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Problem 1: Durrett 1.2.5

Suppose X has continuous density f , P(α ⩽ X ⩽ β) = 1 and g is a function that is strictly increasing and

differentiable on (α,β). Then g(X) has density f(g−1(y))/g′(g−1(y)) for y ∈ (g(α), g(β)) and 0 otherwise.

When g(x) = ax + b with a > 0, g−1(y) = (y − b)/a so the answer is (1/a)f((y − b)/a).

Proof. Inverse function theorem states that (g−1)′(x) = 1/g′(g−1(x)). Let X has density f and distribution F ,

and let g(X) has density h and distribution H. By assumption, H and h are differentiable. It follows that

h(y) = d

dy
H(y) = d

dy
F (g−1(y)) = f(g−1(y))/g′(g−1(y)),

for y defined, namely y ∈ (g(α), g(β)).

Problem 2: Durrett 1.2.6

Suppose X has a normal distribution. Use the previous exercise to compute the density of exp(X) the

lognormal distribution.

Solution. Let f be the distribution function of X. Then

f(x) = 1√
2πσ

e−(x−µ)
2/(2σ2).

Using the previous question, let g(X) ∶= exp(X), and we obtain

g(y) = f(g−1(y))/g′(g−1(y)) = f(log y)/g′(log y)

= f(log y)/[exp(log y)] = y−1f(log y) = 1

yσ
√
2π

e−(log y−µ)
2/(2σ2).

Problem 3

Suppose E , F are subsets of the power set P(X) with E ⊂ F ⊂ σ(E). Show that σ(F) = σ(E).

Proof. Since E ⊂ F it it trivial that σ(E) ⊂ σ(F). Conversely, since σ(E) is the smallest σ-field containing E and

σ(F) is a field containing σ(E) and thus E , it must be contained in σ(E). This completes the proof.
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Problem 4

Suppose A1, ...,An are subsets of Ω and there are no relations among these sets. Show that σ({A1, ...,An})
consists of 22

n

sets.

Proof. We partition Ω into 2n sets S0, ..., S2n−1, each set consisting of points belonging to precisely a certain

subcollection of Ai’s. For 0 ⩽ k ⩽ 2n − 1, we write k as
n

∑
j=0

cj2
j where cj ∈ where cj ∈ {0,1} and define

Sk ∶= {x ∈ Ω ∶ x ∈ Ai iff ci = 1} = ⋂
i∶ci=1

Ai ∩ ⋂
j∶cj=0

Ac
j .

Since by assumption there are no relations among these sets, we indeed obtain a partition. It is clear that each Si

is a finite intersection of Ai’s and their complements, so they appear in σ({A1, ...,An}), and so do the union of

any of the Si’s, which provides 22
n

elements. On the other hand, since each Ai can be represented as a disjoint

union of the Si’s, the result of any set operations on Ai’s can still be represented by set operations on the Si’s.

That is, ∣σ({Ai})∣ ⩽ 22
n

. Combining the result we obtain ∣σ({Ai})∣ = 22
n

.

Problem 5

Suppose {An} are almost disjoint: P(An ∩Am) = 0 for n ⩾m. Show that P(⋃
n⩾1

An) =
∞
∑
n=1

P(An).

Proof. Define C0 ∶= ∅ and Cn ∶= An ∩
n−1
⋂
i=1

Ai for n ⩾ 2. For n ⩾ 1, also define Bn ∶= An/Cn. By doing so, the Bn’s

are pairwise disjoint with
n

⋃
i=1

Bi =
n

⋃
i=1

Ai for all n. Then,

P(⋃
n⩾1

An) = P(⋃
n⩾1

Bn ∪Cn) = P(⋃
n⩾1

Bn) ∪ P(⋃
n⩾1

Cn) =
∞
∑
n=1

P(Bn) =
∞
∑
i=1

P(An).

Problem 6

(1) Let X have density f . Find the density of X4.

(2) in particular, if X is standard normal, what is the density of X4?

Solution. Using definition,

P(X4 ⩽ x) = P(X2 ⩽
√
x) = P(−x1/4 ⩽X ⩽ x1/4)

= F (x1/4) − F (−x1/4)

where F is the distribution function of X. Differentiating gives the density

fX4(x) = d

dx
(F (x1/4) − F (−x1/4))

= 1

4x3/4 f(x
1/4) + 1

4x3/4 f(−x
1/4).
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In particular if X is the standard normal then f(x1/4) = f(−x1/4) so

fX4(x) = 1

2x3/4 f(x
1/4) = 1

2
√
2πx3/4

exp(−
√
x/2).

Problem 7

Let ω1 ≠ ω2 in Ω and let G be a collection of subsets of Ω such that each G ∈ G contains either both w1,w2 or

neither. Let F = σ(G). Show that for every random variable X defined on (Ω,F) we have X(ω1) =X(ω2).

