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1 Optimization Methods

Beginning of Aug. 25, 2022

1.1 Loss Function & Risk Function

Suppose we are given a loss function ℓ(f(x), y). A frequent example is the squared loss for y = R defined by

ℓ(f(x), y) = (f(x) − y)2.

A big question of interest in ML is what to minimize this function over? For example, if we were to minimize loss

over some distribution D over all (x, y), we want to minimize the risk function (risk of prediction f(x) defined by

R(f) ∶= E(x,y)∼D[ℓf(x), y] = ∑
(x̃,ỹ)

P((x, y) = (x̃, ỹ))ℓ(f(x̃), ỹ).

Challenges we naturally encounter:

(1) i.i.d. assumption. We assume that we have a set of labelled instances drawn identically and independently

from a distribution D but often this assumption is too idealized.

(2) Theoretical abstraction – often useful.

Minimizing Risks

Definition: Empirical Risk

Given a set of labelled data points S = {(xi, yi)}ni=1, we define the empirical risk of any predictor f with

respect to S to be

R̂S(f) ∶=
1

n

n

∑
i=1
ℓ(f(xi), yi).

Note that this risk function coincides with the more general one under the discrete uniform distribution.
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Definition: Empirical Risk Minimizer (ERM)

Given a function class (i.e., a collection of functions) F ∶ {f ∶ X → Y} and a set S of labelled data points, we

define the empirical risk minimizer to be

min
f∈F

R̂S(f) =min
f∈F

1

n

n

∑
i=1
ℓ(f(xi), yi).

Generalizing Risks

What we really want to do is to generalize the results to beyond data points we already have. Given a function f , a

data set S, the following is a trivial tautology:

R(f) = R̂S(f)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
emp. risk

+ (R(f) − R̂S(f))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

generalization gap

.

That is, to minimize R(f), it suffices to minimize both the empirical risk R̂S(f) and the remaining term R(f) −
R̂S(f), known as the generalization gap, a quantifier of how well our prediction generalizes to unseen examples.

Measuring Generalization: Training / Test Paradigm

In theory, we derive generalization bounds based on complexity of the model to obtain upper bounds for the gener-

alization gap. In practice we conduct empirical evaluation — we divide the data into two parts, the training set,

a subset of data points on which we train our model, and a test set, another subset on which we test the model.

Ideally, we only use test set once or a few times. Our major concern is that our algorithm does well on training set

only because it has memorized everything rather than actually doing prediction. A good algorithm, on the other

hand, should have a small generalization gap.

Supervised Learning in a Nutshell

(1) Loss function: what is the right loss function for the task?

(2) Representation: what class of functions should we use?

• Inductive bias: no model can do well on every task. “All models are wrong, but some are useful.”

(3) Optimization: how can we efficiently find the ERM?

(4) Generalization: will the predictions of our model transfer gracefully to unseen examples?

• Note we can have trivial models that have zero generalization gap by outputting a constant, but such

model violates the optimization criteria in almost all cases.

1.2 Formal Setup of Linear Regression

• Input: x ∈ Rd.

3
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• Output: y ∈ R.

• Training data: S = {(xi, yi)}ni=1.

• Linear model: f ∶ Rd → R with f(x) = w0 + w ⋅ x where w ∶= (w1, ...,wd) ∈ Rd is the weight factor. For

convenience, we define x̃ ∶= (1, x) ∈ Rd+1 and w̃ ∶= (w0,w1, ...,wd). By doing so, f(x) can be re-written as

f(x) ∶= w̃T x̃.

Our goal is to minimize total squared error,

R̂S(w̃) =
1

n

n

∑
i=1
(f(xi) − yi)2 =

1

n

n

∑
i=1
(x̃Ti w̃ − yi)2.

We define the residual sum of squares, RSS, to be

RSS(w̃) ∶= nR̂S(w̃) =
n

∑
i=1
(x̃Ti w̃ − yi)2.

Note that under such notation, ERM is identical to finding

w̃∗ ∶= argmin
w̃∈Rd+1

RSS(w̃),

and the solution is known as the least squares solution.

Example: d = 0. Let d = 0 so we are trying to find the best constant function f(x) = w0 that predicts a set

of data. In this case,

RSS(w0) =
n

∑
i=1
(w0 − yi)2 = nw2

0 − 2w0

n

∑
i=1
yi +C = n(w0 −

1

n

n

∑
i=1
yi)

2

+ C̃

where C, C̃ are constants of little interest. It follows that w∗0 is simply the mean of the yi’s.

Example: d = 1. Now let us consider d = 1 so that

RSS(w̃) =
n

∑
i=1
(w0 +w1xi − yi)2. (*)

Taking gradient gives
∂

∂w0
RSS(w̃)∝

n

∑
i=1
(w0 +w1xi − yi)

and
∂

∂w1
RSS(w̃)∝

n

∑
i=1
xi(w0 +w1xi − yi).

Setting both to 0, we obtain a linear system

⎡⎢⎢⎢⎢⎣

n ∑xi
∑xi ∑x2i

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

w0

w1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

∑ yi
∑xiyi

⎤⎥⎥⎥⎥⎦
,

whose solution would be (assuming the 2 × 2 matrix is invertible)

⎡⎢⎢⎢⎢⎣

w0

w1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

n ∑xi
∑xi ∑x2i

⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣

∑ yi
∑xiyi

⎤⎥⎥⎥⎥⎦
.

Since (*) is a convex function of both arguments, a stationary point is guaranteed to be a (global) minimum.
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Example: General Case. Now we generalize to Rd. Here,

RSS(w̃) =
n

∑
i=1
(x̃Ti w̃ − yi)2.

Setting ∇RSS(w̃) to 0 ∈ Rd, we have

∇RSS(w̃) = 2
n

∑
i=1
x̃i(x̃Ti w̃ − yi)∝ w̃

n

∑
i=1
(x̃Ti x̃i) −

n

∑
i=1
x̃iyi

= (x̃T x̃)w̃ − x̃T y.

The general solution is (assuming x̃T x̃ is invertible) w̃∗ = (x̃T x̃)−1x̃T y.

In particular, suppose that x̃T x̃ = I so that w̃∗ = x̃T y.

Alternate approach:

RSS(w̃) =
n

∑
i=1
(w̃T x̃i − yi)2 = ∥x̃w̃ − y∥22

= (x̃w̃ − y)T (x̃w̃ − y)

= w̃T x̃T x̃w̃ − yT x̃w̃ − w̃T x̃T y +C

[completion of squares] = (w̃ − (x̃T x̃)−1x̃T y)T (x̃T x̃)(x̃ − (x̃T x̃)−1x̃T y) +C.

It remains to notice that uT (x̃T x̃)u = ∥x̃u∥22 ⩾ 0 and = 0 iff u = 0. Hence the minimizer of RSS takes place

when w̃∗ = (x̃T x̃)−1x̃T y.

1.3 Gradient Descent

The bottleneck of computing

w̃∗ = (x̃T x̃)−1x̃T y

is to invert the matrix x̃T x̃ ∈ R(d+1)
2

which takes O(d3) time (faster algorithms exist in theory but may not be

practical).

Problem: minimize a function F (w).
Gradient descent: start with some w(0); for t ∈ {0,1, ..., T}, define w(t+1) ∶= w(t) − η∇F (w(t)) where η is called the

step size / learning rate.

Example. Let w = (w1,w2) ∈ R2 and define

F (w) ∶= 0.5(w2
1 −w2)2 + 0.5(w1 − 1)2.

The gradient is
∂F

∂w1
= 2(w2

1 −w2)w1 +w1 − 1 and
∂F

∂w2
= −(w2

1 −w2).

For GD, we initialize w(0) = (w(0)1 ,w
(0)
2 ) (maybe (0,0) or randomly) and t = 0. We set η as well. Then we

5
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iteratively set

w
(t+1)
1 ← w

(t)
1 − η[2((w

(t)
1 )

2 −w(t)2 )w
(t)
1 +w

(t)
1 − 1]

w
(t+1)
2 ← w

(t)
2 − η[(w

(t)
1 )

2 −w(t)2 ]

t← t + 1.

We stop either when w converges or when t reached a prescribed number.

Why GD?

Intuition: we consider the first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T (w −w(t)).

Consequently

F (w(t+1)) ≈ F (w(t)) − η∥∇F (w(t))∥22 ⩽ F (w(t)),

so GD never increases function value, assuming we have a good choice of η (so we don’t trave l too far and actually

move away from the minima).

Convergence Guarantees for GD

For convex objectives, given ϵ there exists a lower bound for t such that F (w(t)) − F (w∗) < ϵ for large t (so we

eventually converge to the minima). Even for non-convex objectives, some guarantees still exist, e.g., how many

iterations t = t(ϵ) are needed to achieve ∥∇F (w(t))∥ < ϵ and approximate a stationary point.

It is known mathematically that a stationary point for a convex objective is a global minimizer.

Beginning of Sept. 1, 2022

For non-convex objectives, however, a stationary point may be a saddle point, and there exist functions and saddle

points around which GD will get stuck. Even worse, it is NP-hard to distinguish saddle points from local minimum.

Stochastic Gradient Descent

Instead of always moving in the negative gradient direction, we consider an algorithm that moves in the noisy

negative gradient direction given by

w(t+1) ← w(t) − η∇̃F (w(t))

where ∇̃F (w(t)) is an unbiased random variable called the stochastic gradient such that

E[∇̃F (w(t))] = ∇F (w(t)).

SGD usually needs more iterations to obtain convergence but each iteration takes less time. In some examples SGD

can be significantly faster, e.g. when GD fails due to “bad” saddle points.

Second-Order Methods

Taylor approximation gives

F (w) = F (w(t)) +∇F (w(t))T (w −w(d)) + 1

2
(w −w(t))THt(w −w(t)) +O(∥w −w(t)∥)3

6
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where Ht is the Hessian {∂
2F (w)
∂wi∂wj

}
i,j

evaluated at w = w(t). We define the second-order approximation

F̃ (w) ∶= F (w(t)) +∇F (w)T (w −w(t)) + 1

2
(w −w(t))THt(w −w(t)).

Differentiating F̃ gives

∇F̃ (w) = ∇F (w(t)) +Htw −Htw
(t)/2 −Htw

(t)/2.

Setting this to zero we obtain

H(t)w =Htw
(t) −∇F (w(t))

and so

w = w(t) −H−1t ∇F (w(t)).

This iteration (w ← w −H−1t ∇F (w) = w − (∇2F (w))−1∇F (w)) is called Newton’s method.

Newton’s Method v.s. Gradient Descent

• Step size: Newton’s method doesn’t have any but GD requires one.

• Rate/order of convergence: Newton’s method converges much faster (quadratic convergence).

• Complexity: Newton’s method requires inversion of Hessians which is of O(d3), but GD only takes O(d).

2 Linear Classifiers

Recall we have:

• input x ∈ Rd,

• output (label): y ∈ [C] ∶= {1,2, ...C}, and

• goal: a mapping f ∶ Rd → [C] that predicts reliable outcomes based on input.

