compute_cosine_distances(Xtrain, X):

2 dists = np.zeros((X.shape[0], Xtrain.shape[0]))

3 for index, _ in enumerate(X):

4 if (np.linalg.norm(X[index, :]) != 0 and np.linalg.norm(Xtrain, axis=1) != 0).all(): # avoid bool array

5 dists[index, :] = 1 - np.dot(X[index, :], Xtrain.T) / (np.linalg.norm(X[index, :]) *

np.linalg.norm(Xtrain, axis=1))

6 else: dists[index, :] = 1

7 return dists

Result (4.3): under the same settings as in the previous parts, cosine distance results in an error rate of 1/3.

find_best_k

1 def find_best_k(K, ytrain, dists, yval):

4

CSCI 567 Homework 1 YQL

2 all_err = []

3 for single_k in K:

4 ypred = predict_labels(single_k, ytrain, dists)

5 err = compute_error_rate(yval, ypred)

6 all_err.append(err)

7 return K[np.argmin(np.array(all_err))], all_err, min(all_err)

Results (4.4):

Below are two plots representing our model’s error rates on the training set (left) and validation set (right). As k

increases, the error rates on the training set increases as well. On the validation set, however, the error rate reaches

a minimum at k = 12 before increasing again. The final test set error rate using k = 12 is ≈ 0.21333.

Although a very weak relation, it seems like for relative small k’s (⩽ 12), there roughly exists a negative correlation

between the two errors. Potential explanations include “the training set includes many data that are ‘hard’ to

learn” or “the validation set consists of overly ‘easy’ examples." Nevertheless, even at k = 12, the error rates on the

validation set exceeds that on the training set. This can be explained by the inevitable generalization gap once we

move to data outside the training set.

5 10 15

0.05

0.1

0.15

0.2

k (number of neighbors)

Er
ro

r
ra

te
on

tr
ai

ni
ng

se
t

5 10 15

0.25

0.3

0.35

k (number of neighbors)

Er
ro

r
ra

te
on

va
lid

at
io

n
se

t

5 Linear Regression

5.1. Below is the result of one run.

• Total squared error of wLS on the training set: 222.6078655833394.

• Total squared error of the zero vector w0: 83144.16480657135.

• Total squared error of wLS on the test set: 262.1390061685291.

Due to the sample’s randomness, each run results in different outcomes, but in general they follow the same trend,

that wLS’s error rate on the test set is only slightly higher than that on the training set (262 compared to 223),

showing that wLS is indeed a good choice (as we would expect).

5

CSCI 567 Homework 1 YQL

5.2. The gradient of F is

∇F (w) =
n

∑
i=1
∇fi(w) =

n

∑
i=1

2xi(wTxi − yi).

Below is the outcome of one run:

(1) η = 0.0005, final total squared error = 3018.547479118958.

(2) η = 0.005, final total squared error = 232.14862115297325. (Total squared error of wLS in this case is

232.1340536673857.)

(3) η = 0.007, final total squared error = 4728265838.519294.

The first observation is η = 0.005 successfully approaches the minimizer of F in only 20 iterations. (In fact most of

the times it only takes about 15 iterations to reach minF + 1.) This turns out to the most optimal η among the three

provided.

Comparing (1) and (2), along with the bottom right figure below, we see that the loss function of η = 0.0005

decreases, albeit at a much slower rate. In fact, if we iterate 80 times in total, η = 0.0005 also gives a squared loss

error very close to that of wLS.

On the other hand, when η = 0.0007, the loss blows up usually early on (usually starting at second or third iteration).

This is most likely due to the large learning rate that “overshoots” the global minimum, causing a chain reaction,

and the algorithm deviates further and further from its goal.

5 10 15 20

0

0.5

1

1.5

⋅108

k (number of iterations)

Lo
ss

Loss of gradient descent

η = 0.00005
η = 0.0005
η = 0.0007

5 10 15 20

0

2

4

6

⋅104

k (number of iterations)

Lo
ss

Loss (without η = 0.007)

η = 0.00005
η = 0.0005

5.3. See the plot on the next page. Comparing the red (η = 0.0005) line and the green (η = 0.005) line, we see that

within a reasonable range (e.g., η not too large) smaller η leads to slower descent, but the algorithm still converges

to the minimizer of F . The blue line (η = 0.01), however, similar to 5.2, shows that an overly large η will lead to

SGD blowing up as well. Among the three η’s provided, 0.005 is the most optimal.

In this run, after 1000 iterations, η = 0.0005,0.005, and 0.01 lead to a squared error of 32035,10406, and 1839037,

respectively. Compared to the previous problem, the descents are much slower but so is the blow up. In 5.2, each

data point is used 20 times; here, on average, each data point is used once (1000 runs, each time picking one among

1000 data points). If we were to address this discrepancy and iterate η = 0.005 20,000 times, the resulting squared

error is still in thousands, relatively far from the minimum of the loss function.

6

CSCI 567 Homework 1 YQL

0 100 200 300 400 500 600 700 800 900 1,000

0

0.5

1

1.5

2

⋅106

k (numner of iterations)

Lo
ss

Loss of Stochastic Gradient Descent

η = 0.0005
η = 0.005
η = 0.01

7

	Perceptron Convergence
	Logistic Regression
	Learning Rectangles
	k-Nearest Neighbor
	Linear Regression

