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Problems available at https://vatsalsharan.github.io/fall22/hw2.pdf

1. SVMs

(1.1) No. A one-dimensional classifier partitions R into two connected subsets and a singleton containing the 0-

dimensional hyperplane corresponding to the threshold. Since 0 is in the segment formed by −1 and 1, no

such classifier exists.

(1.2) Yes, obviously. For example y = 0.5 works (and we will show this is the best one). For the plot below, each

grid is 1 unit.

y1 = −1

y3 = 1

y2 = −1

(1.3) We first note φ(x1) = (−1,1)T , φ(x2) = (1,1)T , and φ(x3) = (0,0). The Gram matrix K is therefore

{φ(xi)Tφ(xj)}i,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0

0 2 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.4) The primal formulation is

min
w,b

∥w∥22
2

subject to min
i
yi(wTφ(xi) + b) ⩾ 1

and the dual formulation is

max
αi,1⩽i⩽3

⎡⎢⎢⎢⎣
∑αi −

1

2
∑
i,j

αiαjyiyjφ(xi)Tφ(xj)
⎤⎥⎥⎥⎦

subject to ∑
i

αiyi = 0 and αi ⩾ 0.

(1.5) In this very special case, for all (i, j) except (1,1) and (2,2), the terms in∑
i,j

vanish. The dual then becomes

max
αi,1⩽i⩽3

α1 + α2 + α3 − α2
1 − α2

2 subject to α1 + α2 = α3 and αi ⩾ 0.
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Completing the squares and using α1 + α2 = α3, we have

α1 + α2 + α3 − α2
1 − α2

2 = −α2
1 + 2α1 − α2

2 + 2α2 = −(α1 − 1)2 − (α2 − 2)2 + 2 ⩽ 2,

and it is obvious that (α∗1 , α∗2 , α∗3) = (1,1,2) achieves this maximum. Using w =∑
i

αiyiφ(xi), we have

w∗ = −
⎡⎢⎢⎢⎢⎣

−1
1

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎦
+ 0 =

⎡⎢⎢⎢⎢⎣

0

−2

⎤⎥⎥⎥⎥⎦
.

The optimal b∗ is given by (here we fix y1)

b∗ = y1 −∑
j

αjyjk(yj , y1) = y1 − α1y1k(x1, x1) = −1 + 2 = 1.

(1.6) In R2, the decision boundary is given by {(a, b) ∶ −2b + 1 = 0}, namely the horizontal line y = 0.5, marked as

the blue dashed line. All three vectors are support vectors (circled in red)! Here they are all equidistant to the

decision boundary (or alternatively yi(w∗Tφ(xi) + b∗) = 1 for all three points). In the one-dimensional space,

the corresponding decision boundary is {x ∶ −2x2 + 1 = 0}, i.e., {±1/
√
2}, represented by the purple dots on

the x-axis.

2. Kernel Composition

Proof. Let k1, k2 ∶ Rd ×Rd → R be kernels and define k(x, y) ∶= k1(x, y)k2(x, y). Let φ1 ∶ Rd → Rm and φ2 ∶ Rd →
Rn be the feature maps corresponding to k1 and k2. That is,

ki(x, y) = φi(x)Tφi(y) for i = 1,2.

Notation-wise, let φ(j)i (x) denote the jth component of φi(x). Some computation yields

k(x, y) = k1(x, y)k2(x, y) = [φ1(x)Tφ1(y)][φ2(x)Tφ2(y)]

= (
m

∑
i=1
φ
(i)
1 (x)φ

(i)
1 (y))

⎛
⎝

n

∑
j=1

φ
(j)
2 (x)φ

(j)
2 (y)

⎞
⎠

=
m

∑
i=1

n

∑
j=1

φ
(i)
1 (x)φ

(i)
1 (y)φ

(j)
2 (x)φ

(j)
2 (y)

=
m

∑
i=1

n

∑
j=1
[φ(i)1 (x)φ

(j)
2 (x)][φ

(i)
1 (y)φ

(j)
2 (y)]

= ∑
(i,j)
i⩽m
j⩽n

ψ(i,j)(x)ψ(i,j)(y) = ψ(x)Tψ(y)

where ψ ∶ Rd → Rm×n with components ψ(i,j)(x) = φ(j)1 (x)φ
(j)
2 (x). Therefore k = k1k2 is indeed induced by

a feature map and is itself a kernel. More specifically, if K1,K2 are the kernel matrices for k1 and k2, then

K =K1 ⊗K2 is the one for k.
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3. Regularization

(3.1) One particular run yields an average training error of ≈ 4.22 ⋅ 10−12 and average test error of 0.735.

(3.2) The results are plotted below. The notable pattern is that training error increases as regularization coefficient

increases, whereas test error first decreases before going back up again. There is no significant difference

between these and the results in (3.1) in terms of magnitude. The training errors are all higher than that in

(3.1) due to the extra λ∥w∥22. For test errors, however, with appropriate choice of λ, we indeed achieve lower

test error.
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(3.3) Below are the results obtained from one run:

1 Results w.r.t. eta = 0.00005, 0.0005, and 0.05, with average over 10 runs each, and 10^6 iterations on SDG:

2 ---------------- Results on training set ----------------

3 SGD training errors [0.01583857 0.00743117 0.00325771]

4 LS training errors [8.33285852e-11 7.00683992e-12 2.65708366e-11]

5 Ridge training errors [0.00081002 0.00131496 0.00228058]

6 True training errors [0.05336222 0.05248965 0.05233532]

7 ---------------- Results on test set ----------------

8 SGD test errors [0.27368233 0.26432111 0.43295255]

9 LS test errors [3.40637986 1.59478261 1.23070795]

10 Ridge test errors [0.7445873 0.8716912 0.43272321]

11 True test errors [0.05169631 0.05071892 0.05121475]

In these runs, we see that while SGD does not do as good as its two least squares counterparts on the training

set, it performs consistently on the test set. This is because the training and test sets can be thought of as

i.i.d. samples from the noisy distirbution, and our SGD model is trained to cope on it, whereas the two least

squares methods, while minimizing the training error, took the noise into account, and this extra action did

lowered their performance on the test set, where the noise was completely different. This is especially true on

the unregularized least squares: it minimized the training error, but at what cost? — huge test errors.