We first look at binary classification, where C = 2.

2.1 Binary Classification

Let F be the class of linear functions. Conveniently when C = 2 we make use of the sign function.

Definition: Separating Hyperplanes & Linear Predictors

In Rd, we define the function class of separating hyperplanes to be

F ∶= {f ∶ Rd → {−1,1} ∶ f(x) = sgn(wTx) where w ∈ Rd}.

For notational simplicity we denote it as {f(x) = sgn(wTx) ∶ w ∈ Rd} and similarly onward.

7
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Picking a Loss Function

With this setup, we now need to choose an appropriate loss function. The most common choice for binary classifi-

cation is

ℓ(f(x), y) ∶= 1[f(x) ≠ y]

(i.e. the inficator function). The 0/1 loss function is

ℓ0−1(ywTx) ∶= 1[(ywTx ⩽ 0)].

The function returns 1 when wTx ≠ y (i.e., 1 and −1 or reversed). However, such function is non-convex and

inconvenient mathematically and computationally. We instead consider a convex surrogate loss.

• The perceptron loss is defined as ℓ(z) ∶=max{0,−z} (used in Perceptron),

• The hinge loss is defined as ℓ(z) ∶=max{0,1 − z} (used in SVM and many others), and

• The logistic loss ℓ(z) ∶= log(1 + exp(−z)) (used in logistic regression).

GD on Perceptron Loss

We now try to find the ERM

w∗ = argmin
w∈Rd

1

n

n

∑
i=1
ℓ(yiwTxi)

where ℓ is a convex surrogate loss. In general there will not be a closed form solution but we have numerical

toolboxes.

Perceptron Loss and the Perceptron Algorithm

We first focus on Perceptron loss:

F (w) = 1

n

n

∑
i=1

max{0,−yiwTxi}. (*)

The gradient of max{0,−z} is 0 if z ⩾ 0 and −1 otherwise.

Applying GD to (*) gives

∇F (w) = − 1
n

n

∑
i=1

1[yiwTxi ⩽ 0]yixi,

so we iteratively define

w ← w + η
n

n

∑
i=1

1[yiwTxi ⩽ 0]yixi. (GD.1)

After every iteration, we need to update the entire training set, which can be costly.

Alternatively we can consider SGD, as follows:

• Pick one index i ∈ [n] uniformly at random, and let

∇̃F (w(t)) = −1[yiwTxi ⩽ 0]yixi.

• Use ∇̃ as the stochastic gradient.

8
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• To see it is unbiased:

E[∇̃F (w(t))] = 1

n

n

∑
i=1

1[yiwTxi ⩽ 0]yixi = ∇F (w(t)).

• We update the SGD by

w ← w + η1[yiwTxi ⩽ 0]yixi. (SGD.1)

In comparison, (SGD.1) is significantly faster than (GD.1) as each update only changes one data point at most.

The Perceptron algorithm is simply (SDG.1) with η = 1. That is, we initialize w = 0, and repeat the following until

convergence:

• Pick xi ∼ unif(x1, ..., xn),

• If sgn(wTxi) ≠ yi:

w ← w + yixi.

Intuition. Say our w makes mistake on (xi, yi), i.e., yiwTxi < 0 or equivalently sgn(wTxi) ≠ yi. We consider

w′ ∶= w + yixi. At least for this one data point,

yi(w′)Txi = yiwTxi + y2i xTi x = yiwTxi + y2i ∥xi∥2.

If xi ≠ 0 then ∥xi∥ > 0 and yi(w′)Txi > yiwTxi. That is, our Perceptron algorithm pushes yiwTxi towards the positive

numbers, which we want.

Logistic Loss

We now look at logistic loss, which is given by

F (w) = 1

n

n

∑
i=1

log(1 + exp(−yiwTxi)).

Instead of {±1}, we “predict the probability”, i.e., regress on probability. One way to model probability using the

sigmoid function is

P(y = ±1 ∣ x;w) = σ(wTx) where σ(z) = 1

1 + e−z
.

Some immediate properties of the sigmoid function:

• lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1. Monotone increasing and differentiable; good for probability.

• σ(wTx) ⩾ 0 if and only if wTx ⩾ 0, consistent with predicting the label with sgn(wTx).

• The larger wTx is, the larger σ(wTx) is, and thus the higher confidence in labelling the point as 1.

• σ(z) + σ(−z) = 1 for all z, corresponding to

P(y = −1 ∣ x;w) + P(y = 1 ∣ x;w) = σ(−wTx) + σ(wTx) = 1.

Because of these, it is natural to model P(y ∣ x;w) by

P(y ∣ x;w) ∶= σ(ywTx) = 1

1 + exp(−ywTx)
.

9
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MLE on Sigmoid v.s. Minimizing Logistic Loss

What we observe as labels, not probabilities. Taking a probabilistic view, we consider "what is the probability of

seeing labels y1, ..., yn given x1, ..., xn, when all of these are generated by some w? The maximum likelihood

estimator, MLE, maximizes the following probability

P(w) =
N

∏
i=1

P(yi ∣ xi;w).

Some math using monotonicity of log:

w∗ = argmax
w

P (w) = argmax
w

N

∏
i=1

P(yi ∣ xi;w)

= argmax
w

n

∑
i=1

logP(yi ∣ xi;w)

= argmin
w

n

∑
i=1
− logP(yi ∣ xi;w)

= argmin
w

n

∑
i=1

log(1 + exp(−yiwTxi))

= argmin
w

n

∑
i=1
ℓlogistic(yiwTxi) = argmin

w
F (w).

That is, minimizing the logistic loss is exactly finding MLE for the sigmoid model.

SGD on Logistic Loss

Recall we can sample one index uniformly at random and make the corresponding loss function on yiw
Txi the

stochastic gradient. That is,

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(yiwTxi)

= w − η ⋅ [
∂ℓlogistic(z)

∂z
∣
z=yiwT xi

]yixi

= w − η ⋅ [ −e
−z

1 + e−z
∣
z=yiwT xi

]yixi

= w + ησ(−yiwTxi)yixi

= w + ηP(−yi ∣ xi;w)yixi

using our previously defined probability model for P(y ∣ x;w). Note that this is a “soft version” of Perceptron (where

1[sgn(wTxi) ≠ yi] is discontinuous, P(−yi ∣ xi;w) is smooth; for the normal Perceptron we either move a lot or stay,

whereas in this SGD we always move, though sometimes very little).

Beginning of Sept.8, 2022

2.2 Generalizing ERM

We first make some assumptions before making generalizations:

10
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• The function class F is assumed to have finite cardinally.

• (Realizability) There exists f∗ ∈ F such that y = f∗(x) for all x ∈ X (e.g. all given labels are indeed separated

by a hyperplane).

In some cases, even with the same distribution, we may unfortunately get samples with terrible but working ERMs.

For example consider a unit square where the realizable function is a horizontal function cutting the square into two

parts. A terrible sample could consist only of possible points on NE and negative points on SW, of which y = 1− x is

also an ERM, although it differs significantly from the actual function. The following theorem addresses such issue

and bounds its probability of occurring.

Theorem

Let F be a function class with ∣F ∣ < ∞. Let y = f∗(x) for some f∗ ∈ F . Suppose we get a training set,

S = {(xi, yi)}ni=1, drawn i.i.d. from the data distribution D. Define

fERM
S ∶= argmin

f∈F

1

n

n

∑
i=1
ℓ(f(xi), yi).

Then if n > log(∣F ∣/δ)/ϵ, with probability > 1 − δ over {(xi, yi)}ni=1, we can bound the risk of fERM
S by ϵ.

Proof. Note that there exists f∗ ∈ F with R(f∗) = 0 by the realizability assumption. Let

Fbad ∶= {f ∈ F ∶ R(f) ⩾ ϵ}.

(1) What is the probability of “getting tricked” and mistakenly setting f ∈ Fbad as the ERM?

Fix such f ′ ∈ Fbad. Consider the following probability:

PS∈Dn[f ′ is an ERM] = PS∼Dn[f∗has zero empirical risk]

= PS∼Dn[f ′(xi) = f∗(xi) for all i ∈ [n]]

(i.i.d. assumption) =
n

∏
i=1

P(xi,yi)∼D[f
′(xi) = f∗(xi)] ⩽ (1 − ϵ)n

where in the last step we used the fact that R(f ′) ⩾ ϵ.

Using 1 − x ⩽ e−x, we bound the probability by

PS∈Dn[f ′ is an ERM] ⩽ e−nϵ.

(2) What is the probability of being “tricked” by any f ∈ Fbad?

By the union bound,

PS∼Dn[ ⋃
f∈Fbad

{f is an ERM}] ⩽ ∑
f∈Fbad

P({f is an ERM}) ⩽ ∣Fbad∣e−nϵ ⩽ ∣F ∣e−nϵ.

(3) Therefore, if

n > ϵ−1(log∣F ∣ + log(1/δ)) = log(∣F ∣/δ)
ϵ

then

P[ ⋃
f∈Fbad

{f is an ERM}] < δ,

so with probability > 1 − δ, the chosen ERM does not fall into Fbad, in which case R(fERM
S ) < ϵ.

11
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Remark. Both assumptions (finite function class cardinality and realizability) can be loosened. We can

prove similar theorems which guarantee small generalization gap without realizability (with ϵ2 as denomi-

nator). This is called agonistic learning.

Rule of Thumb for Generalization

Suppose the functions f in our function class F have d parameters to be set. Assume we discretize there parameters

so they take W possible values each. In this case, ∣F ∣ = W d, so the generalization gap is at most ϵ with n ⩾
log(W d/δ)/ϵ = d log(W /δ)/ϵ samples.

Remark. To guarantee generalization, the training data size n should be at least linear in d, the number of

free parameters.

3 Nonlinear Classifiers

What if our data does not fit a linear model well?

One solution: use a nonlinear mapping φ(x) ∶ Rr → Rm to transform the data into a more complicated space then

apply linear regression, hoping a linear model would perform better in the new space.

Example: y = 1 − x2, x ∈ [0,1] clearly has a parabolic graph. Now we define y ∶= wTφ(x) where

w = (1,0,−1) and (1, x, x2)T ∈ R3.

We claim y is indeed a linear function in R3.

3.1 Regression with Nonlinear Basis

Model: like mentioned above, we consider f(x) = wTφ(x) where w ∈ Rm and φ ∶ Rd → Rm. Our objective function

is

RSS(w) ∶=
n

∑
i=1
(wTφ(xi) − yi)2.

Like computed before, the least square solution is similar:

w∗ = (φTφ)−1φT y where φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(x1)T

⋮
φ(xn)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×m.

A basic example with d = 1 and the polynomial basis for mth order polynomials:

φ(x) = (1, x, x2, ..., xm)T and so f(x)w0 +
m

∑
i=1
wmx

m.

Remark. What about a fancy linear feature map? Yes, but it’s useless since it’s equivalent to using a

12
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standard basis:

min
w∈Rm

∑(wTAxi − yi)2 = min
w′∈Im(AT )⊂Rd

∑(w′Txi − yi)2.