Proof. By the "general principle," since G generates σ(G) and every set in G either contains both ω1 and ω2 or

neither, any set in σ(G) shares the same property. If a r.v. X on (Ω,F) has X(ω1) ≠ X(ω2) then X−1(X(ω1))
contains ω1 but not ω2, so X−1(X(ω1)) ∉ F , contradiction. Hence all r.v. X on (Ω,F) must satisfy X(ω1) =
X(ω2).

Problem 8

Let {µn} be measures on (Ω,F) and cn > 0 with
∞
∑
n=1

cnµn(Ω) = 1. Show that
∞
∑
n=1

cnµn is a probability

measure.

Proof. For convenience denote the summed to-be measure ν. It is clear that ν ∶ F → [0,1] with ν(∅) = 0 and

ν(Ω) = 1. It remains to show countable additivity of disjoint sets. Let {Ei} be pairwise disjoint. On one hand we

have

ν(
∞
⋃
i=1

Ei) =
∞
∑
n=1

cnµn(
∞
⋃
i=1

Ei) =
∞
∑
n=1

∞
∑
i=1

cnµn(Ei) =
∞
∑
i=1

∞
∑
n=1

cnµn(Ei) =
∞
∑
i=1

ν(Ei).

The double sum is interchangeable because each cnµn(Ei) is nonnegative and we can therefore apply (Fubini-

)Tonelli w.r.t. the counting measure.

Problem 9

We say a set A ⊂ {1,2, ...} has asymptotic density ρ(A) if

lim
n→∞

∣A ∩ {1, ..., n}∣
n

= ρ(A).

For every A ⊂ {1,2, ...} we define the block densities

ρk(A) =
∣A ∩ (2k−1,2k]∣

2k − 2k−1
, k ⩾ 0.

(1) Show that A has density ρ(A) = λ if and only if ρk(A)→ λ as k →∞.

(2) Let F = {A ⊂ {1,2, ...} ∶ A has an asymptotic density}. Show that ρ is finitely additive on F .

(3) Prove or disprove F is a field.
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Proof. (1) Note that for any number of form 2n − 1,

∣A ∩ {1,2, ...,2n − 1}∣
n

≈ n−1
n

∑
j=1
∣A ∩ (2j−1,2j]∣ =

n

∑
k=1

2k−n−1ρk(A).

(Not = because the LHS’s denominator contains 1 but the RHS does not, but 1/n → 0 as n →∞ and so this

extra term is negligible.) If ρk(A) → λ, then given ϵ > 0, ∣ρk(A) − λ∣ < ϵ for sufficiently large k, say for

k ⩾ N . Then for n ⩾ N ,

∣λ −
n

∑
k=1

2k−n−1ρk(A)∣ ⩽
n

∑
k=1

2k−n−1∣λ − ρk(A)∣ +
−∞
∑

j=k−n−2
2jλ

⩽ ϵ + 2k−n−1λ ⩽ ϵ + 2k−n−1.

Letting n→∞ we see

lim
n→∞

∣λ −
n

∑
k=1

2k−n−1ρk(A)∣ = 0,

namely ρ(A) = λ.

(2) This is immediate from (a). Suppose A1, ...,An have densities λ1, ..., λn. By (a), we must have

lim
k→∞

ρk(Ai) = λi for 1 ⩽ i ⩽ n.

For each k, however, A ∩ (2k−1,2k] =
n

⋃
i=1

Ai ∩ (2k−1,2k] because the Ai’s are disjoint. Therefore

lim
k→∞

ρk(
n

⋃
i=1

Ai) = lim
k→∞

n

∑
i=1

ρk(Ai) =
n

∑
i=1

lim
k→∞

ρk(Ai) =
n

∑
i=1

ρ(Ai),

assuming the finite union is still in F .

(3) No. Consider A ∶= ⋃
n⩾1
(2n−1,2n] = (1,2] ∪ (4,8] ∪ (16,32] ∪ .... Note that if k is even then ρk(A) = 1, and

if k is odd then ρk(A) = 0. Now consider
n

∑
k=1

2k−n−1ρk(A). It is clear that

lim
n→∞
n even

n

∑
k=1

2k−n−1ρk(A) =
1

3
while lim

n→∞
n odd

n

∑
k=1

2k−n−1ρk(A) =
2

3
.

That is, lim inf
n→∞

∣A ∩ {1, ..., n}∣
n

⩽ 1

3
< 2

3
⩽ lim sup

n→∞

∣A ∩ {1, ..., n}
n

∣, so A ∉ F , although all intervals of for

(2k−1,2k] are (and have asymptotic density 0 for being finite sets).
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