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Chapter 2

Laws of Large Numbers

2.1 Independence

Beginning of Sept.12, 2022

First, some definitions/recaps on independence of events and σ-fields:

• Independence of two events: we say events A,B are independent, A ⊥ B, if P(A ∩B) = P(A)P(B).

• Independence of two σ-fields: F , G are independent if P(A ∩B) = P(A)P(B) for all A ∈ F and B ∈ G.

• For more than 2 events: A1, ...,An are mutually independent if

P(⋂
i∈I

Ai) =∏
i∈A

P(Ai) for all I ∈ {1, ..., n}. (*)

• Similarly, for more than 2 sigma fields, we say A1, ...,An are independent if the above product identity holds

for all Ai ∈ Ai.

• We say events A1, ...,An are pairwise independent if

P(Ai ∩Aj) = P(Ai)P(Aj) for all i ≠ j.

Example: P(⋂Ai) = ∏P(Ai) is insufficient. Consider two coin tosses. Let A ∶= {first is head},

B ∶= {second is head}, and C ∶= {both tosses are the same}. Then A ∩B ⊂ C, so they are not mutually

independent, but

P(A ∩B ∩C) = P(A)P(B)P(C) = 1

8
.

In fact, we also have A,B,C pairwise independent here.

• For an infinite sequence of Ai’s, we say they are independent if (*) holds for any finite I ⊂ N.

Moving to independence of two random variables:

• Two random variables X,Y are independent if

P(X ∈ Y,Y ∈ B) = P(X ∈ A)P(Y ∈ B) (**)
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CSCI 567 Machine Learning 1 - Independence YQL

for all A,B in their corresponding σ-fields. It can be shown that this definition is equivalent to requiring σ(X)
and σ(Y ) to be independent.

• To show independence, it is sufficient to check (**) for (−∞, x] × (−∞, x] for all x, y. That is,

F(X,Y )(x, y) = FX(x)FY (y) for all x, y.

Example: A ⊥ B does not imply σ(A) ⊥ σ(B). (The example given in lecture relies heavily on drawings

so I will replace it with one easier to type in LATEX.) Let A ∶= {{1,2},{3,4}} and let B ∶= {{2,4}}. Then

{2,4} ∈ σ(A).

Definition: π-system and λ-system

A collection G is called a π-system if it is nonempty and closed under finite intersections (two suffice):

• G ≠ ∅, and

• For A,B ∈ G, A ∩B ∈ G.

A collection G is called a λ-system if G contains Ω, is closed under set subtraction, and is closed under

countable increasing union:

• Ω ∈ G,

• If A ⊂ B and A,B ∈ G then B/A ∈ G, and

• If An ∈ G and An ↑ A then A ∈ G.

The π −λ theorem states that if P is a π-system and L a λ-system with P ⊂ L, then σ(P) ⊂ L.

We will skip the proof and directly use the result to prove the following (the proof of which we again omit):

Theorem: D2.1.7

If A1, ...,An are independent σ-fields and each Ai a π-system, then the σ(Ai)’s are independent.

We now discuss the independence of functions of random variable in greater generality. Suppose we have an array

of independent random varaibles

{Xi,j ∶ i ⩽ n, j ⩽m(i)}

and n functions

X1,1, ...,X1,m(1) ↦ f1(X1,1, ...,X1,m(1))

X2,1, ...,X2,m(2) ↦ f2(x2,1, ...,X2,m(2))

and so on, where each fi ∶ Rm(i) → R. Question: are these random variables fi(⋅) independent? The answer is yes,

and we will formulate the question in terms of σ-fields:
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Theorem: D2.1.10

Given an independent collection of σ-fields {Fi,j ∶ i ⩽ n, j ⩽ m(i)}, let Bi ∶= σ(FI,1, ...,Fi,m(i)) (i.e., the ith

row listed above). Then B1, ...,Bn are independent.

Proof. For each row, let

Ai ∶= {all
m(i)
⋂
i=1

Ai,j with Ai,j ∈ Fi,j}.

Then Ai is a π-system that contains Ω (intersection of all Ω ∈ Fi,j) and also all Fi,j (intersection of Fi,j with a

bunch of Ω’s). Therefore Ai generates Bi. Finally, the Ai’s are independent:

P(
n

⋂
i=1
(
m(i)
⋂
j=1

Ai,j)) =
n

∏
i=1

m(i)

∏
j=1

P(Ai,j) =
n

∏
i=1

P(
m(i)
⋂
j=1

Ai,j).

Therefore, by (D2.1.7) the Bi’s are independent.

Beginning of Sept. 14, 2022

Theorem

Let {Xi,j ∶ i ⩽ n, j ⩽ m(i)} be independent. Then f(Xi,1, ...,Xi,m(i)), i ⩽ n, are independent random

variables.

Proof. Let Fi,j = σ(Xi,j) and Bi ∶= σ(Fi,1, ...,Fi,m(i)). By the previous theorem each Bi’s are independent. Each

fi is Bi-measurable so the random variables fi are independent.

Fubini theorem says for f(x, y) on Ω ×Ω2,

∫ f d(µ1 × µ2) = ∫
Ω1
∫
Ω2

f dµ2 dµ1

provided f ⩾ 0 or f is integrable (i.e., ∫ ∣f ∣ d(µ1 × µ2) < ∞). (Here since µi’s are probability measures they are

assumed to be σ-finite.) For random variables:

Theorem: D2.1.12

Let X,Y be independent with distributions µX and µY on R. Let h ∶ R2 → R satisfy either h ⩾ 0 or

E∣h(X,Y )∣ <∞. Then

Eh(X,Y ) =∬
R2

h(X,Y ) dµX(dx)µY (dy) (*)

and the other of integration does not matter.

In particular, for h(x, y) = f(x)g(y) with either f, g ⩾ 0 or E∣f(X)∣,E∣g(Y )∣ <∞, we have

E[f(X)g(Y )] = Ef(X)Eg(Y ), (**)

i.e., independence⇒ (product of E = E of product).

Proof. (*) follows from Fubini since the distribution of (X,Y ) is µX × µY by independence.
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For (**),

E[f(X)g(Y )] =∬
R2

f(x)g(y) µX(dx)µY (dy)

= ∫
R
g(y)∫

R
f(x)µX(dx)µY (dy)

= (∫
R
f(x)µX(dx))∫

R
g(y)µY (dy) = Ef(X)Eg(Y ).

By induction, we may generalize the above result into any finite number of random variables. That is, for indepen-

dent X1, ...,Xn with E∣∏Xi∣ <∞, we have E[∏Xi] =∏EXi.

Sums of Independent Random Variables

Let X,Y be independent with distribution functions F and G. The d.f. of X + Y is the convolution

H(z) = P(X + Y ⩽ z) = ∫
∞

−∞
F (z − y)d(G(y)) =∶ (F ∗G)(z).

To see this, we apply Fubini to 1x+y⩽z:

H(z) = E1{X+Y ⩽z} =∬ 1{x⩽z−y} dF (x)dG(y) = ∫ F (z − y) dG(y).

Note by doing {y ⩽ x − z} first we obtain see that F ∗G ≡ G ∗ F .

Example. Let X be uniform on [0,2] and Y is exponential with parameter λ. That is, X has 1/2 on [0,2]
and Y has λe−λy on [0,∞). The distribution function of Y is 1 − e−λy for y ⩾ 0. Then

H(z) = ∫
∞

−∞
(1 − e−λ(z−y))1{z−y⩾0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F (z−y)

1

2
1[0,2] dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dG(y)

.

That is,

H(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 z < 0

∫
z

0
(1 − e−λzeλy)/2 dy 0 ⩽ z ⩽ 2

∫
2

0
(1 − e−λzeλy)/2 dy z > 2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 z < 0
z

2
− 1 − e−λz

2λ
0 ⩽ z ⩽ 2

1 − e−λz e
2λ − 1
2λ

z > 2.

Let µn be a probability measure on (Rn,Rn). We can make a random vector with distribution µn:we take (Ω,F ,P) =
(Rn,Rn, µn) and (X1, ...,Xn) to be identity.

Infinite Sequence of Random Variables

We say finite-dimensional distributions of {Xn, n ⩾ 1} are all distributions of form {Xi, i ⩽ I} for I ⊂ N finite. By

using marginals is sufficient to consider I = {1, ..., n}. Suppose we are given µn on (Rn,Rn) for every n.

Question: is there a P on (RN,RN) with distribution µn for the first n coordinates? That is,

P(A1 × ... ×An ×R × ...) = µn(A1 × ... ×An)?

(Well of course no, since if n >m, µn determines what µm would be.) What if this consistency is satisfied?

5



CSCI 567 Machine Learning 2 - Weak Laws of Large Numbers YQL

Theorem: Kolmogorov Extension Theorem

Let µn be a p.m. on (Rn,Rn) for all n. Suppose consistency holds among the µn’s, i.e.,

µn+1(A ×R) = µn(A) for all A =
n

∏
i=1
(ai, bi] and n ⩾ 1.

(In reality the above choice of A can be anything in Rn; we just picked the most canonical one.) Then there

exists a unique P on (RN,RN) with

P(
n

∏
i=1
(ai, bi] ×R ×R × ...) = µn(

n

∏
i=1
(ai, bi]).

(Sets of form A ×R ×R × ... with A ∈Rn is a cylinder set in RN. They form a σ-field.)

2.2 Weak Laws of Large Numbers

Some recaps:

• We say Xn →X in probability (i.e. in measure) if P(∣Xn −X ∣ > ϵ)→ 0 as n→∞.

• We say Xn →X in Lp (where p > 0) if E(∣Xn −X ∣p)→ 0 as n→∞.

– For p ⩾ 1, this is equivalent to ∥Xn −X∥p → 0.

– For p < 1 this does not hold as such ∥ ⋅ ∥p does not define a norm.

– In principle the Xn can have infinite pth moment but the definition still makes sense.

Beginning of Sept. 16, 2022

Theorem

Convergence in Lp implies convergence in probability.

Proof. Suppose Xn →X in Lp. Then for all ϵ > 0,

P(∣Xn −X ∣ > ϵ) = P(∣Xn −X ∣p > ϵp) ⩽
E∣Xn −X ∣p

ϵp
→ 0.

The converse fails due to mass escaping. For example, consider a coin with probability of heads 1/n. Let U be

uniform on [0,1]. Define

Xn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U if tails

U + n1/p if heads.

Then

P(∣Xn −U ∣ > ϵ) = P(tails) = 1

n
→ 0

whereas for all n,

E(∣Xn −U ∣p) =
1

n
(n1/p)p = 1.

More recaps:

6
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• If EX2,EY 2 <∞, we defined the covariance cov(X,Y ) ∶= E((X −EX)(Y −EX)) = E(XY ) −EXEY .

• X,Y are uncorrelated if cov(X,Y ) = 0. Notation: σX ∶= cov(X,X) = var(X)1/2.

• The correlation coefficient of X − Y is invariant under affine mappings of X,Y (but cov is not, which makes

it dependent on units). In particular it computes the covariance of standardized X,Y :

ρ(X,Y ) ∶= cov((X −EX)
σX

,
(Y −EY )

σY
) = cov(X,Y )

σXσY
∈ [−1,1].

• Given X,Y , by minimizing E[(Y −(aX+b))2], the quantity E[(Y −(aX+b))2]/σ2
Y is the “fraction of Y variance

due to deviation from the best fit line (i.e., not caused by X)”, and it is 1 − ρ(X,Y )2.

• Variance of sums Sn =X1 + ... +Xn:

var(Sn) = E [
n

∑
i=1
(Xi −EXi)]

2

= E
n

∑
i=1

n

∑
j=1
(Xi −EXi)(Xj −EXj)

=
n

∑
i=1

var(Xi) + 2∑
i<j

cov(Xi,Xj).

• Independence implies zero correlation, but not conversely: consider the distribution of (X,Y ) defined uni-

formly on {(0,0)}∪ {±1}× {±1} (i.e. each point with 1/5 probability). By symmetry, the correlation of (X,Y )
is 0, but Y = 0 only if X = 0.

Theorem: L2 weak Law, D2.2.3

Suppose X1,X2, ... are uncorrelated with EXi = µ for each i and var(Xi) ⩽ C < ∞. Then Sn/n → µ in L2

(and therefore in probability).