3.2 Overfitting and Regularization

Suppose we have a sine function with a random noise and we have training sample of 10 data points. It is obviously

a terrible idea to use a degree 9 polynomial to fit the points even though doing so would result in 0 error on the data

points (training error), since doing so will result in huge test error (on points other than the ones in the training

set).

In this same example, let m denote the order of polynomial we use to fit the data. If m ⩽ 2 we underfit the data

and have both large training error and test error. On the other hand, if m = 0, we overfit the data in the sense that

we have small training error but large test error. In general, the more complicated the model is, the larger the gap

between training and test error is.

Question: how to prevent overfitting?

(1) More data! However, this is sometimes costly.

(2) Control model complexity; use cross-validation to determine the degree m we want. Rough idea: do a

three-way split of training, test, and validation set.

(3) Regularized linear regression. Instead of the old objective RSS, we now consider

G(w) = RSS(w) + λψ(w)

while also trying to find the minimizer w∗.

Here ψ ∶ Rd → R+, the regulized, calculates the complexity of a model and penalizes complex ones. Common

choices include ∥w∥22, ∥w∥1, and so on. Also, λ > 0 is the regularization coefficient. If λ = 0 there is no

regularization. As λ→∞, we have w∗ → argminψ(w).

As a consequence of adding regularization, eventually the gap between training and test error will go down.

Why is regularization useful?

Regularization helps with generalization. In general, we should fit a more expressive model if possible. However,

if we don’t have sufficient data to fit a more expressive model, then ERM will overfit. Regularization addresses this

issue and helps us find a balance between “finding a more expressive data” and overfitting.

3.3 ℓ2 Regularization

We begin by considering ℓ2 regularization (or ridge regression) with ψ(w) ∶= ∥w∥22. In this case,

G(w) = RSS(w) + λ∥w∥22 = ∥Xw − y∥22 + λ∥w∥22.

The gradient is

∇G(w) = 2(XTXw −XT y) + 2λw.

13
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Setting it to 0 we obtain

w∗ = (XTX + λI)−1XT y.

By convexity, this critical point is the global minimizer of G.

When XTX is not invertible, the least square solution (XTX)−1XTY is undefined. This happens when

(1) There are infinitely many w’s with Xw = Y , or

(2) No solution exists for Xw = Y .

We will focus on the first case here. It corresponds to not having enough data (so XTX is not full rank), namely

when sample size n < d. With regularization,

G(w) = ∥Xw − y∥22 + λ∥w∥22 ⩾ λ∥w∥22,

we pick the w with the smallest 2-norm such that Xw = Y .

To be put in a linear algebraic context, doing the eigenvalue decomposition of XTX + λI,

XTX + λI = UT {diag(λi + λ)}U,

we have

(XTX + λI)−1 = UT {diag(1/(λi + λ)}U.

A Bayesian View of ℓ2 Regularization

The Maximum a Posteriori Probability estimation (MAP) is a Bayesian generalization of MLE.

Suppose we are given a training set {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ R. We suppose for each i,

yi = wT
x xi + ϵi

where the noise is Gaussian, ϵi ∈ N (0, σ2), so that

P(y ∣ xi,wx, σ) =
1

σ
√
2π

exp(−(y −w
T
x xi)2

2σ2
) .

Taking log-likelihood, we obtain

logP(yi) = −
(yi −wTxi)2

2σ2
+ constant.

By differentiating, the minimizer agrees with what we have shown before.

The Bayeisan View:

uppose we suspect w will not deviate far from the origin. In particular we assume the prior for w to be N (0, γ2I).
Now we find the model which maximizes the posterior probability

Posterior(w)∝
d

∏
i=1

exp(−(wi)2

2γ2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w∼N (0,γ2I)

n

∏
i=1

exp(−(yi −w
Txi)2

2σ2
)

and the log posterior is

logPosterior(w) = −∥w∥
2

2γ2
−

n

∑
i=1
(yi −wTxi)2.

14
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From this, we see that maximizing log of posterior is equivalent to minimizing G(w) for φ(w) = ∥w∥2.

The Frequentist View:

Instead of using a prior to infer the model, we constrain the model, assuming that such constraints will lead to

optimization / the true model:

Find w∗ = argmin
w

RSS(w) subject to ψ(w) ⩽ β.

3.4 Encouraging Sparsity: the ℓ0 Regularization

We define the sparsity of w ∈ Rn to be the number of non-zero coefficients in w, or equivalently in math

∥w∥0 ∶= lim
p→0
∥w∥p.

Advantage:

• In many applications, we have numerous possible features, only some of which have relationship with our

label. The others should have weight 0. Example: genes related to a disease — only a selected few genes may

have impact; the others should be ignored while creating a linear model.

• Sparse models can be more interpretable — they narrow down a small number of features which carry a lot

of signal.

• Data required to learn sparse model may be significantly less than to learn dense model.

Beginning of Sept.15, 2022

The Good, the Bad, & the Ugly

We choose φ(w) = ∥w∥0 as stated. The objective is to minimize

G(w) =
n

∑
i=1
(wTxi − yi)2 + λ∥w∥0.

• The good: “information theoretically” nice — need less data to learn.

– Suppose the weight in w are in {−w,−w+1, ...,0, ...,w}. There are (2w)s(d
s
) s-sparse (s non-zero entries)

vectors in d dimensions.

– Recall form previous lectures that we need approximately log(∣F ∣) (about this magnitude) to learn:

log ((2w)s(d
s
)) ∼ log((2w)s (d

s
)
s

) = s log(d/s) + s log(2w).

– How many free parameters?

– We first choose the nonzero s-coordinates: need about log d bits per coordinate, so s log d in total.

– We need to now choose the value for each non-zero coordinates: fixing s values results in s logw in total.

– In contrast, without s-sparsity, we need about d samples in d-dimensions. Therefore, when s ≪ d, with

s-sparsity, we need much less data to learn.

• The bad: ∥w∥0 is not convex. (Any ∥ ⋅ ∥p for 0 < p < 1 is non-convex too.) Furthermore, minimizing G(w) is

NP-hard, so no guaranteed efficient minimization algorithm.

• The ugly: ∥w∥0 is highly discontinuous (for example on R), so GD does not work.

15
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3.5 ℓ1 Regularization as a Proxy of ℓ0

We now instead consider φ(w) = ∥w∥1:

G(w) =
n

∑
i=1
(wTxi − yi)2 + λ∥w∥1.

Note ∥w∥1 is convex, and we can use GD/SGD. Furthermore, to minimize ∥w∥1, it often suffices to minimize ∥w∥0,

as stated in the following theorem:

Theorem

Given n vectors xi ∈ Rd, i ∈ [n], drawn i.i.d. from N (0, I), let yi = (w∗)Tx for some w∗ with ∥w∗∥0 = s. Then

for some fixed C > 0, the minimizer of G(w) with ℓ1 regularization will be w∗ as long as n > C ⋅ s log d (with

high probability over the randomness in the training data points xi).

3.6 Isotropic ℓ1 and ℓ2 Regularization

We assume that XTX = I (isotropic assumption), meaning informally that

• all features are uncorrelated,

• all features have mean 0, and

• all features have variance 1.

Let us consider ∥ ⋅ ∥2 first:

G(w) =
n

∑
i=1
(xTi w − yi)2 + λ∥w∥22 Ô⇒ w∗ = (XTX + λI)−1XT y.

With our isotropic assumption XTX = I, we have

w∗ = 1

1 + λ
XT y

so the ith coordinate of w∗ iks simply XT
i y/(1+λ), namely 1/(1+λ) times the correlation of the ith feature with the

label. We see that, in this special case, ℓ2 regularization shrinks the estimated parameters.

More generally, when the features have unequal variance, ℓ2 regularization applies similar shrinkage to all of them

so scaling features can be important.

Now we consider ∥ ⋅ ∥1:

G(w) =
n

∑
i=1
(xTi w − yi)2 + λ∥w∥1.

The gradient is (ignoring zero components of w)

∂G(w)
∂wj

= 2
n

∑
i=1
(xTi w − yi)2x

(j)
i + λ sgn(wj)

= 2
n

∑
i=1
(x(j)i xTi w) − 2

n

∑
i=1
x
(j)
i yi + λ sgn(wj)

= 2
n

∑
i=1
x
(j)
i xTi w − 2xTi y + λ sgn(wj)

= 2wj − 2xTi y + λ sgn(wj)

16
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where x(j)i is the jth component of xi. For GD, we literately define

wj ← wj − η(2(wj − xTi y) + λ sgn(wj)).

Without regularization we would have

wj ← wj − 2η(wj − xTi y).

Here, as xTi y approaches wj , the change of each iteration becomes very small. However, with ηλ sgn(wj) present,

when wj > 0, this extra term pushes wj towards the negative side and vice versa, until wj becomes 0.

A geometric interpretation of no regularization, ℓ1, and ℓ2 regularizations is shown below. Note how large, positive

wj under ℓ2 is slightly above the blue line and how large (magnitude), negative wj under ℓ2 regularization is slightly

under the blue line. Also note when ∣βj ∣ is sufficiently small, ℓ1 regularization forces wj to be 0, thereby giving us

sparsity as ideally used in ∥ ⋅ ∥0.

Bias-Variance Tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-variance tradeoff. A model whose

complexity is too small will underfit and cause a large bias because the model’s accuracy will not improve with

addition of data. Conversely, a model with overly high complexity will overfit and create high variance, because the

model’s predictions vary significantly with the randomness in its training data.

4 Support Vector Machines, SVMs

4.1 The Kernel Trick

Recall our method of mapping a nonlinear function map to a linear regression. The kernel methods give a way to

choose and efficiently work with the nonlinear map φ ∶ Rd → Rm.

Recall the regularized least squares: we minimize

w∗ = argmin
w

F (w) = argmin
w
(∥Φw − y∥22 + λ∥w∥22) = (ΦTΦ + λI)−1ΦT y

17
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where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(x1)T

⋮
φ(xn)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ RnM and y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

⋮
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn.

Looking back at ℓ2 regularization LS,

F (w) = ∥Φw − y∥22 + λ∥w∥22,

with

∇F (w) = ΦT (Φw∗ − y) + λw∗ Ô⇒ w∗ = λ−1ΦT (y −Φw∗) =∶ ΦTα =
n

∑
i=1
αiφ(xi).

That is, w∗ is a linear combination of φ(xi). (Note that we do not know what α is from this computation though.)

Suppose we know α. Then the prediction of w∗ on a new example x is

(w∗)Tφ(x) =
n

∑
i=1
(αiφ(xi))Tφ(x) =

n

∑
i=1
αiφ(xTI φ(x).

Therefore, only inner products in the new feature space matter — we can compute inner products without explicitly

computing φ.

But of course, doing so requires us to know what α is.