In comparison, while SGD does better on the training data than the true model, it has a higher test error. The

reason is identical to above — our true model ignores the noises completely, so the training error is higher,
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but moving on to the training set,this disadvantage is turned around, as the true model, unaffected by the

training noises, naturally does a better job on the brand new test set.

(3.4) • Normalized errors: since we are iterating SGD 1 million times, even a small step size like 5 ⋅ 10−5 gets

enough iterations to sufficiently minimize its objective function. We see that both η = 5 ⋅ 10−3 and 5 ⋅ 10−5

have achieved significantly lower training errors. In particular, with η = 5 ⋅ 10−3, the final training error is

only 2% of the true training error (computed using wtrue).

• The test error of η = 5 ⋅10−5 over iterations is behaving relatively normally (decreasing over time), but the

test error of η = 5 ⋅ 10−3 bounces back after a few dozen thousand iterations. Connecting to the previous

part, this is most likely because η is small but not too small so that it starts to overfit the training set

by fitting the noises. While doing so guarantees small training error, it may be counterproductive in

reducing the test error.

• The vectors w(t) outputted by SDG roughly converges to something close to w (but not w due to the

noises).
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(3.5) The general trend is that both training and test errors increase as our starting point is drawn from a sphere

with larger radius. This does share some similarity with the ℓ2 regularization model, if we consider our initial

starting point radius r as a regularization coefficient, i.e., SGD “punishes” starting points that are far away

from the origin, in our case. However, the trends are not identical — here the test error barely decreases for

increasing but small r.

To see why the errors increase with larger r, we increased the magnitude of iterations (to 107) on r = 30 and

found the errors decreasing dramatically as well. Hence, we conclude that, in this case, an SDG with a larger

r is not unable to minimize the objective function; instead, it simply requires a larger amount of iteration to

achieve the same result we easily get with an appropriate small r.
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4. Logistic Regression

(4.1) • η = 0.005 is the best here — we all love it. It has nicely decreasing training and test errors. (It seems

like η = 0.0025 would be even better; here, with η = 0.005, the performance on the test set seems slightly

random. Sometimes it bounces back, signaling that η is slightly too big.)

• η = 0.0005 behaves nicely, but unfortunately it is too small and 5000 iterations is far from enough for it

to sufficiently approximate objective’s minimizer.

• η = 0.05 is way too big — both training and test errors behave randomly, implying that we constantly

overshoots the sweet spot when updating by η times our gradient.
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(4.2) In this particular run, the average mean 0 − 1 loss of iterations 4700 to 5000 are ≈ 0.11057 for η = 0.0005,

≈ 0.13283 for η = 0.005, and 0.151 for η = 0.05. The clear winner here is η = 0.0005.
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(4.3) Overall, the logistic loss is a successful surrogate for the 0 − 1 loss. The reason why η = 0.0005 in (4.1) is

outperformed by η = 0.005 is because we only iterated 5000 times, a number far from enough for a small

learning rate. If we were able to increase the magnitude like in the previous problem, the results will agree

(checked) with what is depicted in (4.2).

6



CSCI 567 Homework 2 YQL

5. Classifier Comparison

(5.1) Linear classifiers don’t do well on MOON and CIRCLES because they are not linearly separable. In particular,

linear classifiers fail miserable on CIRCLES because of its circular distribution. SVM with KBF kernel performs

much better because it can generate nonlinear decision boundaries that predict labels with high accuracy.

(5.2) Linear SVM: most of the time, as C increases, both training and test set accuracy increase, but there does not

seem to be a fixed pattern on which set has a lower error. Also, the orientation of the decision boundaries

tends to rotate counterclockwise as C increases.

Training and test errors both decrease as C increases.

However there does appear to be counterexamples, where the test error significantly increases. The follow-

ing is obtained by using n_samples=50, n_features=2, n_redundant=0, n_informative=2, flip_y=0.1,

n_clusters_per_class=1:

An example where the test error increases.

(5.3) For this part we investigated the outputs for C = 0.5,0.1,0.25,0.5,1.0, and 5.0. (Large C tend to have identical

effects, as even stronger regularization on these few points will yield little difference.)

• Training error on all three: larger C, stronger regularization, lower training error.

• Overall, when C is smooth, the decision boundary is more smooth, whereas when C is large, the decision

boundary is more fragmented.

• Test error happens to follow the same rule. For MOON and LINEARLY_SEPARABLE, the test error dra-

matically drops as C increases from 0.1 to 0.25. For CIRCLE, this leap takes place between C = 0.25 and

0.5.
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SVM with RBF kernel on different data sets

(5.4) There is no difference when changing C on the three data sets given. However, the following does illustrate

the effect of regularization:

Logistic regression with various penalties on a special data set

Without penalization, the model attempts to fit all data (which is indeed doable, since the training set is

linearly separable). The stronger the regularization, the more it realizes the blue triangle on the far left is an

outlier and disregards it.
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