Proof. A one liner proof:

E(Sn

n
− µ)

2

= var(Sn/n) =
1

n2

n

∑
i=1

var(Xi) ⩽
C

n
→ 0.

Beginning of Sept. 19, 2022

Theorem

If X ⩾ 0 and p > 0, then

EXp = ∫
∞

0
pxp−1P(X > x) dx.

Proof. We take g(x) = xp for x ⩾ 0 and 0 otherwise. Then

E(Xp) = Eg(X) = lim
b→∞∫[0,b]

g(x) dF (x)

= lim
b→∞
−P(X > b)bp + lim

b→∞∫[0,b]
pxp−1P(X > x) dx.

• If E(Xp) <∞, from homework we know P(X > b)bp → 0, so the claim is true.

7
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• If E(Xp) =∞, then

∞ = E(Xp) ⩽ lim
b→∞∫[0,b]

pxp−1P(X > x) dx = ∫
∞

0
pxp−1P(X > x) dx.

Recall from L2 weak law, if X1,X2, ... are i.i.d. with EX1 = µ and EX1 <∞, then

P(∣Sn/n − µ∣ > ϵ)→ 0 for all ϵ > 0.

What if we weaken the assumptions? What if EX1 =∞ or undefined? Is there {µn} such that P(∣Sn/n−µn∣ > ϵ)→ 0,

or does the sequence Sn/n retain its randomness?

Intuitively, if Sn/n settles down, no particular Xi should contribute much to this quantity. To formulate, we require

that

P(∣Xj ∣/n > δ for some j ⩾ 0)→ 0 for all δ.

This is the same as requiring

1 − P(∣Xn∣ ⩽ δn)n = 1 − (1 − P(∣X1∣ > δn)n → 1.

We use the fact that if for an ∈ (0,1) with an → 0 and bn →∞, (1 − an)bn → 1 if and only if anbn = 0. To see this: for

small an (or equivalently large n),

e−2an ⩽ 1 − an ⩽ e−an Ô⇒ e−2anbn ⩽ (1 − an)bn ⩽ e−anbn .

Therefore,

P(∣Xj ∣/n > δ for some j ⩽ n)→ 0⇔ nP(∣X1∣ > δn)→ 0 for all δ

⇔ δnP(∣X1∣ > δn)→ 0 for all δ

⇔ xP(∣X1∣ > x)→ 0 as x→∞.

When is there {µn} with P(∣Sn/n − µn∣ > ϵ)→ 0 for all ϵ?

Truncation

A truncation of X is X =X1{∣X ∣⩽M} for some M , so in particular it is bounded. For some proofs about Sn/n, below

is a roadmap:

• prove the result for S =X1 + ... +Xn,

• show Sn − Sn is small, e.g., P(Sn − Sn)→ 0 or E[(Sn − Sn)2]→ 0.

The Weak Law of Large Numbers

Theorem: WLLN, D2.2.12

Let X1,X2, ... be i.i.d. In order that there exists {µn} such that Sn/n − µn in probability, it is necessary and

sufficient that

xP(∣X1∣ > x)→ 0 as x→∞.

If so, µn = E[X11{∣X1∣⩽n}] works.

8



CSCI 567 Machine Learning 2 - Weak Laws of Large Numbers YQL

Proof. We prove the sufficiency part only; the necessity part is beyond the scope even in Durrett’s book.

• We first truncate the variables and define Xn,k ∶=Xk1{∣Xk ∣⩽n}. Let S′n =
n

∑
k=1

Xn,k.

• We show truncation “does little:”

P(S′n ≠ Sn) = P(∣Xk ∣ > n for some k ⩽ n)

⩽ nP(∣X1∣ > n)→ 0 by union bound.

• We show the theorem holds for truncated random variables: by Chebyshev,

P(∣S
′
n

n
− µn∣ > ϵ) ⩽

var(S′n/n)
ϵ2

=
var(Xn,1)

ϵ2n
⩽
EX2

n,1

ϵ2n

= ϵ−2n−1 ∫
∞

0
2yP(∣Xn,1∣ > y) dy

⩽ ϵ−2 n−1 ∫
n

0
2yP(∣X1∣ > y) dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
average of 2yP(∣X1∣ > y) on [0, n]

→ 0.

• Combine and QED:

P(∣Sn

n
− µn∣ > ϵ) ⩽ P(Sn ≠ S′n) + P(∣

S′n
n
− µn∣ > ϵ)→ 0.

Given a random variable, we consider the standardized random variable (X − EX)/σX whenever this makes

sense. For b > σX ,

P(∣E −EX
b

∣ > ϵ) = P(∣X −EX
σX

∣ > ϵb

σX
) ⩽ var((X −EX)/σX)

ϵ2b2/σ2
X

=
σ2
X

ϵ2b2
,

which is small for b≫ σX . This proves the following theorem:

Theorem: D2.2.6

Let {Tn} be random variables. If var(Tn)/b2n → 0, then
Tn −ETn

bn
→ 0 in probability.

Beginning of Sept.92022

Consider a geometric distribution with parameter p:

• P(X = n) = (1 − p)n−1p.

• EX = 1/p.

• E(X(X − 1)) =
∞
∑
n=1

n(n − 1)(1 − p)n−2(1 − p)p = 2 − 2p
p2

, so

• var(X) = EX2 − (EX)2 = 2 − 2p
p2

+ 1

p
− 1

p2
= 1

p2
− 1

p
.

Example: The coupon collector’s problem. Suppose each cereal box has one of the n coupons equally

likely. Let Tn be the time to get all n.

Let R be repeats and N be new coupons. The outcome is a sequence of R’s and N ’s. Let Xn,k be the

9
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time from getting the (k − 1)th coupon to the kth new coupon. It follows immediately that the Xn,k ’s are

independent from each other, with Tn =
n

∑
k=1

Xn,k. In particular,

Xn,k ∼ geometric(n − k + 1
n

) ,

so

ETn = 1 +
n

n − 1
+ n

n − 2
+ ... + n = n(1 + 1/2 + ... + 1/n) ∼ n logn.

On the other hand,

var(Tn) =
n

∑
k=1

var(Xn,k) ⩽
n

∑
k=1
( n

n − k + 1
)
2

= n2π2

6
.

Since var(Tn)/(n logn)2 → 0, by D2.2.6, (Tn −ETn)/(n logn)→ 0 in probability, i.e.,

Tn

n logn
→ 1 in probability.

2.3 Triangular Arrays

Consider a triangular array {Xn,k ∶ n ⩾ k, k ⩽ kn} where the nth row has kn variables.

Theorem: D2.2.11, WLLN for triangular arrays

Let {Xn,k} be given. Let bn →∞ and

an ∶=
kn

∑
k=1

E(Xn,k1{∣Xn,k ∣⩽bn}).

Assume
kn

∑
k=1

P(∣Xn,k ∣ > bn)→ 0 as n→∞ (1)

and

b−2n E(X2
n,k1{∣Xn,k ∣⩽bn})→ 0 as n→∞, (2)

then (Sn − an)/bn converges to 0 in probability.

In the i.i.d. case, where Xn,k = Xk and kn = bn = n, (1) says nP(∣X1∣ > n) → 0 and (2) says

n−1E(X2
11{∣X1∣⩽n})→ 0.

Theorem: D2.2.14, Finite mean of WLLN

Let X1,X2, ... be i.i.d. with E∣X1∣ <∞ and EX1 = µ. Then Sn/n → µ in probability without any assumption

on the second moment.

Proof. We use WLLN 2.2.12. Let µn ∶= E(X11{∣X1∣⩽n}). We know µn → µ by DCT. Also,

xP(∣X1∣ > x) = E(x1{∣X1∣>x}) = E(∣X1∣1{∣X1∣>x})→ 0

10
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again using DCT. Therefore by 2.2.12 Sn/n − µn → 0 in probability, so Sn/n→ µ in probability.

If X1 ⩾ 0,EX1 = ∞, we can compare X1 with the truncated variables to see Sn/n → ∞. Nevertheless, we can still

ask if there exist an, bn such that (Sn − an)/bn → 0 in probability.

Example: D2.2.16 St. Petersburg paradox. Game: win 2j if first heads toss is trial j, j ⩾ 1. Note that

Sn/n → µ implies that µ is the “fair price” to pay to play one game. Let Xk be the r.v. describing the among

of games won by game k. Then

EX1 =∑
j⩾1

2j2−j = o.

Then an is the “fair price for n games.” By 2.2.11 (triangular array WLLN), we take Xn,k =Xk for k ⩽ n and

{bn} to be determined. Let

an = nE(X11{X1⩽bn}).

We want bn to satisfy two things:

• the truncation probability nP(X1 > bn)→ 0,

• b−2n nE(X2
11{X1⩽bn})→ 0, and

• bn ⩽ can.

For tails:

P(X1 ⩾ 2m) = P(first m − 1 all tails) = 2−m+1.

Example: D2.2.16 St. Petersburg paradox.

Consider X1,X2, ... i.i.d. with X1 = 2−j with probability 2−j . Then EX1 = ∞. Treat this as a game, but the

paradox is the expected value is infinite and we cannot play an infinite amount of times. The question: how

much we should pay to play this game n times?

We construct an, bn such that

• nP(X1 > bn)→ 0,

• b−2n nE(X2
11{X1⩽bn})→ 0, and

• bn ⩽ can.

If so, by WLLN (2.2.11), (Sn − an)/bn → 0 in probability.

From 2.2.11, we simply pick

an = nE(X11{X1⩽bn})

and P (X1 ⩾ 2m) = 2−m+1. We take bn of form 2m(n).

In order for the first condition to satisfied, n2−m(n)+1 → 0 implies the candidate m(n) = log2 n +K(n) with

K(n)→∞. Then 2m(n) = n2−K(n). For the truncation condition,

E(X2
11X1⩽2m(n)) =

m(n)

∑
j=1

22jP(X1 = 2j) = 2m(n)+1.

Therefore b−2n nE(X2
11{X1⩽bn}) = 2−2m(n)n2m(n)+1 = 2−K(n)+1. Letting n→∞ this term does converge to 0.

11
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Finally, to check the third condition, we want

an = nE(X11{X1⩽bn}) = n
m(n)

∑
j=1

2jP(X1 = 2j) = nm(n).

That is, we want
an
bn
= nm(n)

2m(n)
= m(n)
2K(n)

= log2(n) +K(n)
2K(n)

.

If we take K(n) = log2 log2 n then the fraction will converge to 1, and we are finally done:

Sn − n(log2 n + log2 log2 n)
n log2 n

→ 0 in probability.

Since log2 log2 n/ log2 n→ 0, we have

Sn − n log2 n
n log2 n

→ 0 in probability,

so
Sn

n log2 n
→ 1 in probability.

That is, a fair price for playing n games is paying log2 n per play.

2.4 Borel-Cantelli Lemmas

Some very quick recap: if {An} are subsets of Ω, then

lim supAn = ⋂
m⩾1

⋃
n⩾m

An = {ω ∶ ω ∈ An i.o. (infinitely often)}

and

lim inf An = ⋃
m⩾1

⋂
n⩾m

An = {ω ∶ ω ∈ Aneventually / for all but finitely many An}

Theorem: First Borel-Cantelli Lemma

Let {An} be events with
∞
∑
n=1

P(An) <∞. Then P(lim supAn) =∶ P(An i.o.) = 0.

Proof. For all m, P(An i.o.) has to occur after m, so

P(An i.o.) ⩽ P( ⋃
n⩾m

An) ⩽ ∑
n⩾m

P(An)→ 0 as m→∞.

The converse does not hold, as illustrated by An = (0,1/n) on the unit interval equipped with the uniform probabil-

ity. With independence of events, however, we have the following result:

Theorem: Second Borel-Cantelli Lemma

Let {An} be independent with
∞
∑
n=1

P(An) =∞. Then P(An i.o.) = 1.

12
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We first need a lemma: if 0 < an < 1,
∞
∏
i=1
(1 − an) > 0 if and only if ∑

n=1
xi <∞. When x is small, e−2x < 1 − x < e−x and

we obtain the claim after some algebra.

Proof of Borel-Cantelli. Fix m. Using continuity of probability on decreasing events,

P(no An’s after some index m) = lim
k→∞

P(no An’s from index m to k)

= lim
k→∞

k

∏
n=m
(1 − P(An)) = ∏

n⩾m
(1 − P(An)) = 0.

Therefore, P(some An after index m, for all m) = 1.