Step 1: kernel matrix. Plugging in w = ΦTα into F (w) gives

H(α) = F (ΦTα) = ∥ΦΦTα − y∥22 + λ∥ΦTα∥22

= ∥Ka − y∥22 + λαTΦΦTα = ∥Kα − y∥22 + λαTKα. [K = ΦΦT ∈ Rn2

]

K is called the Gram matrix with Ki,j = φ(xi)Tφ(xj).
Note this is different from the covariance matrix (the M ×M matrix ΦTΦ), but both are indeed symmetric and PSD.

Step 2: minimize the dual information

H(α) = ∥Kα − y∥22 + λαTKα.

Setting the derivative to 0 we have

0 = (K2 + λK)α −Ky =K((K + λI)α − y).

Therefore α = (K + λI)−1y is a minimizer of H and we obtain

w∗ = ΦTα = ΦT (ΦΦT + λI)−1y.

We now have found two forms of minimizers of F (w), w∗:

• Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦT y.

• Minimizing H(α) gives w∗ = ΦT (ΦΦT + λ)−1y (different dimension of I).

These two are indeed identical (and they have to, since F is convex), since

(ΦTΦ + λI)−1ΦT y = (ΦTΦ + λI)−1ΦT (ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT )(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT (ΦΦT + λI)−1y

= ΦT (ΦΦT + λI)−1y.

The Kernel trick:

18
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• Computing (ΦΦT + λI)−1 is more efficient than computing (ΦTΦ + λI)−1 when n ⩽ M : since ΦΦT is n × n,

inversion takes O(n3) time as opposed to inverting ΦTΦ, which takes O(M3).

• More importantly, computing α = (K + λI)−1y only requires computing inner products in the new feature

space. That is,

• The exact form of φ(⋅) is not essential. All we need is the inner products φ(x)Tφ(x′).

• For some φ it is indeed possible to compute this quantity without knowing what φ looks like. This is the

kernel trick.

Example. Consider φ ∶ R2 → R3 by

φ(x1, x2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x21√
2x1x2

x22

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The inner product of φ(x) and φ(y) is

φ(x)Tφ(x′) = x21y21 + 2x1x2y1y2 + x22y22 = (x1y1 + x2y2)2 = (xT y)2.

That is, the inner product in the new space (R3) is s imply a function of the inner product in the original

space (R2).

Example. Consider φ ∶ Rd → R2d parametrized by θ:

φθ(x) = [cos(θx1), sin(θx1), ..., cos(θxd), sin(θxd)]T .

We have

φθ(x)Tφθ(y) =
d

∑
i=1
[cos(θxi) cos(θyi) + sin(θxi) sin(θyi)] =

d

∑
i=1

cos(θ(xi − yi)).

In this example, the inner product in the new space is a simple function of features in the original space.

Example. Consider φL ∶ Rd → R2d(L+1) for some integer L:

φL(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ0(x)
φ2π/L(x)
φ4π/L(x)
⋮

φ2πL/L(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here

φL(x)TφL(y) =
L

∑
ℓ=0

d

∑
i=1

cos(2πℓ
L
(xi − yi)) .
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Example. As L→∞, we cannot compute φ(x), but the inner product still makes sense:

φ∞(x)Tφ∞(y) = ∫
2π

0

d

∑
i=1

cos(θ(xi − yi)) dθ =
d

∑
i=1

sin(2π)(xi − yi)
xi − yi

,

again, a function of the original features.

With these illustrations, we now formally define the kernel functions:

Definition: Kernel Functions

A function k ∶ Rd ×Rd → R is called a kernel function if there exists a function φ ∶ Rd → R such that for any

x, y ∈ Rd,

k(x, y) = φ(x)Tφ(y).

Now, choosing a nonlinear basis φ becomes equivalent to choosing a kernel function. The Gram matrix now becomes

K = ΦΦT = {φ(xi)Tφ(xj)} = {k(xi, xj)}.

Mercer’s theorem states that k is a kernal if and only if K is PSD for any n and any x1, ..., xn. The contrapositive

is often used to prove something is not a kernel.

Example. The function k(x, y) = ∥x − y∥22 is not a kernel, because the matrix

K =
⎡⎢⎢⎢⎢⎣

k(x,x) k(x, y)
k(y, x) k(y, y)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 ∥x1 − x2∥22
∥x1 − x2∥22 0

⎤⎥⎥⎥⎥⎦

is not PSD. (For example
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
is not because [1 −1]

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎦
= −2.)

Properties of kernels:

• For any f ∶ Rd → R, k(x, y) = f(x)f(y) is a kernel (with feature map φ ≡ f).

• If k1, k2 are kernels, the following are also kernels (prove by using feature maps):

– αk1 + βk2 for α,β ⩾ 0,

– k1k2, and

– exp(k1) and exp(k2).

Popular Kernels

The polynomial kernel is given by

k(x, y) = (xT y + c)M

for some c ⩾ 0 and positive integer M . We’ve seen the feature map for c = 0 and M = 2 before.
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The Gaussian kernel or the Radial basis function (RBF) kernel is

k(x, y) = exp(−∥x − y∥
2
2

2σ2
) for some σ > 0.

Note that

k(x, y) = exp(−∥x∥
2
2

2σ2
) exp(−∥y∥

2
2

2σ2
) exp(x

T y

σ2
)

where the product of the first two terms can be seen as f(x)f(y) where f(x) ∶= exp(−∥x∥22/(2σ2)). So, without the

third term, k would have been a kernel with feature map f .

Now we look at the last term using ex = 1 + x + x2/2! + x3/3! + ...:

exp(x
T y

σ2
) = 1 + x

T y

σ2
+ (x

T y)2

2!(σ2)2
+ (x

T y)3

3!(σ2)3
+ ...

Each term on the RHS is a polynomial, and we claim that this infinite sum also results in a kernel. Then, the original

k(x, y) is again the product of two kernels and is therefore a kernel.

Prediction with Kernels

As long as w∗ =
n

∑
i=1
αiφ(xi), the prediction on a new example x becomes

(w∗)Tφ(x) =
n

∑
i=1
αiφ(xi)Tφ(x) =

n

∑
i=1
αik(xi, x).

This is known as a non-parametric method. Informally speaking, this means that there is no fixed set of parameters

that the model is trying to learn, since the RHS is free of w∗.

Beginning of Sept. 22, 2022

4.2 Support Vector Machines, Separable Case

Why SVM?

• It is one of the most commonly used classification algorithms.

• It allows us to explore the concept of margins in classification.

• It works well with the kernel trick.

• It has strong theoretical guarantees.

We will again focus on binary classification here. The function class for SVMs is a function on a feature map φ

applied to the data points, namely sgn(wTφ(x) + b). The bias term b is taken separately for SVMs, the reason of

which will be explained later.
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Margins: Geometric Intuition

When data is linearly separable, there are infinitely many hyperplanes with zero training error. Back to the same

old question — which one should we choose? We claim that the further away the separating hyperplane is from the

data points, the better. To this end, we define the margin for linearly separable data to be the distance from the

hyperplane the closest point.

Some math first: given x and a hyperplane {x ∶ wTx + b = 0}, we compute the distance as follows:

• Orthogonally project x onto the hyperplane and obtain x′.

• Since w is orthogonal to the hyperplane, x′ is of form x′ = x − βw/∥w∥2.

• Find β using wTx′ + b = 0, namely

0 = wT (x − βw/∥w∥2) + b = wTx − b∥w∥ + b Ô⇒ β = w
Tx + b
∥w∥2

.

• The distance is then ∥x − x′∥2 = ∣β∣ = ∣wTx + b∣/∥w∥2.

• More generally, if the hyperplane classifies (x, y), then sgn(wTx + b) = y, so the distance becomes

y(wTx + b)
∥w∥2

.

Margins: Functional Motivation

Recall from previous lectures that we used the signoid function to show the probability of a data point getting 1 or

0 by

P(y = 1 ∣ x,w) = σ(y(wTx + b)) = 1

1 + exp(−y(wTx + b))
.

Here, if y = 1, we want wTx + b≫ 0 and if y = −1, we want wTx + b≪ 0. Hence we want y(wTx + b)≫ 0. However,

we can easily “cheat” by making w large. To offset this potential effect, we normalize the quantity and instead try

to maie (y(wTx + b))/∥w∥ as large as possible.

Maximizing Margin

The formal definition of a margin distance from all trainig points is

min
i

yi(wTφ(xi) + b)
∥w∥2

for data points (xi, yi).

Since we want to maximize the smallest distance among all data points, this translates to solving

max
w,b

min
i

yi(wTφ(xi) + b)
∥w∥2

=max
w,b

1

∥w∥2
min
i
yi(wTφ(xi) + b).

Note that if we rescale (w, b), multiplying both by some scalar, the hyperplane remains the same, i.e.,

{x ∶ wTφ(x) + b = 0} = {x ∶ kwTφ(x) + kb = 0}.

We can pick the appropriate quantity so that min
i
yi(wTφ(xi)+b) = 1. More concretely, this scalar is

1

mini yi(wTφ(xi) + b)
.

After rescaling, the margin simply becomes 1/∥w∥2.
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SVM for Separable Data: “Primal” Formulation

From above, on a separable training set, lour goal is to solve

max
w,b

1

∥w∥2
subject to min

i
yi(wTφ(xi) + b) = 1.

This is equivalent to solving

min
w,b

1

2
∥w∥22 subject to yi(wTφ(xi) + b) ⩾ 1 for all i ∈ [n]. (SVM1)

In doing so, we transformed a non-convex objective into a convex one! Because of the new formulation, SVM is

also called the max-margin classifier. The constraints above are called hard-margin constraints.

4.3 Support Vector Machines: General Non-Separable Case

If the data are not linearly separable, the previous constraint

yi(wTφ(xi) + b) ⩾ 1 for all 1 ⩽ i ⩽ n

is obviously not feasible.

In fact, even in the separable case, sometimes it is not the best idea to completely separate them. Consider, for

example, a rectangle, in which all blue dots are in bottom right. Almost all red points are in top left, so an “ideal”

classifier would separate the rectangle diagonally. But if we have an extra red point just on top of the blue ones,

this forces a horizontal separating line, and clearly this is not what we want. (Though we successfully classify all

training data.)

To deal with this issue, we relax the constraints to ℓ1 norm soft-margin constraints:

yi(wTφ(xi) + b) ⩾ 1 − ξi ⇐⇒ 1 − yi(wTφ(xi) + b) ⩽ ξi, i ∈ [n].

Here we introduce the slack variables ξi ⩾ 0. (This should ring a bell on hinge loss ℓhinge(z) = max{0,1 − z} with

z = (wTφ(x) + b).)

But Why ℓ1 Penalization?

Functions like squared hinge loss really penalizes a misclassification as max(0,1 − z)2 grows very quickly as z gets

increasing negative. Hinge loss itself, however, is much more robust compared to squared loss when facing outliers

in data.

Example: A one-dimensional example. Suppose we have x1, x2, ..., xn. We know

w∗ℓ2 = argmin
w

n

∑
i=1
(xi −w)2 =

1

n

n

∑
i=1
xi.