Example. Let X1,X2, ... be i.i.d. exponential with parameter λ, i.e., with density λe−λx on [0,∞). Goal:

find {cn} with lim supXn/cn = 1 a.s.; we call cn the max growth rate of Xn. That is, for all ϵ, we want

P(Xn/cn > 1 + ϵ i.o.) = 0 and P(Xn/cn > 1 − ϵ i.o.) = 1.

By first and second B-C, it is sufficient to show that

∑
n⩾1

P(Xn > (1 + ϵ)cn) = ∑
n⩾1

e−λ(1+ϵ)cn <∞

and

∑
n⩾1

P(Xn > (1 − ϵ)cn) = ∑
n⩾1

e−λ(1−ϵ)cn =∞

for all ϵ. We let cn be such that e−λcn = 1/n, i.e., cn = logn/λ. And this works.

Beginning of Sept. 26, 2022

Some quick recap of convergence a.s. and in probability:

• If Xn →X a.s. then 1{∣Xn−X ∣>ϵ} → 0 a.s. for all ϵ > 0, so

P(∣Xn −X ∣ > ϵ) = E1{∣Xn−X ∣>ϵ} → 0

by bounded convergence theorem, so Xn →X in probability.

• The converse is false, as illustrated by the scanning intervals. Let P be uniform on [0,1] and consider

[0,1], [0,1/2], [1/2,1], [0,1/3], [1/3,2/3], [2/3,1], and so on.

However, the following does hold:

Proposition

If Xn →X in probability then there exists a subsequence Xnk
→X a.s.

Proof. Take a sequence of increasing indices nk such that

P(∣Xnk
−X ∣ > 1/k) < 2−k.

13
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Using Borel-Cantelli,

∑
k

P(∣Xnk
−X ∣ > 1/k) <∞

so P(∣Xnk
−X ∣ > 1/k i.o.) = 0 and Xnk

→X a.s.

Recall from analysis that in a metric space, yn → y iff every subsequence ynk
has a further subsequence converging

to y. Using this fact we obtain a stronger characterization of convergence in probability:

Theorem: D2.3.2

Xn →X in probability iff for every subsequence {Xnk
} there exists a further subsequence converging a.s. to

X.

In particular, this theorem implies that there is no metric d(X,Y ) such that Xn → X a.s. iff d(Xn,X) → 0. On

the other hand, d(X,Y ) ∶= E(∣Y −X ∣)/(1 + ∣Y −X ∣) satisfies Xn → X in probability iff d(Xn,X) → 0. More

generally, any g bounded, invertible, concave, with g(0) = 0 works, like g(t) = t/(1 + t).

Proof. The forward direction follows from the previous proposition.

Conversely, fix ϵ > 0 and let yn = P(∣Xn − X ∣ > ϵ). The assumption implies that for any {ynk
}, there exists a

further subsequence {ynk(ℓ)} converging to 0. Using the previous remark, yn → 0, i.e., Xn →X a.s.

Corollary: D2.3.4

If Xn →X in probability and f ∶ R→ R is continuous, then f(Xn)→ f(X) in probability.

Proof. We use the previous theorem twice. For all {Xnk
} there exists a further subsequence {Xnk(ℓ)} converging

to X a.s., and by continuity f(Xnk(ℓ))→ f(X) a.s. Now using D2.3.2 again, f(Xn)→ f(X) in probability.

Theorem: D2.3.8

Suppose X1,X2, ... are i.i.d. with E∣X1∣ =∞. Then

P( lim
n→∞

Sn

n
exists and is finite) = 0.

Proof. We first show that P(∣Xn∣/n > 1 i.o.) = 1 and that

P(∣Sn+1

n + 1
− Sn

n
∣ > 1

2
i.o.) = 1.

• For the first claim:

∞ = E∣X1∣ = ∫
∞

0
P(∣X1∣ > n) dx ⩽ ∑

n⩾1
P(∣X1∣ > n) = ∑

n⩾1
P(∣Xn∣ > n)

so by the second B-C, P(∣Xn∣ > n i.o.) = 1 and in particular P(∣Xn∣/n > 1 i.o.) = 1.

• To show the second claim, define

C ∶= {ω ∶ lim
n→∞

Sn/n exists and is finite}.

14
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Note that

−Sn+1

n + 1
+ Sn

n
= Sn

n
− Sn

n + 1
+ Xn+1

n + 1
.

Therefore, for a.e. ω ∈ C, Sn/(n(n + 1))→ 0 (since Sn/n is finite) and ∣Xn+1∣/(n + 1) > 1 i.o., so

RRRRRRRRRRR

Sn

n
− Sn+1

n + 1

RRRRRRRRRRR
> 1

2
i.o.

• Therefore P(C) = P(C ∩ {∣Sn

n
− Sn+1

n + 1
∣ > 1

2
i.o.}) = 0 and we are done.

2.5 Kolmogorov 0-1 Law

Previously, we have shown:

(1) If An’s are independent then P(An i.o.) = 0 or 1 by the first and/or second B-C.

(2) We have also shown that if X1,X2, ... are i.i.d. exponential r.v.’s with parameter λ then lim sup
n→∞

Xn/ logn = 1/λ
a.s., so

P(lim sup
n→∞

Xn

logn
> c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if c < 1/λ

0 if c > 1/λ.

Beginning of Sept. 29, 2022

We define Fn ∶= σ(Xn,Xn+1, ...) for each n, and we define T ∶= ⋂
n⩾1
Fn, the tail σ-field.

Example: {Sn/n→ µ} is a tail event. To see this, we fix m < n and get

Sn

n
= Sm

n
+ Xm+1 + ... +Xn

n
.

Now letting n → ∞ we see Sn/n → µ iff (Xm+1 + ... +Xn)/n → µ. In particular, the right side quantity does not

depend on which m we start with.

Theorem: Kolgomorov 0-1 Law

Let X1,X2, ... be random variables. Then P(A) = 0 or 1 for A ∈ T .

Proof. Idea: it suffices to show that if A ∈ T then P is independent of itself, i.e., P(A ∩A) = P(A)2. In fact, we’ll

show A ⊥ B for every event B ∈ σ(X1,X2, ...).
Preliminaries. For events A,B, we define a distance d(A,B) ∶= P(A∆B) = E∣1A − 1B ∣. (This is a pseudo-metric

but can be 0 when A ≠ B.) An important property: d(A∪B,G∪H) = d(A,G)+d(B,H). Same for intersections.

More formally, given (Ω,F ,P) a probability space and G a collection of events, we say A ∈ F is approximable

by G if for every ϵ > 0, there exists G ∈ G with d(A,G) < ϵ.
Idea, continued: we approximate any B by B̃ ∈ σ(X1, ...,Xn) for some n w.r.t. our distance defined above. We

also approximate A by some Ã ∈ σ(Xn+1,Xn+2, ...). Note that these two σ-fields are indeed independent, and Ã

and B̃ are independent. Intuitively, this gives

P(A ∩B) ≈ P(Ã ∩ B̃) = P(Ã)P(B̃) ≈ P(A)P(B).

15
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Lemma. If G is a field then {all events approximable by G} is a σ-field.

Proof of subclaim. Closedness under countable union is immediate by using ϵ/2−n along with the fact that G is a

field. If A1,A2, ... are approxmaeble by G1,G2, ... with errors < ϵ/2n, we have

P((⋃
n⩾1

Gn)∆(⋃
n⩾1

An)) ⩽ P((⋃
n⩾1

Gn)∆(
k

⋃
n⩾1

An)) + P(⋃
n⩾1

An) − P(
k

⋃
n=1

An)→
k

∑
n=1

ϵ2−n < ϵ (*)

as k →∞. END OF CLAIM OF LEMMA.

Now we prove the Kolgomorov 0-1 law. We apply the lemma to G = ⋃
n⩾1

σ(X1, ...,Xn) which is a field. We

approximate B ∈ σ(X1,X2, ...) by B̃ ∈ σ(X1, ...,Xn) for some n with error < ϵ. For A ∈ T , we apply the lemma to

⋃
k⩾n

σ(Xn+1, ...Xk) and get Ã ∈ σ(Xn+1, ...,Xnk
), also with error < ϵ. Then by (*) we are done!

Using Kolgomorov 0-1 law on A = {Sn/n→ µ} can be approximated in σ(X1, ...,Xm), even though it doesn’t depend

on X1, ...,Xm for any given m, as shown before stating the theorem. The approximation will be by something like

Ã = {∣Sm/m − µ∣ < ϵ for all m ∈ [k,n]}

for some n, k,m.

Related Result

We consider permutable events. A finite permutation π of N is one with π(i) = i for all but finitely many i’s. Here we

have Ω = RN and X1,X2, ... random variables (coordinates in Ω). Let ω = (ωi, i ⩾ 1). Consider πω = (ωπ(1), ωπ(2), ...),
i.e., (πω) − i = ωπ(i). We say event A is permutable if π−1A = A for every finite permutation π, and we let E be the

collection of all permutable events.

It is easy to check that E is a σ-field. Also, if A ∈ σ(Xn+1,Xn+2, ...), then the occurrence of A is unaffected by the

permutation of X1, ...,Xn. In particular, any A ∈ J is permutable, so T ⊂ E .

An example of permutable sets: {Sn ∈ B i.o.}: if the sum is in B then mixing the first (finitely many) coordinates

does not change the fact that Sn is still in B. However, {Sn ∈ B i.o.} is not a tail event: if we change the value of

X1(ω) dramatically, every Sn(ω) will be affected.

Theorem: Hewitt-Savage 0-1 Law

If X1,X2, ... are i.i.d. and A ∈ E then P(A) = 0 or 1.

2.6 Strong Law of Large Numbers

Beginning of Sept. 30, 2022

Theorem: WLLN, D2.4.1

Let X1,X2, ... be i.i.d. (pairwise in fact suffice) with E∣X1∣ <∞. Then Sn/n→ µ = EX1 almost surely.

Proof. Idea: we assume X1 ⩾ 0 or otherwise we use X = X+ −X−. Then Sn and n are both increasing in n.

Consider a subsequence, say k(n) = ⌊αn⌋ with α > 1 but close to 1. For the indices in between the subsequences,

16
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i.e., for k(n) ⩽m ⩽ k(n + 1),

Sk(n)

k(n)
k(n)

k(n + 1)
=

Sk(n)

k(n + 1)
⩽ Sm

m
⩽
Sk(n+1)

k(n)
=

Sk(n+1)

k(n + 1)
k(n + 1)
k(n)

.

As n → ∞, k(n)/k(n + 1) → 1/α and k(n + 1)/k(n) → α. Therefore if we show show convergence of the

subsequence Sk(n)/k(n)→ µ, then

µ

α
⩽ lim inf

m→∞

Sm

m
⩽ lim sup

m→∞

Sm

m
⩽ αµ,

and since α is arbitrary, we are done.

Proof of SLLN. Step 1. We truncate as usual: let Yn =Xn1{Xn⩽n} and let Tn =
n

∑
i=1

Yi. Then

∑
n⩾1

P(Xn ≠ Yn) = ∑
n⩾1

P(Xn > n) = ∑
n⩾1

P(X1 > n) <∞

since EX1 < ∞. Therefore, by B-C, P(Xn ≠ Yn i.o.) = 0. Since there are only finite number of different terms

between Sn and Tn, (Sn/n) − (Tn/n)→ 0. Therefore it suffices to show Tn/n→ µ almost surely.

Step 2. We apply B-C to Tn/n. Using Chebyshev,

P(∣Tk −ETk

k
∣ > ϵ) ⩽ var(Tk)

k2ϵ2
= 1

k2ϵ2

k

∑
i=1

var(Yi).

But var(Yi) may not → 0. and then the terms on the RHS is bounded from below by some constant divided by k,

not summable. Remedy:

Step 3. Apply step 2 to a subsequence k(n) = ⌊αn⌋ ⩾ αn/2. Then

∞
∑
n=1

P(
∣Tk(n) −ETk(n)∣

k(n)
> ϵ) ⩽

∞
∑
n=1

1

ϵk(n)2
k(n)

∑
i=1

var(Yi)

=
∞
∑
i=1

ϵ−2 var(Yi) ∑
k(n)⩾i

1

k(n)2

⩽
∞
∑
i=1

4ϵ−2 var(Yi) ∑
k(n)⩾i

α−2n

⩽
∞
∑
j=1

4ϵ−2 var(Yj)
1

j2
1

1 − α−2

= 4ϵ−2

1 − α−2
∞
∑
j=1

var(Yj)
j2

⩽ 4ϵ−2

1 − α−2
∞
∑
j=1

EY 2
j

j2
(*)

Since

EY 2
j = ∫

∞

0
2yP(Yj > y) dy ⩽ ∫

j

0
2yP(X1 > y) dy,

the sum in (*) becomes

∞
∑
j=1

EY 2
j

j2
=
∞
∑
j=1

j−2 ∫
∞

0
1{Y <j}2yP(X1 > y) dy

= ∫
∞

0
(∑
j>y

j−2)2y P(X1 > y) dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

integrable

(**)

Since ∑
j>y

j−2 ≈ y−1, it can be shown that (D2.4.4)

(∑
j>y

j−2)2y ⩽ 4 for all y.
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Hence (**) ⩽ 4EX1 <∞. Then (*) and B-C says

P(
∣Tk(n) −ETk(n)∣

k(n)
> ϵ i.o.) = 0 for all ϵ,

so
Tk(n) −ETk(n)

k(n)
→ 0 a.s. and

Tk(n)

k(n)
and

Sk(n)

k(n)
→ µ a.s.

We have shown the a.s. convergence of a subsequence of Sk(n)/k(n). By a remark made earlier we are done.

Beginning of Oct. 3, 2022

Example: Renewal theory. Let X1,X2, ... be i.i.d. with 0 <Xi <∞. Let Tn =X1 + ... +Xn and think of Tn

as the time of nth occurrence of some event. Let Nt ∶= sup{n ∶ Tn ⩽ t}. Think of Xi as the lifespans of light

bulbs and a person replaces a light bulb right when it burns out. Then Nt is the number of light bulbs that

have burnt out by time t.

Theorem: D2.4.7

If EX1 = µ <∞ and X1,X2, ... are i.i.d. then

Nt/t→ 1/µ a.s.

Proof. Let T (Nt) be the time of last renewal up to time t. Then T (Nt) ⩽ t < T (Nt + 1), so

T (Nt)
Nt

⩽ t

Nt
< T (Nt + 1)

Nt
= T (Nt + 1)

Nt + 1
Nt + 1
Nt

.

Since T (Nt)/Nt → µ a.s. and (Nt + 1)/Nt → 1, we have t/Nt → µ a.s.

SLLN when EX1 =∞: we know
1

n

n

∑
i=1

min(Xi,M)→ Emin(Xi,M) a.s.

Since Emin(Xi,M)→ EX1 =∞ as M →∞, we also have

1

n

n

∑
i=1

Xi →∞ a.s.

Example: Empirical d.f.’s, D2.4.8. Let X1,X2, ... be i.i.d. with distribution F . We let

Fn(x) ∶=
1

n

n

∑
m=1

1{Xm⩽ x
}
.

Namely, Fn(x) is the observed frequency of values that are ⩽ x. For fixed x, 1{Xi⩽x} are i.i.d. with mean

F (x), so SLLN says Fn(x)→ F (x). Simiilarly Fn(x−)→ F (x−) a.s.

Theorem: Gilvenko-Cantelli, D2,4,9

We have “almost sure” uniform convergence:

sup
x
∣Fn(x) − F (x)∣→ 0 a.s.
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Proof. Idea: if Fn is close to F at two points a, b where F (b) −F (a) is small, then Fn is close to F in all [a, b] by

monotonicity.

Fix k ⩾ 1. We let

Ij ∶= {x ∶ 1/k ⩽ F (x) ⩽ (k + 1)/k},0 ⩽ i ⩽ k.

This is either an empty set or an interval, so say Ij = [aj , bj]. If Ij ≠ ∅, then F (aj), F (bj−) are in [j/k, (j + 1)/k].
For all j, there exists n0(j) such that n ⩾ n0(j) implies (almost surely)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣Fn(aj) − F (aj)∣ ⩽ 1/k

∣Fn(bj−) − F (bj−)∣ ⩽ 1/k.

That is, on the endpoints, we have convergence.

What about in-between? For x ∈ Ij , we have

Fn(x) ⩾ Fn(aj) ⩾ Fn(aj) −
1

k
⩾ j − 1

k
⩾ F (x) − 2

k
.

The other direction is similar:

Fn(x) ⩽ Fn(bj−) ⩽ F (bj−) +
1

k
⩽ j + 2

k
⩽ F (x) + 2

k
.

Therefore the supremum is bounded by 2/k → 0, and we are done!

An alternate proof of SLLN uses k(n) = n2, where the goal is to bound

P(∣
Sm − Sk(n)

k(n)
∣ > ϵ for some k(n) ⩽m ⩽ k(n + 1)) .

To do so, we need the following theorem:

Theorem: D2.5.5, Kolmogorov’s maximal inequality

If X1, ...,Xn are independent (not requiring i.i.d.) with EXi = 0 and var(Xi) <∞. Then

P(max
1⩽k⩽n

∣Sk ∣ ⩾ x) ⩽
var(Sn)

x2
.

Note that Chebyshev gives P(∣Sk ∣ ⩾ x) ⩽ var(Sn)/x2 so this is strictly stronger.

Proof. We decompose the events according to the kth occurrence:

Ak ∶= {∣Sk ∣ ⩾ x but ∣Sj ∣ < x for j < k}.

It is clear that the Ai’s are disjoint. We show that var(Sn) = E(Sn)2 ⩾ x2P(max ⩾ x). For this:

ES2
n ⩾

n

∑
k=1
∫
Ak

S2
n dP

=
n

∑
k=1
∫
Ak

(S2
k + 2Sk(Sn − Sk) + (Sn − Sk)2) dP

⩾
n

∑
k=1
[∫

Ak

x2 dP + ∫
Ω
1Ak

2Sk(Sn − Sk) dP] .

The first ⩾ is because the Ak ’s are disjoint. We use x2 as a lower bound for Sk over Ak by definition, and we note

that (Sn − Sk)2 ⩾ 0. Finally, we note that 1Ak
2Sk depends only on what happens on the first k sets and Sn − Sk
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depends on something else, so they are independent. Therefore

∫
Ω
1Ak

2Sk(Sn − sK) dP

the product of expected values, is the expected value of products, and E(Sn − Sk) = 0. Therefore ES2
n ⩾

x2
n

∑
k−1

P(Ak) = x2P(max∣Sk ∣ ⩾ x).

Beginning of Oct. 5, 2022

Proposition: Ottaviani’s inequality

Let X1,X2, ... be independent and a > 0. Then

P(max
j⩽n
∣Sj ∣ > 2a) ⋅min

j⩽n
P(∣Sn − Sk ∣ ⩽ a) ⩽ P(∣Sn∣ > a).

To apply this theorem, suppose we know min
j⩽n

P(∣Sn − Sk ∣ ⩽ a) ⩽ c, then

P(max
j⩽n
∣Sj ∣ > 2a) ⩽

1

c
P(∣Sn∣ > a).

Proof. We define

Aj = {∣Si∣ ⩽ 2a for all i ⩽ j and ∣Sj ∣ ⩾ 2a}.

Then

P(∣Sn∣ > a) ⩾
n

∑
k=1

P(∣Sn∣ > a and Ak)

⩾
n

∑
k=1

P(∣Sn − Sk ∣ ⩽ a and Ak)

=
n

∑
k=1

P(∣Sn − Sk ∣ ⩽ a)P(Ak)

⩾min
k⩽n

P(∣Sn − Sk ∣ ⩽ a) ⋅ P(⋃
k⩽n

Ak)

=min
k⩽n

P(∣Sn − Sk ∣ ⩽ a)P(max
k⩽n
∣Sk ∣ > 2a) .

Example. If xP(∣X1∣ > x) → 0 but E∣X1∣ = ∞, and if X and −X have the same distribution (i.e., X is

symmetric), then by weak law, Sn/n→ the truncated mean in probability, which is always 0. However, since

the mean is infinite, Sn/n will not converge to 0 almost surely.

Theorem: D2.5.8 Kolmogorov’s three-series theorem

Let X1,X2, ... be independent. Let A > 0 and let Yi be Xi1{∣Xi∣⩽A}. Then
∞
∑
n=1

Xi converges almost surely if

and only if the following are all satisfied:
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•
∞
∑
n=1

P(∣Xn∣ > A) <∞,

•
∞
∑
n=1

EYn converges, and

•
∞
∑
n=1

var(Yn) converges.

Note that (i) A is chosen arbitrarily, so the three conditions cannot depend on A; (ii) if
∞
∑
n=1

var(Yn) = ∞, then

var(
n

∑
j=m

Yn) → ∞ as n → ∞, for all m, which implies the variate is staying big for the tail, and so we don’t expect

the tail of
∞
∑
n=1

Xi to converge to 0.

2.7 Large Deviations

Let X1,X2, ... be i.i.d. and let Sn = X1 + ... +Xn, as usual. SLLN says if E∣X1∣ < ∞ then Sn/n → µ a.s. How big is

P(Sn/n) > a), for some a > µ?

Main idea: consider the exponential moment: φ(t) = E(exp(tX)) < ∞ for some t. Then P(Sn > na) → 0 decays

exponentially.

Beginning of Oct. 7, 2022

For a sequence bn → 0 converging to 0, we say bn decays like e−cn if

−c = lim 1

n
log bn,

or equivalently, for ϵ > 0,

e−(c+ϵ)n ⩽ bn ⩽ e−(c−ϵ)n

for sufficiently large n.

Similarly, we want to show that P(Sn/µ > a) decays like e−I(a)n for some I(a) > 0. Question: what is

γ(a) = lim
n→∞

1

n
logP(Sn/n > a)?

We define πa ∶= P(Sn/n ⩾ a). We claim that logπn is superadditive: πm+n ⩾ πmπn, so logπm+n ⩾ logπn + logπm.

This is true because

P(Sm+n ⩾ (m + n)a) ⩾ P(Sn ⩾ na,Sn+m − Sn ⩾ma) = P(Sn ⩾ na,Sm ⩾ma) = P(Sn ⩾ na)P(Sm ⩾ma).

Lemma: D2.7.1

If γn is superadditive, then γ/n→ supm γm/m.

Proof. Call the supremum limit c. It suffices to show 0 ⩽ lim inf ⩽ lim sup ⩽ c.
lim sup ⩽ c = sup is trivial by definition.

Conversely, we need to show lim inf γn/n ⩾ γm/m for all m. Induction says if n = n1+...+nk then γn ⩾ γn1+...+γnk
.
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In particular, if we fix m, then we can write n as n = km + ℓ with 0 ⩽ ℓ <m. Then,

γn
n
⩾ kγm + γℓ

km + ℓ
= km

km + ℓ
γm
m
+ γℓ
km + ℓ

.

As n→∞ so k →∞, ℓ is bounded, so km/(km + ℓ)→ 1. So does γℓ/(km + ℓ). Therefore,

lim inf
n→∞

γn
n
⩾ γm

m
.

Therefore, P(Sn/n ⩽ a) ⩽ eγ(a)n in particular, since γ(a) ⩾ n−1 logP(Sn/n ⩾ a) as shown above. That is, this

exponential decay rate is also an upper bound for P(Sn/n ⩽ a).

Suppose MGF φ(θ) = EeθX is finite in (−δ, δ). In this interval,

XkeθX

e(θ+ϵ)X
=Xke−ϵX → 0

as X →∞. In particular, if θ ∈ (−δ, δ), so does the new quantity when ϵ is small, so E(XkeθX) is finite, for all k. In

particular, for k = 1,

lim
h→0

E(e
(θ+h)X − eθX

h
) = lim

h→0
E(eθX ehX − 1

h
) .

Assuming h positive,

∣e
hX − 1
h

∣ ⩽

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣X ∣ if X < 0

XehX if X ⩾ 0

We have shown that XehX is integrable for small h, so indeed we can apply DCT and obtain φ′(θ) = E(XeθX).
Similarly, if we differentiate twice, we obtain φ′′(θ) = E(X2eθX), and so on. Also,

(logφ)′(θ) = φ′(θ)
φ(θ)

= ∫
XeθX dP
∫ eθX dP

.

Given g ⩾ 0, we can define a probability measure by

ν(A) = ∫A
g dP

∫ g dP
,

“P weighted by g”, and equivalently

Eν1A = ∫
1Ag dP
∫ g dP

.