On the other hand,

w∗ℓ1 = argmin
w

n

∑
i=1
∣xi −w∣ =median of {x1, ..., xn}.

It is obvious that the median is much more robust to outliers — one significant outlier shifts the mean

significantly but has little impact on the median.
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Example: For one-dimensional regression. Suppose the data points are nice enough to satisfy yi =
10xi + ϵi (ϵ for noise). Consider

w∗ℓ2 = argmin
w

n

∑
i=1
(yi −wxi)2 and w∗ℓ1 = argmin

w

n

∑
i=1
∣yi −wxi∣.

What if we add an outlier now? w∗ℓ2 will shift much more than w∗ℓ1 does.

SVM: General Primal Formulation

Ideally, we want ξi to be as small as possible. The objective therefore becomes

min
w,b,{xi}

1

2
∥w∥22 +C∑

i

ξi subject to yi(wTφ(xi) + b) ⩾ 1 − ξi

ξi ⩾ 0. (SVM2)

• When ξi = 0, the data is classified correctly.

• When ξi < 1, the data is classified correctly but does not satisfy the large margin constraint.

• When ξi > 1, the data is misclassified.

Primal Formulation: Another View

In a nutshell: SVM can be thought of as a linear model with ℓ2 regularized hinge loss. We claim (SVM2) is equivalent

to finding

min
w,b,{ξi}

1

2
∥w∥22 +C

n

∑
i=1
ξi subject to max{0,1 − yi(wTφ(xi) + b)} = ξi for i ∈ [n]. (SVM3)

In order to minimize ∑ ξi, we should set ξi to be as small as possible. When if ξi = 0 we want yi(wTφ(xi) + b) ⩾ 1;

when ξi > 0 we want it to be precisely 1 − yi(wTφ(xi) − b)). But then we can rewrite (SVM3) as

min
w,b

C
n

∑
i=1

max{0,1 − yi(wTφ(xi) + b)} +
1

2
∥w∥22

which, after setting λ = 1/C, gives the form identical to minimizing ℓ2 regularized hinge loss:

min
w,b

n

∑
i=1

max{0,1 − yi(wTφ(xi) + b)} +
λ

2
∥w∥22. (SVM4)

4.4 Optimizing / Kernelizing SVM

We now go back to (SVM2), the convex objective. We can apply any convex optimization algorithms (e.g. SGD), but

usually we apply kernel trick, which requires solving the dual problem. It suffices to show that w∗, the solution, is

a linear combination of the feature vectors φ(xi).
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Proposition

We claim that, for SVM, w∗ is a linear combination of φ(xi), i.e., w∗ =
n

∑
i=1
αiyiφ(xi) for some αi’s.

Informal proof. We first formulate the SVM question as a linear model F (w) with ℓ2 regularized hinge loss as

in (SVM4). Since the function is convex, GD is guaranteed to find a minimizer with any initialization (with

appropriate learning rate).

Taking derivatives,

∂F (w)
∂w

=
n

∑
i=1

⎛
⎜⎜
⎝

∂ℓhinge(z)
∂z

RRRRRRRRRRRz=yi(wTφ(xi)+b)

⋅

chain rule
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(−yiφ(xi))

⎞
⎟⎟
⎠
+ λw. (∆)

Therefore, we can initialize w(0) as 0 and iteratively define

w(t+1) ← w(t) − η(∆).

Observe that w(t) is always in the span of yiφ(xi): every time when we update, we are adding a linear combi-

nation of the yiφ(xi)’s. Taking the limit we see w∗ also lies in the span.

Having shown w∗ =∑
i

αiyiφ(xi), in the separable case, minimizing ∥w∥22/2 becomes

min
α,t

1

2
∥

n

∑
i=1
αiyiφ(xi)∥

2

2
subject to yi(

n

∑
i=1
αiyiφ(xi)Tφ(xi) + b) ⩾ 1.

This is equivalent to

min
αi,b

1

2
∑
i,j

αiαjyiyjφ(xi)Tφ(xj) subject to yi(
n

∑
i=1
αiyiφ(xi)Tφ(xj) + b) ⩾ 1.

Using Lagrange duality (not covered), for the separable case, the objective above is equivalent to

max
αi

n

∑
i=1
αi −

1

2
∑
i,j

αiαjyiyjφ(xi)Tφ(xj) subject to
n

∑
i=1
αiyi = 0 and αi ⩾ 0.

In particular, we no longer need to compute φ(x), and the objective is quadratic.

For the general case, the dual is identical except the extra requirement that 0 ⩽ αi ⩽ C.

4.5 Prediction Using SVM

How do we predict, given the solution {α∗i } to the optimization problem?

Remember

w∗ =
n

∑
i=1
α∗i yiφ(xi) = ∑

i∶α∗i >0
α∗i yiφ(xi).

That is, we ignore indices with αi = 0. A point φ(xi) with α∗i > 0 is called a support vector hence the name SVM.
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To make a prediction on any data point x:

sgn(w∗Tφ(x) − b∗) = sgn
⎛
⎝ ∑α∗i >0

α∗i yiφ(xi)Tφ(x) − b∗
⎞
⎠

= sgn
⎛
⎝ ∑α∗i >0

α∗i yik(xi, x) − b∗
⎞
⎠

with the help of kernels.

Bias Term b∗

It can be shown that, in the separable case, the support vectors lie on the margin.

In this case, for any i with α∗i > 0,

y2i (w∗Tφ(xi) + b∗) = yi Ô⇒ w∗Tφ(xi) + b∗ = yi Ô⇒ b∗ = yi −w∗Tφ(xi).

In the general case, for any support vector φ(xi) with 0 < α∗i < C, it can be shown that yi(w∗Tφ(xi) + b∗) = 1 so

b∗ = yi −w∗Tφ(xi) = yi −
n

∑
j=1

α∗j yjk(xi, xj).

With α∗ and b∗ known, we can make a prediction on any data point as stated above.

4.6 Understanding SVM

Straight from definition, support vectors are φ(xi)’s with α∗i > 0. We can show that they are precisely the points

satisfying one of the following:

• They lie on the large margin boundary. Consequently ξ∗i = 0, so yi(w∗Tφ(xi)+b∗) = 1 and the point is precisely

1/∥w∗∥2 away from the hyperplane.

• They do not satisfy the large margin constraint. This is when ξ∗i < 1 (still classified correctly).

• They are misclassified, corresponding to ξ∗i > 1.

All other points (i.e., those classified correctly and not on the margin boundary) have α∗i = 0 and are therefore not

support vectors.

A potential drawback of the kernel method is that it’s non-parametric and needs to sometimes keep track of all

training data. SVM, however, usually have ∣{i ∶ α∗i > 0}∣≪ n, thereby avoiding this issue.

26



CSCI 567 Machine Learning 5 - Multiclass Classification YQL

Beginning of Sept. 29, 2022

5 Multiclass Classification

The setup:

• Input: feature vectors from x ∈ Rd

• Output: labels, y ∈ [C]

• Goal: learn a mapping f ∶ Rd → [C].

• Examples: recognizing digits (C = 10) or letters (C = 26); predicting weathers.

5.1 Linear models: Binary to Multiclass

• Step 1. What should a linear model look like for multiclass tasks?

Note that linear model for binary tasks (we previously used {±1}; now use {1,2})

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if wTx ⩾ 0

2 otherwise

can be re-written as

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if wT
1 x ⩾ wT

2 x

2 if wT
1 x < wT

2 x
= argmax

k=1,2
wT

k x

for any w1,w2 such that w = w1,w2. We can think of wT
k x as a score for class k.

• Step 2. Using the transformed notation above, we can easily add another vector, w3, and define the label

using

f(x) = argmax
1⩽k⩽3

wT
k x.

• Step 3. More generally: the function class is given by

F = {f(x) = argmax
k∈[C]

wT
k x ∶ wk ∈ Rd} = {f(x) = argmax

k∈[C]
(Wx)k ∶W ∈ RC×d}.

5.2 Generalizing Logistic Loss to Multiclass

First note that, with w = w1,w2, we have

P(y = 1 ∣ x;w) = σ(wTx) = 1

1 + e−wT x
= ew

T
1 x

ew
T
1 x + ewT

2 x
∝ ew

T
1 x.

Similarly,

P(y = 2 ∣ x;w)∝ ew
T
2 x.

(Proportionality is because the denominator for all wk ’s are the same.)
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More generally, with C labels,

P(Y = k ∣ x;W ) =
exp(wT

k x)
∑j∈[C] exp(wT

j x)
∝ exp(wT

k )x.

This function wT
k x↦ P(y = k ∣ x;w) is called the softmax function.

Now, to find the MLE, given labels y1, ..., yn and data points x1, ..., xn,

P(W ) =
n

∏
i=1

P(yi ∣ xi;W ) =
n

∏
i=1

expwT
yi
xi

∑k∈[C] exp(wT
k xi)

.

Taking negative log, maximizing above is equivalent to minimizing the multiclass logistic loss

F (W ) =
n

∑
u=1

log
⎛
⎝
∑k∈[C] exp(wT

k xi)
exp(wT

yi
xi)

⎞
⎠
=

n

∑
k=1

log
⎛
⎝
1 + ∑

k≠yi

exp((wk −wyI
)Txi
⎞
⎠
. (*)

This is an upper bound for the 0 − 1 misclassification loss:

1[f(x) ≠ y] ⩽ log2
⎛
⎝
1 +∑

k≠y
exp((wk −wy)Tx)

⎞
⎠
.

In particular, for C = 2, if yi = 1, this becomes log(1 + exp(−(w2 − w1)Txi)), and if yi = 2, this becomes log(1 +
exp(−(w1 −w2)Txi)). Then, for w = w1 −w2, after transforming labels fro {1,2} to {1,−1}, we obtain

F (w) =
n

∑
i=1

log(1 + exp(−yiwTxi)).

5.3 Optimizing Logistic Loss

As usual, we apply SGD to F (W ) as defined in (*). It is a C × d matrix. We first focus on the kth row:

If k ≠ y,

∇wT
k
F (W ) =

exp(wk −wyi)Txi
1 +∑k≠yi

exp((wk −wyi)Txi)
xTi =

exp(wT
k xi)

exp(wT
yi
xi) +∑k≠yi

exp(wT
k xi)

xTi = P(y = k ∣ xi;W )xTi ,

and if k = yi,

∇wT
k
F (W ) =

−∑k≠yi
exp((wk −wyi)Txi)

1 +∑k≠yi
exp((wk −wyi)Txi)

xTi =
−∑k≠yi

exp(wT
k xi)

exp(wT
yi
xi) +∑k≠yi

exp(wT
k xi)

xi = (P(y = k = yi ∣ xi;W ) − 1)xTi .

Step for SGD on multinomial logistic regression:

Initialize W = 0 or randomly. Repeat:

(1) Pick i ∈ [n] randomly, and

(2) Update the parameters

W ←W − η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(Y = 1 ∣ xi;W )
⋮

P(y = yi ∣ xi;W ) − 1
⋮

P(y = c ∣ xi;W )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xTi .