Using standard measure theory argument, we obtain

Eνf = ∫
fg dP
∫ g dP

.

Therefore, (logφ)′(θ) can be thought of as Eνθ
X, under the tilted distribution of νθ.

Also,

(logφ)′′(θ) = φ(θ)φ′′(θ) − φ′(θ)2

φ(θ)2
= ∫

X2eθX dP
∫ eθX dP

− (∫
XeθX dP
∫ eθX dP

)
2

,

namely varνθ
(X), which is nonnegative. Therefore, logφ is convex. Also note (logφ)(0) = 0 with (logφ)′(0) = EX.

What about MGF of sums Sn for i.i.d. random varaibles?

φSn(θ) = Eeθ(X1+...+Xn) = φ(θ)n.
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Now we fix θ > 0. Then

P(Sn/n > a) = P(eθSn > eθna),

so by Markov, this is bounded from above by

P(Sn/n > a) ⩽
EeθSn

eθna
= φ(θ)n

eθna
= exp(−(aθ − logφ(θ))n).

To show exponential decay, it suffices to show the above exponent is positive. In particular, if

I(a) ∶= sup
θ>0
(aθ − logφ(θ)) > 0

we are done. Indeed! a > EX, and logφ is convex, so if we start at the origin and draw a line aθ, it is steeper than

logφ so it will go above the graph of logφ, resulting in a positive supremum.

Beginning of Oct. 17, 2022

Large Deviations Regime

We define Xi = ±1, P(X = 1) = P(X = −1) = 1/2, and consider the trajectory {Sj , j ⩽ n}. We define a new probability

measure Q({Sj , j ⩽ n}) as

Q({Sj , j ⩽ n}) ∶=
P({Sj , j ⩽ n}) exp(βNn)

Zn(β)
where Nn is the number of times the trajectory touches the x-axis and Zn(β) is the scaling constant to make Q a

probability measure.

One can show that P(Sj = 0) ≈ C/
√
j, so E(Nn) =

n

∑
j=1

P(Sj = 0) ∼ c
√
n.

We first assume that Nn ≈ λn. What λ is optimal under such assumption? Note that {Nn ⩾ λn} is a large deviation

event since Eτ =∞, and Nn ⩾ λn is asking for finite gap between returns. Then P(Nn ⩾ λn) ≈ e−I(λ)n, so

P(Nn ⩾ λn)eβλn ≈ e(βλ−I(λ))n.

The optimal λ is therefore the quantity that maximizes the above expression.

Furthermore, for all β > 0, there is λ for which the ma is positive. (For ⩾ 3 dimensions, need β > βc for some βc > 0.)
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Chapter 3

Weak Convergence and CLT

Notation: we use σ(X) to denote the standard deviation of X.

Let X1,X2, ... be i.i.d. with σ2 = var(X1) <∞. Then σ(Sn) = σ
√
n, so Sn −ESn “grows like

√
n.” What happens to

Sn −ESn√
n

as n →∞? This quantity always has zero mean and variance σ, so in particular it does not converge in probability.

We will show that this quantity converges in distribution to a standard normal Z:

P(Sn −ESn

σ
√
n ⩽ x

)→ P(Z ⩽ x).

For triangular arrays Xn,k(n ⩾ 1, k ⩽ kn), the row sums Sn =
kn

∑
k=1

Xn,k connects to this quantity:

Sn −ESn

σ
√
n
=

n

∑
k=1

Xk −EXk

σ
√
n

.

General principle: Sn → Z if Xn, k’s are approximately independent and with high probability, no one Xn,k con-

tributes much to Sn. We will expand on this more rigorously later.

Example: Coin toss. Let Xi = ±1 with probability 1/2 each. Let +1 be heads and −1 tails. Then Sn =
number of heads − number of tails. The DeMoivre-Laplace limit theorem states that

P(Sn/
√
n ∈ [a, b])→ P(Z ∈ [a, b]).

Proof sketch: consider even indices P(S2n = 2k) for some k. That is, we get n + k heads and n − k tails in 2n

tosses. This probability is

P(S2n = 2k) = (
2n

n + k
)2−2n ≈ 1√

πn
e−k

2/n

uniformly over k with (k/n)3n→ 0, i.e., k ≪ n2/3. Then, for x = 2k/
√
2n,

P(S2n/
√
2n = x) = 1√

πn
e−x

2/2 = 2√
2n

1√
2π

exp(−x2/2).

The last two terms reminds of standard Gaussian. Now note that

P( S2n√
2n
= x) = P( S2n√

2n
∈ (x − 1/

√
2n,x + 1/

√
2n])
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since S2n is discrete. On the other hand,

P(z ∈ (x − 1/
√
2n,x + 1/

√
2n]) = ∫

x+1/
√
2n

x−1/
√
2n

1√
2π

e−t
2/2 dt ∼ 2√

2n

1√
2π

exp(−x2/2).

Now sum over all x = 2k/
√
2n in [a, b], and fill in all the ϵ − δ proof.

3.1 Weak Convergence

Beginning of Oct. 19, 2022

Given a sequence of distribution functions Fn, we say Fn → F weakly if Fn(x)→ F (x) at all continuity points of F .

Why continuity points only? Consider Fn(x) = 1[1/n,∞), which should converge to a point mass at 0, with F (x) =
1[0,∞). However, Fn(0) = 0.

We say Xn → X in distribution if the distribution functions converge weakly. Our previous De Moivre-Laplace

theorem then states that Sn/
√
n converges in distribution to N (0,1).

Note that this simply says P(Xn ∈ (−∞, x]) → P(X ∈ (−∞, x]) for continuity points x, but does not require P(Xn ∈
A)→ P(X ∈ A) for all Borel A. We will discuss more on what A satisfies such limit equation.

Example: Geometric r.v.’s. Let Xp be such that P(Xp = n) = (1 − p)n−1p. What happens when p→ 0?

First note that EXp = 1/p, so E(pXp) = 1. Natural question: does pXp has a limit in distribution?

For fixed x, x/p ∼ ⌊x/p⌋ (meaning ratio → 1) as p→ 0. What about P(pXp > x)?
First, P(Xp > n) = (1 − p)n (i.e., first n all tails). Therefore,

P(pXp > x) = P(Xp > x/p) = P(Xp > ⌊x/p⌋) = (1 − p)⌊x/p⌋.

Taking log, we obtain

log(1 − p)⌊x/p⌋ = ⌊x
p
⌋ log(1 − p) ∼ x

p
(−p) = −x.

Therefore P(pXp > x)→ e−x, an exponential with parameter 1.

Example: Density functions. If Fn → F weakly, it is not necessarily true that their derivatives fn → f

weakly.

Consider fn = 2 on (j −1/2n, j/2n] for odd j and 0 for even j. Then Fn almost looks like diagonal and in fact

it converges to F (x) = x. But clearly fn ↛ f ≡ 1.

Proposition: Scheffe’s Theorem

If fn, f are densities of µn and µ, and if fn → f pointwise, then sup
B∈B
∣µn(B) − µ(B)∣→ 0.

Proof. Let Bn ∶= {x ∶ fn(x) > f(x)}. Then

sup
B∈B
(µn(B) − µ(B)) = µn(Bn) − µ(Bn) = ∫ (fn − f)+ dx.
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Similarly,

sup
B∈B
(µ(B) − µn(B)) = ∫ (fn − f)− dx.

Since fn and f are densities, the two lines above are equal. It suffices to show ∫ (fn − f)− dx→ 0 as n→∞. To

do so we use DCT: (fn − f)− → 0 a.s. and is bounded by f , so by DCT, the integral converges to 0.

Lemma

For all distribution function F , there exists a random variable Y on ([0,1],B,P) with P uniform, such that

Y has distribution function F .

Proof. If F is continuous and strictly increasing, let Y (ω) = F −1(ω). Then Y (ω) ⩽ t iff ω ⩽ F (t) iff ω ∈ [0, F (t)],
so P(Y ⩽ t) = P(Y ∈ [0, F (t)]) = F (t).
More generally, let Y (ω) ∶= sup{y ∶ F (y) < ω}. Then Y (ω) ⩽ t iff ω ⩽ F (t) iff w ∈ [0, F (t)], and we are done.

If Xn and Yn have the same distribution, X and Y have the same distribution, and Xn → X a.s., is it true that

Yn → Y a.s.? The answer is no.

Example. Let X ∼ N (0,1), and let Xn = X for all n. Then Xn → X trivially. Let Yn be i.i.d. standard

normals, and clearly Yn ↛ N (0,1) ∶= Y .

Beginning of Oct. 21, 2022

Theorem: Convergence in distribution vs a.s.

If Fn → F in distribution, then there exist Yn, Y with distribution functions Fn, F such that Yn → Y almost

surely.

Proof. The existence of Yn, Y have been shown above. We need to only consider ω ∈ [0,1] for which F −1(ω)
contains 0 or 1 point. Fix ω and let t = Y (ω). Then

F −1(ω) = ∅ or {t}.

Therefore, for such points, for all δ > 0,

F (t − δ) < F (t) < F (t + δ).

Choose δ such that t ± δ are continuity points of F . Then, for large n, Fn(t − δ) < F (t) < Fn(t + δ), so t − δ ⩽
Yn(ω) ⩽ t + δ, and similarly t − δ ⩽ Y (ω) ⩽ t + δ. Since δ is arbitrary, Yn → Y a.s., as there can only be countably

many exceptions (countable jumps).

Theorem: D3.2.9, Characterization of Weak Convergence

Xn →X in distribution iff Eg(Xn)→ Eg(X) for all bounded continuous g.
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Proof. Suppose Xn → X weakly. Take Yn with the same distribution of Xn and Y similarly, with Yn → Y almost

surely. Let g be bounded and continuous. Then g(Yn)→ g(Y ) a.s., so Eg(Yn)→ Eg(Y ) by bounded convergence

theorem.

Conversely, suppose Eg(Xn)→ Eg(X) for all bounded continuous functions. We want

E1(−∞,x](Xn)→ E1(−∞,x](X)

for all continuity points x.

1(−∞,x] isn’t continuous, but it can be approximated by 1 on (−∞, x − ϵ), 0 on (x,∞), and linear in between. We

call this function gx−ϵ,x and define gx,x+ϵ similarly. By assumption,

Egx−ϵ,x(Xn)→ Egx−ϵ,x(X) ⩾ F (x − ϵ)

and

Egx,x+ϵ(Xn)→ Egx,x+ϵ(X) ⩽ F (x + ϵ).

Then since F (x− ϵ) ⩽ lim inf
n→∞

Fn(x) ⩽ lim sup
n→∞

Fn(x) ⩽ F (x+ ϵ), if x is a continuity point, we obtain the claim.

Remark. Note that we can weaken the assumption and only require g to be continuous a.e.: denote the

discontinuity set as Dg; if P(X ∈Dg) = 0 and Xn →X in distribution, then Eg(Xn)→ Eg(X).

Corollary

If Xn →X in distribution and f is continuous, then f(Xn)→ f(X) in distribution too.

Proof. If g is bounded, then g ○ f is bounded, so Eg(f(Xn)) → Eg(f(X)). Using the previous theorem once

more, f(Xn)→ f(X) in distribution.

Corollary

If Xn →X almost surely, then Xn →X in distribution.

We have shown that there exists a metric w.r.t. convergence in probability: ∣X − Y ∣/(1 + ∣X − Y ∣). There also exists

metrics (one example is Lévy metric) for convergence in distribution.

Proposition: Convergence in probability ⇒ in distribution

Slick proof. It suffices to show that for all subsequence, there exists a further subsequence converging almost

surely (then such sub-subsequence converges in distribution). And this is true as shown previously. Finally,

since there is a metric for convergence in distribution, the full sequence indeed →X in distribution.

More revealing proof. Let g be bounded continuous, with ∣g∣ ⩽ K. By uniform continuity on compact sets, given
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M and ϵ, there exists δ satisfying the uniform continuity criterion on [−M,M]. Then

∣Eg(Xn) −Eg(X)∣ = ∫
Ω
∣g(Xn) − g(X)∣ dP

⩽ ∫
∣X ∣⩽M,∣Xn−X ∣<δ

∣g(Xn) − g(X)∣ dP + ∫
∣X ∣>M

∣...∣ dP + ∫
∣Xn−X ∣⩾δ

... dP

⩽ ∫
∣X ∣⩽M,∣Xn−X ∣<δ

ϵ dP + ∫
∣X ∣>M

2K dP + ∫
∣Xn−X ∣⩾δ

2K dP

⩽ ϵ + 2KP(∣X ∣ >M) + 2KP(∣Xn −X ∣ ⩾ δ).

Hence,

lim sup
n→∞

∣Eg(Xn) −Eg(X)∣ ⩽ ϵ + 2KP(∣X ∣ >M) for all M,ϵ.

Since M,ϵ are arbitrary, we see lim sup ∣Eg(Xn) −Eg(X)∣ = 0, as claimed.

Remark: Converse is false. Let Xn,X be i.i.d. N (0,1). Then clearly Xn → X in distribution, but not in

probability.

However, (shown in HW), if Xn → c for some constant c, then indeed Xn → c in probability.

Beginning of Oct. 24, 2022

Let X be any random variable. Then for all ϵ > 0 there exists M such that P(∣X ∣ > M) < ϵ. We say {Xn} is

tight if given ϵ, there exists M such that P(∣Xn∣ > M) < ϵ for all n. One easy example: if {µn} is bounded, and

Xn ∼ N (µn,1), then {Xn} are tight.

Remark. In general, if Xn → X,Yn → Y in distribution, Xn + Yn ↛ X + Y in distribution. Example: let

Xn =X = Y = 1 if heads and 0 if tails, and let Yn = 0 if heads and 1 if tails. Then clearly Xn +Yn is constantly

1 whereas X + Y is either 2 or 0.

Theorem: Slutsky’s Theorem

If Xn →X in distribution and Yn → 0 in distribution, then Xn + Yn →X in distribution.

Proof. Using the bounded function characterization of convergence in distribution, let g be bounded with ∣g∣ ⩽K.

Given M,ϵ > 0, there exists δ satisfying the uniform continuity criterion on [−M,M]. Then

E∣g(Xn + Yn) − g(Yn)∣ ⩽ ∫
∞

∣Xn∣⩽M,∣Yn∣<δ
ϵ dP + ∫

∣Xn∣>M
2K dP + ∫

∣Yn∣⩾δ
2K dP

just like in the proof of D3.2.9, characterization of weak convergence.

Proposition: Tightness lemma

If Xn →X in distribution then {Xn} is tight.

Proof. Let Fn be the d.f. of Xn and f that of X. Let ϵ > 0. Clearly,

P(∣Xn∣ >M) ⩽ Fn(−M) + 1 − Fn(M).

28



CSCI 567 Machine Learning 1 - Weak Convergence YQL

We take M0 such that ±M0 are continuity points of F , and

F (−M0) + 1 − F (M0) <
ϵ

2
.

Hence by assumption there exists n0 such that if n ⩾ n0,

Fn(−M0) + 1 − Fn(M) < ϵ.

For each one in the first finitely many terms, there exists Mi with Fi(−Mi) + 1 − Fi(Mi) < ϵ. Take the maximum

among Mi, i = 1,2, ..., n0 − 1, and M0, we finish the proof.

If Xn → X in distribution, for what A does P(Xn ∈ A) → P(X ∈ A)? Intuitively, for an open set, Xn’s distribution

may converge to the boundary, resulting in a loss of probability.

Theorem: D3.2.11

The following are equivalent:

(1) Xn →X in distribution,

(2) For all open sets G, lim inf
n→∞

P(Xn ∈ G) ⩾ P(X ∈ G),

(3) For all closed sets K, lim sup
n→∞

P(Xn ∈K) ⩽ P(X ⩽ k), and

(4) For every Borel A with P(X ∈ ∂A) = 0, P(Xn ∈ A)→ P(X ∈ A).

Proof. (1)⇒ (2). Let Xn and Yn have the same distribution, and same for X,Y . Assume Yn → Y a.s. Let G be

open. Then Y ∈ G means Yn ∈ G “eventually.” That is,

1G(Y ) = lim inf
n→∞

1G(Yn).

By Fatou, taking expectation gives

P(Y ∈ G) ⩽ E(lim inf
n→∞

1G(Yn)) ⩽ lim inf
n→∞

P(Yn ∈ G).

(2)⇒ (3). Take complements.

(2), (3) ⇒ (4). Suppose P(X ∈ ∂A = 0). We denote the interior as A○ and closure A. Then P(X ∈ A○) = P(X ∈
A) = P(X ∈ A). We apply (2) to A○ and (3) to A and obtain the claim.

(4)⇒ (1). Let A take form (−∞, x]. If P(X = x) = 0 then the d.f. is continuous at x. Done.

Example. Let Xn be uniform on [−n − 1,−n] ∪ [−1,1] ∪ [n,n + 1]. For x ⩾ 1, the distribution function

Fn(x) → 3/4 =∶ F (x). Note that F is a measure but not a probability measure anymore — mass escapes at

infinity!

In general: if F is right-continuous and nondecreasing, if Fn(x) → F (x) for every continuity point of F , we say

Fn → F vaguely.The above example shows that if Fn are distribution functions and Fn → F vaguely, it is still not
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necessarily true that F is a CDF.

Theorem: Helly selection theorem

Every sequence {Fn} of distribution functions has a subsequence {Fnk
} converging vaguely to F for some

F , again, not necessarily a probability measure. “Almost compactness, but not quite.”

Beginning of Oct. 26, 2022

Proposition

Suppose {Fn} are distribution functions and Fn(q) → G(q) for all q ∈ Q, Let F (x) = G(x+). Then Fn → F

vaguely.

Proof. From analysis, F is continuous. Also F ⩾ G. If r > s, then G(r) ⩾ G(s+) = F (s).
Let x be a continuity point of F and let ϵ > 0. Take r1 < r2 < x < s with r1, r2, s ∈ Q, and

F (x) − ϵ < F (r1) ⩽ F (r2) ⩽ F (x) ⩽ F (s) < F (x) + ϵ.

By definition/assumption Fn(r2) → G(r2) ⩾ F (r1) by the previous observation. Also, Fn(s) → G(s) ⩽ F (s).
Therefore Fn(x) is sandwiched between F (x) − ϵ and F (x) + ϵ.

Proof of Helly selection theorem. We use the diagonal method. Enumerate Q by {qi}.
There exists a subsequence S1 on which Fn(q1)→ some constant G(q1) by compactness of [0,1] (we are defining

the values of G at rationals using compactness). We can pick a further subsequence S2 on which Fn(q1)→ G(q1)
and Fn(q2) → G(q2). So on and so forth. We now take the ith element in Si, and the nearly formed sequence

n(k) satisfies Fn(k)(qi)→ G(qi) for all qi ∈ Q, and by the previous remark we are done.

Theorem: D3.2.13

Let {Fn} be a sequence of distribution functions. Then every subsequential limit is a d.f. iff {Fn} is tight.

Proof. Let µn be the probability measure corresponding to Fn.

First suppose {Fn} is tight. Let ϵ > 0. By assumption there exists M such that µn([−M,M]) > 1 − ϵ for all n. If a

subsequence µnk
→ µ vaguely, we want to show that µ(R) = 1. Indeed, assuming F is a continuity point (which

we can always choose so),

µ(R) ⩾ µ([−M,M]) ⩾ lim supµnk
([−M,M]) > 1 − ϵ.

Conversely, suppose {Fn} is not tight. That is, there exists ϵ > 0 such that for all M , there exists µn(M) with

µn(M) ⩽ 1 − ϵ. WLOG assume n(1) < n(2) < .... Then there exists a further sbsequence n(Mk) on which Fn(Mk)

converges vaguely to some µ by Helly. Thnen for all continuity points a of µ, µ((−a, a]) = limk µn(Mk)((−a, a]) ⩽
lim infk µn(Mk)((−Mk,Mk]) for large Mk. Then the quantity is bounded by 1− ϵ, and so µ(R) ⩽ 1− ϵ, and we are

done.

Beginning of Oct. 28, 2022
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Theorem: D3.2.14, Sufficient condition for tightness

Suppose there exists φ ∶ R→ [0,∞) with φ→∞ as ∣x∣→∞ and Eφ(Xn) is (uniformly) bounded. Then {Xn}
is tight.

For example, if E∣Xn∣ or E log(1 + ∣Xn∣) is bounded, then {Xn} is tight.

Proof. Define φ0(x) ∶= inf{φ(t) ∶ ∣t∣ ⩾ ∣x∣}. By assumption φ0 is symmetric/even and monotonically → ∞ on

[0,∞). Also, φ0 ⩽ φ, so Eφ0(Xn) also has (uniformly) bounded expectation, say by some K. WLOG we can

further assume φ0 to be strictly increasing on [0,∞) by adding something strictly increasing and also bounded

bounded to it. Then

P(∣Xn∣ ⩾M) = P(φ0(Xn) ⩾ φ0(M)) ⩽
Eφ0(Xn)
φ0(M)

⩽ K

φ0(M)
.

Given ϵ > 0, choose M large with K/φ0(M) < ϵ, and we are done.

3.2 Characteristic Functions

Let X be a random varaible. We define the complex function φX(t) ∶= EeitX = E cos(tX) + iE sin(tX) to be its

characteristic function. Note immediately that

∣φX(t)∣ ⩽ E∣eitX ∣ = 1 with φX(0) = 1.

Example. Let X be uniform on [−1,1]. Then

φX(t) = ∫
1

−1

1

2
(cos tx + i sin tx) dx = 1

2

sin tx

t
∣
1

−1
+ 0 = sin t

t
.

Example 3.2.1. We will show later that if E∣X ∣ <∞ then φ′X(t) =
d

dt
∫ eitX dP = ∫ iXeitX dP.

For example if X is standard normal, then

φ′X(t) = ∫ iXeitxf(x) dx.

Note that f(x) = 1√
2π

exp(−x2/2) satisfies f ′(x) = −xf(x), so the cosine part is an odd function, and so

φ′X(t) = −∫ x sin(tx)f(x) dx = ∫ sin(tx)f ′(x) dx.

IBP and we obtain φ′X(t) = −tφX(t) with initial condition φX(0) = 1. This gives φX(t) = exp(−t2/2).

Proposition

For all X, φX(t) is uniformly continuous. (We will drop the subscript X for convenience.)

Proof. Since

∣φ(t + h) − φ(t)∣ = E∣ei(t+h)X − eitX ∣ = E∣eihX − 1∣,

∣eihX − 1∣ ⩽ 2, and eihX → 0 as h→ 0, by DCT the limit is 0, uniform in t.

31



CSCI 567 Machine Learning 2 - Characteristic Functions YQL

Remark. If X is symmetric, i.e., X and −X have the same distribution, φX(t) = φX(t) so φX(t) ∈ R.

Question. Does φX determine the distribution of X. Furthermore, can we calculate the distribution of µ from φX?

Relation to Fourier transform: given f , we define

f̂(t) ∶= 1√
2π
∫
∞

−∞
e−iθxf(x) dx = 1√

2π
φ(−t).

If the density f ∈ L2 and φ ∈ L1 (i.e. integrable), then

f(x) = ˆ̂
f(−x) = 1√

2π
∫
∞

−∞
eitxf̂(t) dt = 1

2π
∫
∞

−∞
eitxφ(−t) dt = 1

2π
∫
∞

−∞
e−itxφ(t) dt.

Hence (since φ ∈ L1, Fubini applies)

µ((a, b)) = ∫
b

a
f(x) dx = 1

2π
∫

b

a
∫
∞

−∞
e−itxφ(t) dt dx

= 1

2π
∫
∞

−∞
∫

b

a
e−itxφ(t) dx dt = 1

2π
∫
∞

−∞

e−ita − e−itb

it
φ(t) dt.

Theorem: Inversion Formula

If µ is a probability measure with ch.f. φ, then

lim
T→∞

1

2π
∫

T

−T

e−ita − e−itb

it
φ(t) dt = µ((a, b)) + µ({a})/2 + µ({b})/2.

Beginning of Halloween, 2022

Proof. For convenience, define IT ∶= ∫
T

−T

e−ita − e−itb

it
φ(t) dt = ∫

T

−T
∫
R
eitX µ(dx) dt. By Fubini,

IT = ∫
R
∫

T

−T

eit(x−a) − eit(x−b)

it
dt µ(dx).