Intuition: if we are sure that y = yi, then P(y = yi)−1 is zero, namely, we are not moving anything at all. Conversely,

if we are very sure y ≠ yi, we shift by a large amount towards the correct one.

Having learned W , we can either (i) make a deterministic prediction argmaxk∈[C]w
T
k x, or we can (ii) make a

randomized prediction according to P(y = k ∣ x;W )∝ exp(wT
k x).
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5.4 Beyond Linear Models

Suppose we have any model f (instead of inner product wT
k x as given before), not necessarily linear, which gives

the score fk(x) for a data oint having the kth label. We can invoke softmax again and transform the scores into

probabilities using

f̃k(x) = P(y = k ∣ x; f) =
exp(fk(x))

∑j∈[C] exp(fk(x))
∝ exp(fk(x)).

Once we obtain the probability estimates, we can use log loss or cross-entropy loss.

Log Loss: Binary Case

We first begin with binary classification using models predicting f̃(x) as the probability of label being 1 for labelled

data point (x, y). The log loss is defined as

LogLoss ∶= 1y = 1] log(1/f̃(x)) + 1[y = −1] log(1/(1 − f̃(x)))

= −1[y = 1] log(f̃(x)) − 1[y = −1] log(1 − f̃(x)).

The reason: if y = 1, we want to maximize log(f̃(x)) or equivalently minimize log(1/f̃(x)) = − log(f̃(x)).
For a linear model, f̃(x) = σ(wTx) = 1/(1 + exp(−wTx)), so the log loss is

− 1[y = 1] log ( 1

1 + e−wT x
) − 1[y = −1] log ( 1

1 + ewT x
) = log(1 + e−yw

T x).

This easily generalizes to the multiclass case: if we let f̃k(x) be the predicted probability of label k, then

LogLoss = ∑
k∈[C]

1[y = k] log(1/f̃k(x)) = − ∑
k∈[C]

1[y = k] log(f̃k(x)).

Log Loss: Multiclass Case

By combining softmax and log loss, we obtain the following loss function which we use to train a multiclass classi-

fication model assigning scores fk(x) to the kth class. This is an easy generalization of the above binary case:

ℓ(f(x), y) = − ∑
k∈[C]

1[y = k] log(f̃k(x)) = log(
∑k∈[C] exp(fk(x))

exp(fy(x))
) = log

⎛
⎝
1 +∑

k≠y
exp(fk(x) − fy(x))

⎞
⎠
.

(Note the similarity between this and the previous multiclass logistic loss.)

Multiclass Logistic Loss: Another View

Recall that we can make predictions using argmaxk fk(x) when fk is the inner product.

ℓ(f(x), y) = log(∑
k

exp(fk(x))) − log (exp(fy(x))) = log(∑
k

exp(fk(x))) − fy(x).

It can be shown (a property of logsum) that

max
k∈[C]

fk(x) ⩽ log
⎛
⎝ ∑k∈[c]

exp(fk(x))
⎞
⎠
⩽ max

k∈[C]
fk(x) + logC

so

ℓ(f(x), y) ≈ max
k∈[C]

fk(x) − fy(x).

In particular, if the maximum is labelled wrong, we pay extra loss.
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5.5 Other Techniques for Multiclass Classification

One-versus-all

Idea: train C binary classifiers to learn “is it class k or no?” for each k.

Training: for each k ∈ C,

• Relabel examples with class k as 1 and all other classes as −1, namely, binary classification.

• Training a binary classifier hk using this new data set.

Output: for a new example x,

• Ask each hk, does this new point below to class k?

• Randomly pick among all k’s with hk(x) = 1.

In a perfect data set, each data point should be labeled positive exactly once. However, when one hk makes error,

the output will probably contain mistakes.

One-versus-one

Idea: train (C
2
) binary classifiers to learn “is it class k or k′” for each pair k, k′.

Training:

• Relabel examples with class k as +1 and k′ as −1.

• Discard all other examples.

• Training a binary classifier hk,k′ using this new data set.

Prediction: for a new example x,

• Ask each classifier to vote for either class k or k′.

• Predict the class with the most votes, break tie in some way.

This is clearly more robust than one-versus-all, but slower in prediction. Other techniques such as tree-based methods

and error-correcting codes can achieve intermediate tradeoffs.

6 Neural Networks

Linear models aren’t always enough. As previously discussed, sometimes we can use a nonlinear mapping and learn

a linear model in the feature space φ(x) ∶ x ∈ Rd → z ∈ Rm.

But can we just learn the nonlinear mapping itself?

For model which makes predictions f(x) on labeled data point (x, y), we can use the following losses.

Regression:

ℓ(f(x), y) = (f(x) − y)2,

and classification:

ℓ(f(x), y) = log(
∑k∈[C] exp(fk(x))

exp(fy(x))
) = log

⎛
⎝
1 +∑

k≠y
exp(fk(x) − fy(x))

⎞
⎠
.

These are the most popular loss functions for supervised learning.

30



CSCI 567 Machine Learning 6.1 Representation: Defining Neural Networks YQL

6.1 Representation: Defining Neural Networks

Linear model as a one-layer neural network: given x1, x2, x3, we assign them weights w1,w2,w3 and compute

o = h(wTx).
For non-linearity, we can use some nonlinear functions:

• Rectified linear unit ReLU: h(a) =max{0, a},

• Sigmoid: h(a) = 1/(1 + exp(−a)),

• Tanh: h(a) = (ea − e−a)/(ea + e−a), and so on.

Now we add a whole layer. Consider W ∈ R4×3, h ∶ R4 → R4 so that h(a) = (h1(a1), ..., h4(a4)). For convenience, we

write h(a) simply as (h(a1), ..., h(a4). We can think of this as a nonlinear mapping φ(x) = φ(x1, x2, x3) = h(Wx).

What if we add more layers? We obtain a neural network.

Looking at the network:

• Each node is called a neuron.

• h is called the activation function.

– We can use h(a) = 1 for one neuron in each layer to incorporate bias.

– Output neuron can use h(a) = a.

• Usually, number of layers refers to the number of hidden layers (plus 1 or 2 for input and/or output layers).

• Deep neural nets can have many layers and millions of parameters.

• The above is a feedforward, fully connected neural net; there are many variants.

More formally —
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Definition: Neural Network

An L-layer neural net can be written as

f(x) = hL(WlhL−1(WL−1⋯h1(W1x))).

Here, we define:

• Wℓ ∈ Rdℓ×dℓ−1 as the weights between layers ℓ − 1 and ℓ,

• d0 = d, d1, ..., dL are the number of neurons at each later,

• aℓ ∈ Rdℓ the input to layer ℓ,

• oℓ ∈ Rdℓ the output of layer ℓ, and

• hℓ ∶ Rdℓ → Rdℓ the activation functions at layer ℓ.

Now, for a given x, we have the recursive relation:

o0 = x, aℓ =Wℓoℓ−1, oℓ = hℓ(aℓ), for ℓ ∈ [L].

Optimizing a Neural Network

Our objective to minimize is

F (W1, ...,WL) =
1

n

n

∑
i=1
Fi(W1, ...,WL)

where

Fi(W1, ...,WL) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥f(xi) − yi∥22 for regression

log(1 +∑k≠yi
exp(fk(xi) − fyi(xi))) for classification.

As usual, we apply SGD to approximating the minimum. To compute the gradient efficiently, we use back propa-

gation, which we will cover later.

Similarly, we can also apply regularization: e.g. ℓ2 regularization attempts to minimize

G(W1, ...,WK) = F (W1, ...,WL) + λ ∑
all weights

w2.

Also, the function class is very powerful!

Theorem: Universal Approximation Theorem

A feedforward neural net with a single hidden layer can approximate any continuous function.

We might need a large numbers of neurons and a deep neural net, but eventually it can approximate.

Obviously, it is important to decide the network architecture: the number of hidden layers, the number of neurons

at each layer, activation functions, and so on.
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6.2 Optimization: Backprop

The naive way to compute gradients: for a univariate parameter w,

dF (w)
dw

= lim
ϵ→0

F (w + ϵ) − F (w − ϵ)
2ϵ

.

Backprop in a nutshell: chain rule.

For a composite function f(g(w)), we have
∂f

∂w
= ∂f
∂g

∂g

∂w
.

More generally, for a composition function f(g1(w), ..., gd(w)),

∂f

∂w
=

d

∑
i=1

∂f

∂gi

∂gi
∂w

.

Main idea of backprop: we reuse computation by storing gradient w.r.t. the inputs to each layer (aℓ) because it will

be reused many times, by the chain rule.

Moving on to neural networks, we drop the layer ℓ to make notation simpler. For this derivation, let Fm be the loss

function (not Fi since i will be used for dummy variable). The derivative of Fm w.r.t. w,j is

∂Fm

∂wi,j
= ∂Fm

∂ai

∂ai
∂wi,j

= ∂Fm

∂ai

∂(wi,joj)
∂wi,j

= ∂Fm

∂ai
oj

and
∂Fm

∂ai
= ∂Fm

∂oi

∂oi
∂ai
(∑

k

∂Fm

∂ak

∂ak
∂oi

h′i(ai)) = (∑
k

∂Fm

∂ak
wk,i)h′i(ai).

Adding the subscripts back:

∂Fm

∂(Wℓ)i,j
= ∂Fm

∂(aℓ)i
(oℓ−1)j and

∂Fm

∂(aℓ)i
= (∑

k

∂Fm

∂(aℓ+1)k
(wℓ+1)k,i)(hℓ)′i((aℓ)i).

For the last layer,

∂Fm

∂(aL)i
= ∂((hL)i((aL)i − (yn)i)

2

∂(aL)i
= 2[(hL)i((aL)i − (yn)i](hL)′i((aL)i).

To make everything more concise, we use matrix notation:

∂Fm

∂Wℓ
= ∂Fm

∂aℓ
oTℓ−1 ∈ Rdℓ×dℓ−1

where

∂Fm

∂aℓ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[WT
ℓ+1

∂Fm

∂aℓ+1
] ○ h′ℓ(aℓ) if ℓ < L

2(hL(aL) − yn) ○ h′L(aL) if ℓ = L
(∆)

where v1 ○ v2 is the Hadamard product / element-wise product ((v1)1(v2)1, ..., (v1)d(v2)d).
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The Algorithm

Initialize W1, ...,WL randomly. Repeat:

(1) Random pick i ∈ [n].

(2) Forward propagation: for each ℓ = 1, ..., L,

• Compute aℓ =Wℓoℓ−1 and oℓ = hℓ(aℓ).

(3) Backward propagation: for ℓ = L, ...,1,

• Compute
∂Fi

∂aℓ
as in (∆).

• Update weights by

Wℓ ←Wℓ − η
∂Fi

∂Wℓ
=Wℓ − η

∂Fi

∂aℓ
oTℓ−1.

Mini-Batch

Consider F (w) =
n

∑
i=1
Fi(w) where Fi(w) is the loss function for the ith data point. Recall any ∇F̃ (w) is a stochastic

gradient of F (w) if

E[∇F̃ (w)] = ∇F (w).