Define R(θ, T ) ∶= ∫
T

−T

eitθ − 1
it

dt. Then the inner integral above is R(x − a,T ) −R(x − b, T ). Note that R is real

since R is odd, and so only the real part remains:

R(θ, T ) = ∫
T

−T

sin(θt)
t

dt = 2 sgn(θ)∫
T ∣θ∣

θ

sinu

u
du.

Because of the sign function, R(x − a,T ) −R(x − b, T ) depends on the relative position of x to a and b.

Since ∫
∞

0

sinu

u
du = π/2, R(θ, T )→ g(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2π x ∈ (a, b)

π x ∈ {a, b}

0 otherwise.

Then, by bounded convergence,

1

2π
IT =

1

2π
∫
R
(R(x − a,T ) −R(x − b, T )) µ(dx)→ 1

2π
∫
R
g(x) µ(dx) = µ((a, b)) + 1

2
µ({a}) + 1

2
µ({b}).
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Theorem: D3.3.14

If φ ∈ L1, then µ has a bounded continuous density

f(x) = 1

2π
∫
∞

−∞
e−ityφ(y) dy.

Proof. We want to show that for a < b, µ((a, b)) = ∫
b

a

1

2π
∫
∞

−∞
e−ityφ(y) dy dx. Note that

∣e
−ita − e−itb

it
∣ = ∣∫

b

a
e−ity dy∣ ⩽ ∣b − a∣,

so (defining IT as above), IT → I∞. Therefore

µ((a, b)) + µ({a})/2 + µ({b})/2 = 1

2π
∫
∞

−∞

e−ita − e−itb

it
φ(t) dt

= 1

2π
∫
∞

−∞
∫

b

a
e−itx dxφ(t) dt

= ∫
b

a

1

2π
∫
∞

−∞
e−itxφ(t) dt µ(dx).

Call the last quantity h(a, b). We want to show that h(a, b) = µ((a, b)). This is because as an integral, h is

continuous in (a, b). The absense of jumps imply that µ({a}), µ({b}) = 0 for a, b. So h(a, b) = µ((a, b)) for all

a, b.

3.3 Weak Convergence

If Xn → X weakly, then φXn(t) = E(r cos(tXn) + i sin(tXn)), a bounded continuous function, must also converge

to φX(t) pointwise.

Conversely, if φn → φ pointwise, does the measures µn associated with φn necessarily to some µ weakly? The

answer is no.

Example. Let U1, U2, ... be i.i.d. over [−1,1], and let Sn = ∑n
i=1Ui. Then φU1(t) = sin t/t, and φSn(t) =

φU1(t)n. As n → ∞, φ equals 0 only when t = 1 and → 0 otherwise. However, Sn is not converging in

distribution. Furthermore, the limit φ = 1{0} is not continuous, so it cannot be a ch.f. anyway. Therefore

{Sn} does not converge weakly.

Theorem: Continuity theorem, D3.3.17

Let µn be probability measures with ch.f. φn. Let µ be a probability measure with ch.f. φ.

(1) If µn → µ weakly, then φn(t)→ φ(t) pointwise.

(2) Conversely, if φn → φ pointwise, and φ is continuous at 0, then µn → µ weakly, and µ has ch.f. φ.

Remark: “General principle”. The behavior of φ near 0 is related (in various ways) to “the measure µ

near∞,” e.g. moments, tail probabilities, etc.

Intuitively, for small t, eitX is close to 1 unless X is big, pushing the value away from 1 significantly.
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Proposition: Tightness from char functions

Let φ be the ch.f. of µ. Then for all u > 0, µ({x ∶ ∣x∣ > 2/n}) ⩽ u−1 ∫
u

−u
(1 − φ(t)) dt.

Proof. We plug in the definition of φ(t).

1

u
∫

u

−u
(1 − φ(t)) dt = 1

u
∫

u

−u
∫
R
(1 − e−itx) µ(dx) dt

= ∫
R

1

u
∫

u

−u
(1 − eitx) dt µ(dx)

= 2∫
R
(1 − (sinux)

ux
) µ(dx).

For ∣y∣ ⩾ 2, ∣sin y/y∣ ⩽ 1/2, so integrating over {∣x∣ ⩾ 2/u} gives an lower bound 2∫
∣x∣⩾2/u

1/2 µ(dx).

Beginning of Nov. 2, 2022

Proof of continuity theorem. (i) True. (ii) By the lemma, for u > 0,

µn({∣x∣ ⩾ 2/u}) =
1

u
∫

u

−u
(1 − φn(t)) dt.

By bounded convergence theorem, this converges to the integral with integrand φn replaced by φ, as n → ∞.

Given ϵ > 0, choose u such that last integral < ϵ. Then beyond some N0,

1

u
∫

u

−u
(1 − φn(t)) dt < ϵ for all n ⩾ N0,

so µn is tight, as there exists M ⩾ 2/u such that µn({∣x∣ >M}) < ϵ for all n ⩾ N , and there are only finitely many

early terms, which we can bound individually.

Finally, we show that the full sequence converges. If µn → µ weakly then there exists a subsequence φnk
→ (ch.f.

of µ), so φ must be the ch.f. of µ. Thus the full sequence µn converges to µ.

Differentiation and Moments

When can we differentiate

φ(t) = ∫
R
eitx µ(dx)?

Note that
φ(x + h) − φ(x)

h
= ∫

R
eitx

eihx − 1
h

µ(dx).

The term (eihx−1)/h is bounded by ∣x∣, so it is integrable as h→ 0. Thus it is sufficient to require E∣X ∣ = ∫ ∣x∣ µ∣dx∣ <
∞. Then

φ′(t) = ∫
R
ixeitx µ(dx).

More generally, to take the nth derivative, it suffices to require E∣X ∣n <∞, with φ(n)(t) = ∫
R
(ix)neitx µ(dx). Note

that the expression holds independent of t.

Theorem

(Conversely,) if φ2n(0) exists and is finite, then E∣X ∣2n <∞. (Does not necessarily work for odd powers.)
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Proof. We will prove the special k = 1 case: assume φ′′(0) is finite. We write it out:

φ′′(0) = lim
h→0

φ(x) − 2φ(0) + φ(−h)
h2

= lim
h→0
∫
R

eitx − 2 + e−ihx

h2
µ(dx)

= −2 lim
h→0
∫
R

1 − cos(hx)
h2

µ(dx).

By Fatou’s lemma (and since limit exists),

φ′′(0) ⩽ −2∫
R
x2 µ(dx) = −EX2

so E∣X ∣2 is finite. For k ⩾ 2, we need to induct on k and apply the above argument to X2/EX2µ(dx).

Taylor-type Expansions

Expanding φ around 0 gives

eitX =
∞
∑
k=0

(it)k

k!
Xk =

n

∑
k=0

(it)k

k!
Xk +O(∣tX ∣n+1)

as ∣tX ∣ → 0. Clearly we can take the expected value of the first finite sum, when E∣X ∣n < ∞. But what about the

remainder? A lemma from Durrett —

Proposition: D3.3.19

∣eix −
n

∑
m=0

(ix)m

m!
∣ ⩽min( ∣x∣

n+1

(n + 1)!
,
2∣x∣n

n!
) .

Proof sketch. Integrate by parts and iterate:

eix = 1 + ix +
n

∑
k=0

ik

k!
xk + in+1

n!
∫

x

0
(x − s)neis ds.

This will give

∣ i
n+1

n!
∫

x

0
(x − s)neis ds∣ ⩽ ∣x∣

n+1

(n + 1)!
.

Now looking back at Taylor expansions:

∣EeitX −
n

∑
m=0

E
(itX)m

m!
∣ ⩽ Emin(∣tX ∣n+1,2∣tX ∣n).

Beginning of Nov. 4, 2022

Convex Combinations of r.v.’s

If µ1, ..., µn are probability measures and ∑n
i=1 λn = 1, then the weighted sum ∑n

i=1 λiµi is also a probability measure.

Similarly, if µs is a probability measure for all s ∈ I, and ν is a measure on I, then (assuming measurability)

∫
I
µs ν(ds)

is also a probability measure, with ch.f. ∫
I
φs(t) ν(ds) where φs is the ch.f. of µs.
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Example. Let f1(x) = (1 − cosx)/(πx2), which has ch.f. φ1(t) = max(1 − ∣t∣,0). If s is any scalar then X/s
has ch.f. φs(t0 = φ1(t/s).
Then we can consider combinations of φi’s. For example, we note that f1/3 + 2f5/3 is a density with ch.f.

φ1/3 + 2φ5/3.

Theorem: Polya’s criterion, D3.3.22

Let φ ⩾ 0 with φ(0) = 1, and φ(t) = φ(−t). Furthermore assume φ is decreasing and convex on (0,∞) with

limt→0 φ(t) = 1 and limt→∞ φ(t) = 0. Then φ is a ch.f.

Proof. Idea: express φ(t) as ∫
∞

0
φs(t) ν(ds) as defined in the example above for some ν. If we can differentiate

inside this integral, then φ convex implies φ′ exists a.e. and increasing, and φ′(t) = ∫
∞

0
φ′s(t) ν(ds). But note that

φ′s(t) = 0 if s ⩽ t, so this equals −∫
∞

t
s−1 ν(ds). So,as a measure, dφ′(t) = t−1ν(dt), and ν(dt) = tdφ′(t) is our

candidate for ν.

We may assume φ(∞) = 0. Assume φ′ is right-continuous (if not, replace it with F (t) = φ′(t+). Define ν by

ν([0, t]) = ∫
t

0
s dφ′(s). Then

dφ′(t) = t−1ν(dt)

as a measure. For t > 0,

φ′(∞) − φ′(t) = ∫
∞

t
dφ′(s) = ∫

(t,∞)
s−1 ν(ds),

so

φ′(t) = −∫
(t,∞)

s−1 ν(ds) a.e.

Since φ is convex,

φ(∞) − φ(t) = ∫
∞

t
φ′(u) du = −∫

∞

t
∫
(u,∞)

s−1 ν(ds) du

= −∫
(t,∞)

∫
(t,s)

s−1 du ν(ds)

= −∫
(t,∞)

(1 − t/s) ν(ds)

= −∫
(t,∞)

φs(t) ν(ds)

and we are done, following our previous observation.

Back to Taylor series: if all moments E∣X ∣k are finite, can we conclude

EeitX = E
∞
∑
k=0

inXn

n!
tn =

∞
∑
k=0

inE∣X ∣n

n!
tn?

The answer is still no in general.

All E(Xk) finite implies all φ(k)(t) exist for all t, with

φ(k)(θ) = E((iX)keiθX) and φ(k)(0) = ikEXk.
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If the full Taylor series
∞
∑
k=0

φ(k)(θ)
k!

(1 − θ)k =
∞
∑
k=0

1

k!
(E(iX)keiθX)tk

has a positive radius of convergence r > 0 for some θ, then the values E((iX)keiθX) determine φ in an interval

around θ, (θ − r, θ + r). Further, r > 0 iff

lim sup
k→∞

∣ 1
k!
E((iX)keiθX)∣

1/k

<∞.

By Stirling, k! ⩾ (k/e)k, so this is true for all θ, if

lim sup
k→∞

(E∣X ∣k)1/k

k
<∞.

That is, it suffices to require that “moments don’t grow too fast:”

E∣X ∣k ⩽ (ck)k for some c.

Theorem: D3.3.25

If {µ2k} > 0 with lim sup
k→∞

µ
1/k
2k

k
< ∞, then there exists at most one distribution with moments EXk = µk, for

all k.

3.4 Central Limit Theorem

Beginning of Nov. 7, 2022

From Taylor’s theorem, ∣log(1 + z) − z∣ = O(∣z∣2) as z → 0, so if cn → c in C, then (1 + cn/n)n → ec as n→∞, and

Theorem: i.i.d. CLT

Let X1,X2, ... be i.i.d., with EX1 = µ and var(X1) = σ2 ∈ (0,∞), then

Sn − nµ
σn1/2 → N (0,1)

in distribution.

Proof. We first assume µ = 0 From D3.3.20 φX1
(t) = E exp(itX1) = 1 − σ2t2/2 + o(t2) as t→ 0. Hence

φSn/(σ
√
n)(t) = E exp(itSn/(σ

√
n) = φSn(1/(σ

√
n)) = φX1(1/(σ

√
n))n.