In particular, this gives rise to the mini-batch SGD: sample S ⊂ {1,2, ..., n} at random and estimate the average

gradient over these batch of ∣S∣ samples:

∇F̃ (w) ∶= 1

∣S∣ ∑j∈S
∇Fj(w).

If batch size S = 1 then we get SGD. Common batch sides: 32,64,128, and so on.

Adaptive Learning Rate Tuning

Another common variant on SDG is by choosing a different learning rate for each parameter (and vary this across

iterations) based on the magnitude of the previous gradients for that parameter.

Momentum

Yet another variant: add a “momentum” term to encourage model to continue along previous gradient directions.

“Move faster along directions that were previously good and slow down along directions where the gradient has

suddenly changed, just like a ball rolling downhill.” (The momentum helps dampen the oscillation caused by SGD.)

Algorithm: first initialize w0 and v = 0 (velocity). For t = 1,2, ...

• Estimate a stochastic gradient gt,

• Update v ← αv + gt for some discount factor α ∈ (0,1). If α = 0 this is just SGD.

• Update weight wt ← wt−1 − ηv.

Update for the first few rounds:
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• w1 = w0 − ηg1,

• w2 = w1 − αηg1 − ηg2,

• w3 = w2 − α2ηg1 − αηg2 − ηg3, and so on.

6.3 Generalization: Preventing Overfitting

The best way to prevent overfitting? Get more samples.

What if we cannot get access to more samples?

• One way is data augmentation, to exploit prior knowledge to add more training data, e.g., flip the image, add

noise, randomly translate, and so on.

• Regularization: for example, ℓ2 regularization as stated above by adding λw2 summed over all weights w in

the network.

• Dropout: we independently delete each neuron with a fixed probability after each iteration of backprop (only

for training). Not sure why this works but it is very effective and popular in practice.

• Early stopping: stop training when performance on validation set stops improving (the training error may still

decrease due to overfitting but this effect does not carry over to other sets).

Beginning of Oct. 20, 2022

6.4 Convolutional Neural Networks

See the professor’s lecture notes. Taking live notes on CNN is an absolute nightmare. No way I am doing that.

6.5 Sequence Prediction

Main question: given observations x1, x2, ..., xt−1, what is xt? Example: if I type a bunch of words, how to predict

my next word?

In this lecture, we will mostly focus on text data (language modelling): what word comes next?

More formally, in a language model, let Xi be the random variable for the ith word in the sentence and let xi be

the value taken by the random varaible. The goal is to compute

P(Xt+1 ∣Xi = si,1 ⩽ i ⩽ t).

By property of conditionals,

P(Xi = xi,1 ⩽ i ⩽ T ) =
T

∏
t=1

P(Xt = xt ∣Xi = xi,1 ⩽ i ⩽ t − 1).
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The n-gram Language Models

Question: how to learn a language model?

Answer: learn an n-gram language model.

We say an n-gram is a chunk of n consecutive words. Consider the sentence “the students opened their ...”

• Unigrams: “the”, “students”, “opened”, “their”

• Bigrams: “the students”, “students opened”, “opened their”

• Trigrams: “the students opened”, “students opened their”

• Four-gram: “the students opened their”

Idea: collect statistics about how frequent different n-grams are, and use these to predict the next word.

In order to do so, we need to use Markov chains. Stated formally, a Markov model/chain is a sequence of random

variables X1,X2, ... with the Markov property

P(Xt+1 ∣X1∶t) ∶= P(Xt+1 ∣X1, ...,Xt) = P(Xt+1 ∣Xt).

That is, the current state depends only on the most recent one. This is a bigram model.

We will consider the following setting:

• All Xi’s take values from a discrete set {1, ..., S}, corresponding to different words.

• P(Xt+1 = s′ ∣ Xt = s) ∶= as,s′ , the transition probability, showing the probability of s′ following s. For example,

if [S] is a dictionary,

aice, cream = P(Xt+1 = cream ∣Xt = ice).

• P(X1 = s) ∶= πs, the initial probability.

• ({πs},{as,s′}) ∶= {π,A}, the parameters of the model.

We can nicely translate the Markov model into a directed graph, where an edge from the starting state to any other

state s is πs, and the edge from state s1 to s2 is as1,s2 , namely, the probability of transitioning from state s1 into s2.

Having set up the model, now suppose we have observed n sequence of examples, all of length T :

• x1,1, ..., x1,T ,

• ⋯

• xn,1, ..., xn,T .
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Question: how do we learn the model parameters (π,A) from the observations? Most intuitively, we use MLE. The

log likelihood of a sequence x1, ..., xT is

logP(X1∶T = x1∶T ) =
T

∑
t=1

log(P(Xt = xt ∣X1∶t−1 = x1∶t−1)

[Markov] =
T

∑
t=1

logP(Xt = xt ∣Xt−1 = xt−1)

= logπx1 +
T

∑
t=2

log axt−1,xt

=∑
s

1[x1 = s] logπs +∑
s,s′
(

T

∑
t=2

1[xt−1 = s, xt = s′]) log as,s′ .

Therefore, the MLE is

argmax
π,A

∑
s

(# initial states with value s logπs) +∑
s,s′
(# transitions s→ s′) log as,s′ .

The closed form solution is

πs =
# initial states s
# initial states

and as,s′ =
# transitions s→ s′

# transitions s→ any
.

Looking from another perspective: by the Markov assumption, along with conditional probability,

P(Xt+1 = xt+1 ∣Xt = xt) =
P(Xt+1 = xt+1,Xt = xt)

P(Xt = xt)
.

Therefore, using data,

P(Xt+1 = xt+1,Xt = x + t)
P(Xt = xt)

≈ # times (xt, xt+1) appears
# times xt appears and is not last state

.

Similarly, P(X1 = s) ≈ (# times s is first state)/(# states).
More generally, we can have higher-order Markov models, where the conditional depends on the more than one

recent states. Second-order Markov models, for example, are trigram, with

P(Xt+1 ∣X1, ...,Xt) = P(Xt+1 ∣Xt−1,Xt).

The higher the order, the more expensive the model. Instead of counting the fraction of number of s → s′ over s →
any state, we now need to check the fraction of number of (previous k states to s′) over (previous k states to any

state).

Example: 4-gram language model. Consider the sentence “as the proctor started the clock, the students

opened their ___.”

In an (naive) 4-gram model,

P(word ∣ students opened their) = # students opened their word
# students opened their

,

and we ignored all the early contents, namely, “as the proctor started the clock, the.”

But should we disregard the context? In an exam, it is more likely that the students opened their exams

instead of books, whereas in most other scenarios, “book” is more likely.

When using autocomplete, we may have seen how the algorithm outputs chunks of words that seem somehow gram-

matically correct but meaningless paragraphs. With insufficient grams, this will happen, and language modelling

requires the model to consider at least three words for consistent performance.
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6.6 Recurrent Neural Network & Language Modelling

Based on previous dissection, given inputs, a sequence of words x(1), x(2), ..., x(t), our goal is to output a probability

distribution of the next word P(x(t+1) ∣ x(t), ..., x(1)), using a fixed-window method (i.e., only keeping track of the

previous k words).

We can use word embeddings / word vectors. This is a mapping from words to vector representations of the

words such that words with similar meanings have representations close to each other in the vector space.

Problems with this model:

• Fixed window size may be too small, but larger windows will make the weight matrix also larger.

• No symmetry: different inputs are multiplied by completely different weights in W .

7 Decision Trees

Beginning of Oct. 27, 2022

In a nutshell: decision tree is another popular model for classification. They

• are nonlinear in general,

• work for both classification and regression; we focus on classification,

• have good interpretability, and

• are effective because of their similarity to trees.

7.1 Basics

Again, tons of trees to draw, so... check link here instead.
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7.2 Measures of Uncertainty

Clearly, it is impractical to do exact ERM on node parameters (runtime is exponential), and gradient descent cannot

be done on this many discrete parameters. Instead, we consider a greedy top-down approach. But how do we

determine how to split the root.

Intuitively, the uncertainty of a node should be a function of the distribution of classes within the node. For

example, a node with 2 positive and 4 negative examples can be summarized by a distribution P with 1/3 chance of

being 1 and 2/3 of being −1. One classic measure is the Shannon entropy

H(P) = −
C

∑
k=1

P(Y = k) logP(Y = k)

summed over all classes C. Important properties:

• H(P) = E log(1/P (Y )) drawn over Y ∼ P. It measures how unlikely an outcome occurs. Heuristically,H is the

“average unlikeliness” when we sample outcomes from distribution P.

• Log usually can be of base 2, e, or 10.

• Always non-negative.

• It is the smallest codeword length to encode symbols drawn from P.

• It is maximized if P is uniform, i.e., most uncertain case (and it takes value logC).

• It is minimized when P is constant, i.e., most certain case. (Here we define 0 log 0 ∶= limz→0+ z log z = 0).

Intuitively, for a node, we take the “weighted average” of entropy:

H(Y ∣ A) =∑
a

P(A = a)H(Y ∣ A = a)

=∑
a

P(A = a)(−
C

∑
k=1

P(Y ∣ A = a) logP(Y ∣ A = a))

=∑
a

“fraction of examples at node A = a” × “entropy at node A = a”,

and we pick the feature that leads to the smallest conditional entropy.

We split the root as such, and for each child that is not already completely split, we recursively find the “optimal”

feature and use it to split the child.

Variant: the Gini impurity is defined by

G(P) =
C

∑
k=1

P(Y = k)(1 − P(Y = k)),

which describes how often a chosen example would be incorrectly classified if we predict according to another

randomly picked example.

Regularization: if the dataset has no contradiction (same x always correspond to same y), the training error is

always zero, and the model can overfit. Ways to prevent overfitting:

• restrict the depth or the number of nodes,

• do not split a node if the examples at the node is not enough, or

• other approaches, using make use of a validation set to turne the parameters.
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7.3 Ensemble Methods - Bagging

Main idea: combine multiple classifiers to form a learner with better performance than any of them individually.

Why? Individual decision trees can be fast and robust to data variations, but they are unstable, and small variations

in data can lead to different trees (since differences can propagate). They are high variance models, which can

overfit.

The process is known as bagging (Bootstrap Aggregating). Bootstrap sampling – getting different subsets of the

data, and aggregating – averaging.

Procedure:

• Get multiple random splits / subsets of the data.

• Train a given procedure (e.g. decision tree) on each subset.

• Average the predictions of all trees to make predictions on test data.

More formally, we collect T subsets of size m by sampling with replacement from the training data (bootstrap). Let

ft(x) be a classifier obtained on the subset t ∈ {1, ..., T}. Then the aggregated classifier f is defined by

f(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T −1∑T
t=1 ft(x) for regression

sgn(T −1∑T
t=1 ft(x)) =majority vote for classification

(For multiclass classification, majority vote generalizes to taking the most popular vote.)

Majority vote works very well — suppose X1, ...,X100 are i.i.d. with P(Xi = 1) = 0.6. Then,

P(
100

∑
i=1

1Xi > 50) = P(majority votes 1) ≈ 0.97.

That is, if each individual has a 0.6 probability of being correct, bagging over 100 of them, this number drastically

increases to 0.97.

To sum up:

• Bagging reduces overfitting / variance.

• Bagging works with any type of classifier (specifically, trees).

• Easy to parallelize (can train multiple trees in parallel).

• However, we indeed lose on interpretability to single decision tree, as do all ensemble methods.

7.4 Ensemble methods - Random Forest

Issue with bagging: bagged trees may still be too correlated, as they are still sharing many similar data.

How to decorrelate the trees further? When growing a tree on bootstrapped dataset, before each split, select k ⩽ d
of the d input random variables at random as candidates for splitting. If k = d this is bagging, otherwise we get

random forests.

Issues:

• When we have a large number of features but a small number of relevant features, P of selecting a relevant

feature in this way is small.

• Lacks expressive power compared to other ensemble methods.
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7.5 Boosting

Recall we learn our classifier by f(x) = sgn(T −1∑T
i=1 fi(x)). Instead of training {ft}Tt=1 in parallel, what if we

sequentially learn which models to use for the function class F so they are together as accurate as possible?

Boosting is a meta-algorithm, meaning it takes a base algorithm as input and boosts its accuracy.

Main idea: combine “weak rules of thumb” (e.g. 51% accuracy) to form a highly accurate predictor.

Example: Boosting: example. Suppose we are given a training set labelling messages as spam or not

spam.

• Let the base algorithm be given, for example a bad one like (containing “money”)⇒ spam.

• We reweigh the example so that difficult ones get more attention, e.g., on the spams that don’t contain

the word “money.”

• Obtain another classifier by applying the same base algorithm: for example (empty “to address”) ⇒
spam.

• Repeat. And finally take (weighted) majority vote.

More formally: a base algorithm A (also called a weak learning algorithm) takes a training set S weighted by D

as input and outputs a classifier f = A(S,D).
Booting: idea. The boosted predictor is of form fb(x) = sgn(h(x)) where

h(x) =
T

∑
t=1
βtft(x) for βt ⩾ 0 and ft ∈ F .

The goal is to minimize ℓ(h(x), y) w.r.t. some loss function ℓ.

We find βt one by one for t ∈ [1, T ] using a greedy approach. In particular, let ht = ∑t
i=1 βifi(x). If we have already

found ht−1(x), we need to find βt, ft(x) such that they minimize ℓ(ht(x), y). Different ℓ gives different boosting

algorithms:

• If ℓ(h(x), y) = (h(x) − y)2, we have least squares boosting.

• If ℓ(h(x), y) = exp(−h(x)y), we have AdaBoost.

7.6 AdaBoost

Recall ht(x) = ∑t
j=1 βjfj(x). Suppose we have found ht−1. Greedily we want to find βt, ft(x) to minimize

∞
∑
i=1

exp(−yiht(xi)) =
n

∑
i=1

exp(−yiht−1(xi)) exp(−yiβtft(xi)) = Ct ⋅
n

∑
i=1
Dt(i) exp(−yiβtft(xi))

where the last step is by defining Dt(i) ∶= exp(−yiht−1(xi))/Ct, normalized so that ∑n
i=1Dt(i) = 1. Then, we want

to maximize (keeping in mind we are doing binary classification here, so yi, ft(xi) ∈ {±1})
n

∑
i=1
Di(i) exp(−yiβtft(xi)) = ∑

i∶yi≠ft(xi)
Dt(i)eβt + ∑

y∶yi=ft(xi)
Dt(i)e−βt

= ϵteβt + (1 − ϵt)e−βt = ϵt(eβt − e−βt) + e−βt ,
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where ϵt = ∑yi≠ft(xi)Dt(i) is the weighted error of ft. This is a two-step process: first set ft such that ϵt is

minimized; then, given this ϵt, minimize the rest.

With ft and ϵt fixed, the above quantity is minimized by

βt =
1

2
log((1 − ϵt)/ϵt).

Then we need to update Dt+1(i) by

Dt+1(i) = exp(−yiht(xi))/Ct+1 = (Dt(i)
Ct

Ct+1
) exp(−yiβtft(xi)).

That is,

Dt+1(i)∝Dt(i) exp(−βtyift(xi)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dt(i)e−βt if ft(xi) = yi

Dt(i)eβt else.

Intuitively, for those already correctly classified, we lower the weight since the next classifier need not to worry too

much about; conversely, the misclassified need more attention.

Theorem: AdaBoost, full algorithm

Given a training set S and a base algorithm A, initialize D1 to uniform.

For t = 1, ..., T :

• Obtain a weak classifier ft(x) = A(S,Dt).

• Calculate the weight βt of ft(x) as

βt = 0.5 log((1 − ϵt)/ϵt)

where ϵt = ∑i∶yi≠ft(xi)Dt(i), the weighted error of ft(x).

• Update distributions by

Dt+1(i)∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dt(i)e−βt if ft(xi) = yi

Dt(i)eβt else.

Output the final classifier fb = sgn(∑t=1T βtft(x).)

Beginning of Nov. 3, 2022

7.7 Ensemble Methods - Gradient Boosting

Recall ht(x) = ∑t
j=1 bjfj(x). In Adabost we chose the lose function as exp(−h(x)y). We now have a more general

method for any loss function ℓ(h(x), y):

• For all training data points (xi, yi), find the gradient

ri = [
∂ℓ(h(xi), yi)
∂h(xi)

]
h(xi)=ht−1(xi)

.

"How should predictions change ‘locally’ to reduce loss?"
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• Use this weak learner to find ft which fits (xi, ri) as well as possible:

ft = argmin
f∈F

n

∑
i=1
(ri − f(xi))2.

ri: what should be added to bring the loss down.

• Update ht(x) = ht−1(x) + ηft(x) for some prescribed η.

As usual, we can add regularization terms to prevent overfitting. In general, gradient boosting is extremely success-

ful.

8 Unsupervised Learning: PCA

8.1 Introduction

Recall we have various kinds of learnings:

• supervised: aim to predict outputs of future datapoints,

• reinforcement: aim to make sequential decisions, and

• unsupervised: aim to discover hidden patterns and explore data.

Goal of dimensional reduction: reduce the dimensionality of a dataset so that

• it is easier to visualize and discover patterns,

• it takes less time and space to process,

• noise is reduced, and so on.

High-level Goal

Suppose we have a dataset of n d-dimensional vectors x1, ..., xn. The high level goal of PCA is to find a set of k

principal components (PCs) v1, ..., vk ∈ Rd such that for each xi,

xi ≈
k

∑
j=1

αi,jvj ,

for some coefficients αi,j ∈ R.

Processing the Data

• Before applying PCA, we preprocess the data by centering them:

xi ← xi −
1

n

n

∑
i=1
xi

so that ∑xi = 0.

• In many applications we also scale w.r.t. each component/coordinate: for each j ∈ [d], divide the jth coordi-

nate of each data point by (∑n
i=1 x

2
i,j)

1/2
.
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Objective Function of PCA

Key difference from supervised learning: no labels are given, so there is no ground trug to measure the quality of

the answer (loss functions previously defined no longer work!).

However, we can still write an optimization problem based on our high level goal. For example, the special case of

k = 1 reduces to an optimization problem for finding the first PC v1.

Therefore, the original objective

argmin
∥v∥=1

1

m

m

∑
i=1
(distance between xi and the line spanned by v)2

is equivalent to finding

v1 = argmax
∥v∥=1

n

∑
i=1
⟨xi, v⟩2 ,

since distance2 + ⟨xi, v⟩2 = ∥xi∥2, which is fixed. That is, the data points have as much projection as possible onto

v1.

For general k, the objective is to find

S = argmin
k-dim subspace S

n

∑
i=1
(distance between xi and S)2 = argmax

n

∑
i=1
(length of x′is projection onto S)2.

Linear Algebra Recap

If v1, v2, ..., vk are orthonormal, then the projection of x onto the span of vi is

k

∑
j=1
⟨xi, xj⟩xi,

whose norm is
k

∑
j=1
⟨xi, xj⟩2. Therefore, we obtain the formal statement of PCA:
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Definition: PCA Objective

Given x1, ..., xn ∈ Rd and a parameter k ⩾ 1, find a set of orthonormal vectors v1, ..., vk ∈ Rd to maximize

n

∑
i=1

k

∑
j=1
⟨xi, vj⟩2 .

Using PCA for Data Compression & Visualization

Input: n data points x1, ..., xn ∈ Rd, and k, number of components we want.

Step 1. Perform PCA to get the top k principal components v1, ..., vk ∈ Rd.

Step 2. For each dataset xi define its vj-coordinate to be ⟨xi, vj⟩.
Step 3. We now obtain a compresssed data set where data points are k-, not kd-, dimensional. Plot them!

8.2 PCA Optimization

Consider k = 1, in which case we have

v1 = argmax
∥v∥=1

n

∑
i=1
⟨xi, v⟩2 .

Writing all vectors xi in one big matrix X, and defining A ∶=XTX (a d×d matrix), we obtain an equivalent objective

v1 = argmax
∥v∥=1

vTAv.

Note that

A11 =
n

∑
i=1
x2i,1 = variance of first coordinate

and

A12 =
n

∑
i=1
xi,1xi,2 = covariance between the first and second coordinates.

The same token holds for general i, j.

Now we move on to actual linear algebra.

If A is diagonal, then vTAv = ∥Dv∥2 where Di,i = A1/2
i.i . Therefore, it is clear that in order to maximize the norm,

we need to “stress” the component j on which Aj,j is the largest among all diagonal entries, i.e., argmaxv v
TAv =

ej = (0, ...,0,1,0, ...,0), where 1 appears on the jth component.

More generally, if we diagonalize A as QDQT where Q is orthogonal and D diagonal with diagonal entries λ1 ⩾
λ2 ⩾ ... ⩾ λd ⩾ 0, then vTAv = vTQDQT v = vTQD1/2D1/2QT v = ∥D1/2QT v∥. Similar to above, we want QT v = e1,

since λ1 is the largest eigenvalue of A, which implies we need v = Q−T e1 = Qe1, and this vector is stretched by a

factor of λ1/21 .

Upshot. Compute XTX and diagonalize as QDQT (which is doable since XTX is symmetric). Then compute Qe1.

How many PCs to use?

For visualization, we choose k small (1,2,3) and plot them out.
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In other applications such as compression, it is a good idea to plot the eigenvalues first. If the data is close to being

low ranks, the eigenvalues may decay and become small.

We can also decide based on a variance threshold: if we want to capture 90% of the data, pick k such that

∑k
j=1 λj

∑d
j=1 λj

=
∑k

j=1 λj

tr(XTX)
⩾ 0.9.

When does PCA Fail?

(1) When data is not properly scaled / normalized.

(2) Not many orthogonal components in the data which are interpretable.

(3) Nonlinear structure of data (e.g. polar).
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