For t fixed, this quantity becomes (1 − t2/(2n) + o(1/σ))n = (1 − (t2 − ntn)/(2n))n. The numerator is converging

to t2, so by the previous observation, the entire quantity converges to exp(−t2/2), and we are done.

Example. A business rounds all transformations to the nearest integer, so the error X in one transaction

is a uniform distribution (though unrealistic) on [−0.5,0.5). Let n = 100 be the number of transactions. Then
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EX1 = 0 and var(X1) = 1/12.

P(∣total error∣ > 20) = P( Sn − 0√
n1/
√
12
> 20 − 0
√
n1/
√
12
) ≈ P(z > 2.19) ≈ 0.14.

How about triangular arrays? Suppose the varaibles on the nth row are independent, Sn =
k(n)

∑
k=1

Xn,k, and EXn,m = 0.

When does Sn → N (0, σ2) in distribution?

The basic condition is to require the triangular array to be uniformly asymptotically negligible (UAN):

k(n)

∑
k=1

P(∣Xn,m∣ > ϵ)→ 0 as n→∞.

Note that

UAN ⇐⇒
k(n)

∏
k=1
(1 − P(∣Xn,k ∣ > ϵ)→ 1

⇐⇒
k(n)

∏
k=1

P(∣Xn,k ∣ ⩽ ϵ)→ 1

⇐⇒ P(∣Xn,m∣ = ϵ for all n ⩽ k(n))→ 1.

To get the result from CLT we want φSn(t) =
k(n)

∏
k=1

φXn,k
(t) =

k(n)

∏
k=1
(1 −

t2σ2
n,k

2
+ some error)→ e−t

2σ2/2.

Proposition

Let λn,m ∈ C form a triangular array. If

(1)
k(n)

∑
k=1

λn,k → λ,

(2) maxrow∣λn,m∣→ 0 as n→∞, and

(3) supn⩾1∑
k(n)
k=1 ∣λn,k ∣ <∞,

then
k(n)

∏
k=1
(1 + λn,k)→ eλ.

Proof. We consider ∣ log
k(n)

∏
k=1
(1 + λn,k) −

k(n)

∑
k=1

λn,k∣:

LHS =
k(n)

∑
k=1
∣log(1 + λn,k) − λn,k ∣

⩽K
k(n)

∑
k=1
∣λn,k ∣2

⩽K
⎛
⎝
sup
n

k(n)

∑
k=1
∣λn,k ∣

⎞
⎠
max
m⩾kn

∣λn,m∣→ 0.

Finally since
k(n)

∑
k=1

λn,k → λ, we are done.
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Proposition: D3.4.3

Let z1, ..., zn,w1, ...,wn ∈ C, all with modulus ⩽K. Then

∣
n

∏
m=1

zm −
n

∏
m=1

wm∣ ⩽Kn−1
n

∑
m=1
∣zm −wm∣.

Proof. Trivial for n = 1. If n > 1, we use triangle inequality to remove z1 and w1 to get

∣
n

∏
m=1

zm −
n

∏
m=1

wm∣ ⩽ ∣z1
n

∏
m=2

zm − z1
n

∏
m=2

wm∣ + ∣z1
n

∏
m=2

wm −w1

n

∏
m=2

wm∣

⩽K∣
n

∏
m=2

zm −
n

∏
m=2

wm∣ +Kn−1∣z1 −w1∣.

Theorem: D3.4.10, Lindeberg-Feller Theorem

Let Xn,m be a triangular array with independent random varaibles and zero mean. If

(1) ∑n
m=1EX2

n,m → σ2 > 0, and

(2) ∑n
m=1E(X2

n,m1{∣Xn,m∣>ϵ})→ 0 for all ϵ,

then the row sums Sn converges to N (0, σ2) in distribution.

Beginning of Nov. 9, 2022

Note that (ii) implies UAN by Chebyshev. Also, L-F CLT covers the i.i.d. case which we are already familiar with:

for X1,X2, ... i.i.d., we simply let Xn,m =Xm/
√
n.

Proof of L-F CLT. We let φn,m be the ch.f. of Xn,m, and similarly σ2
n,m the variance = EX2

n,m = var(Xn,m).
First observation:

max
m⩽n

σ2
n,m =max

m⩽n
[E(X2

n,m1∣Xn,m∣⩽ϵ) +E(X
2
n,m1∣Xn,m∣>ϵ)]

⩽ ϵ2 +
n

∑
k=1

E(X2
n,k1∣Xn,k ∣>ϵ).

The sum → 0 by (ii), so maxm⩽n σ
2
n,m → 0.

Next, we note that φSn(t) =
n

∏
m=1

φXn,m(t) and compare this to
n

∏
m=1
(1 − (t2σ2

n,m)/2). Note that ∣φn,m∣ ⩽ 1, and

∣1 − (t2σ2
n,m)/2∣ ⩽ 1 for n large and t fixed by the observation above. Therefore, by D3.4.3 (the inequality just

shown above)

∣φSn(t) −
n

∏
m=1
(1 − t2σ2

n,m/2)∣ ⩽
n

∑
m=1
∣φXn,m(t) − 1 + t2σ2

n,m/2∣.

From D3.3.20 we can bound the error of expansions by ∣φXn,m(t)−1+t2σ2
n,m/2∣ ⩽ t2/6⋅Emin(∣t∣∣Xn,m∣3,6∣Xn,m∣2).

For ∣Xn,m∣ ⩽ ϵ we consider ∣Xn,m∣2; otherwise we consider the latter. We thus obtain the following bound:

∣φXn,m(t) − 1 + t2σ2
n,m/2∣ ⩽

t2

6
E(∣t∣∣Xn,m∣31∣Xn,m∣⩽ϵ,6∣Xn,m∣21∣Xn,m∣>ϵ).
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Bounding ∣t∣∣Xn,m∣3 by tϵ∣Xn,m∣2 and using assumption (ii) yield

lim sup
n→∞

n

∑
m=1
∣φXn,m(t) − 1 + t2σ2

n,m/2∣ ⩽
t3

6
ϵ

n

∑
m=1

σ2
n,m + 0.

Convergence of ∑σ2
n,m imply in particular that they are bounded in n, regardless of ϵ. Thus the upper limit is 0.

It remains to notice that
n

∏
m=1
(1 − t2σ2

n,m/2)→ exp(−t2σ2/2), the ch.f. of N (0, σ2).

Example: Normal approximation to binomial. Let Sn be the number of success in n independent trials,

each with success probability p. If Ai is the event of success on trial i, then Sn = ∑n
i=1 1Ai . We have E1Ai = p

and var(1Ai) = p(1 − p), so (Sn − np)/
√
np(1 − p)→ N (0,1) in distribution. For integer valued distributions,

we often apply continuity corrections to obtain better approximation results.

3.5 Poisson Convergence & Poisson Processes

Beginning of Nov. 14, 2022

Theorem: D3.6.1

Let {An,m} be a triangular array with n on nth row. Assume it is row-independent (within each row). Let

Sn = ∑n
m=1 1An,m

. If ∑n
m=1 P(An,m) → λ as n →∞, and if maxm⩽n P(An,m) → 0 as n →∞, then Sn → Poisson

with parameter λ as n→∞.

Proof. Note that

φSn(t) =
n

∏
m=1
(1 + P(An,m)(eit − 1)).

Let λn,m = P(An,m)(eit − 1). By assumption, ∑n
m=1 λn,m → λ(eit − 1), and ∑n

m=1∣λn,m∣ ⩽ 2∑n
m=1 P(An,m) → 2λ

and is in particular bounded. Finally, maxm⩽n∣λn,m∣→ 0 as n→∞. By a previous proposition,

n

∏
m=1
(1 + λn,m)→ eλ(e

it−1),

the ch.f. of a parameter λ Poisson.

Theorem: D3.7.1

Let {Xn,m} be a row-independent triangular array with m ⩽ n, n ⩾ 1. Assume X are integer valued random

variables. Let pn,m = P(Xn,m = 1), ϵn,m = P(Xn,m ⩾ 2), and Sn = ∑n
m=1Xn,m. If ∑n

m=1 pn,m → λ ∈ (0,∞),
maxm⩽n pn,m → 0, and ∑n

m=1 ϵm,n → 0, then Sn → Poisson(λ). Namely, if P(Xn,m ⩾ 2) is sufficiently small,

the result still holds.

Proof. Let X ′n,m = 1{Xn,m=1} and S′n the row sum of X ′n,m. By D3.6.1 S′n → Poisson(λ). It remains to apply

Slutsky’s theorem to obtain convergence in distribution of Sn as well. This is indeed true:

P(Sn ≠ S′n) ⩽
n

∑
m=1

ϵn,m → 0.
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Example: Birthdays.... Consider n friends, and let N be the umber of days (out of 365) with no birthdays

among these friends. Then P(no one on a fixed day) = (1 − 1/365)n ≈ e−n/365, so EN = 365e−n/365. Taking

n = 365 log(365/λ) gives EN ≈ λ.

This, however, does not take into dependency into account. If no one has birthday on Jan 1, then the

probability of no one having birthday on Jan 2 is slightly smaller with this prior information. We can show

that if we replace 365 with rn and N with rn, and if rn/n ⋅ log(rn/λ)→ 1, then Nn → Poisson(λ).

Poisson Processes

We now consider an arrival problem. Let λ be the arrival rate. Let N(s, t) be the Z-valued number of arrivals in

(s, t].

Suppose the following:

(1) disjoint time intervals are independent,

(2) distribution of N(s, t) depend only on t − s (once λ is fixed),

(3) P(N(0, h) = 1) = λh + o(h) as h→ 0, and

(4) P(N(0, h) ⩾ 2) = o(h).

Theorem: D3.7.2

If N(⋅, ⋅) satisfies the above assumptions, then N(s, t) is poisson distributed with parameter λ(t − s), for all

s < t.

Proof. WLOG assume s = 0. We divide [0, λt]into n equal subintervals and let Xn,m = N((m− 1)/n ⋅λt,m/n ⋅λt).
The row sums are just

Sn =
n

∑
m=1

Xn,m = N(0, λt).

Observe that P(Xn,m = 1) = λt/n + o(1/n) as n→∞, keeping λ, t fixed. Also, P(Xn,m ⩾ 2) = o(1/n).
Applying D3.7.1, we see Sn → Poisson(λt). This holds for all n, so N(0, λt) ∼ Poisson(λt).

If T1 is the time of the first arrival, then P(T1 > t) = P(N(0, t) = 0)pP(Poisson(λt) = 0) = e−λt, so T1 ∼ exponential(λ).

We will later show that the gaps between different arrivals are also i.i.d. exponential(λ).

Multivariate Normal

Beginning of Nov. 18, 2022

Let X = (X1, ...,Xℓ) be a random vector with var(Xi) <∞ and covariance matrix Σi,j = cov(Xi,Xj). Then for any

vector θ,

var(θ ⋅X) = var(
ℓ

∑
i=1

θiXi) =∑
i,j

θiθj cov(Xi,Xj) = θTΣθ ∈ R.
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This shows Σ is PSD and symmetric. If T is a linear transformation of X, then

cov((TX)i, (TX)j) = cov(∑
k

Ti,kXk +∑
ℓ

Tj,ℓXℓ) = (TΣTT )i,j .

From linear algebra, since Σ is PSD, there exists an unitary U (U−1 = U∗ and orthonormal) such that UTΣU is

diagonal. From our remark above, viewing UT as a linear transformation, the resulting random vector UTX has

uncorrelated components.

If X has density fX and T a multivaraible linear transformation, then TX has density

fTX(x) =
1

∣detT ∣
fX(T −1x).

Finally, we are ready to talk about multivariate normal distribution.

Of course, the standard multivariate normal has each coordinate as an independent N (0,1). The density

f(X) = (2π)−d/2 exp(−
d

∑
i=1

x2
i /2) = (2π)−1/2 exp(−xT Ix/2) =∶ N (0, I).

If T is invertible then

fTX(x) = (2π)−d/2∣detT ∣−1 exp(−xTT −TT −1x/2) = (2π)−d/2∣detT ∣−1 exp(−x(TT ∗)−1x/2).

This gives rise to a more general multivariable normal N (µ,Σ), whose density is

f(x) = (2π)−d/2∣∣Σ∣−1/2 exp(−(x − µ)TΣ−1(x − µ)/2)

where µ ∈ Rk and Σ PSD.

Beginning of Nov. 21, 2022

For a degenerate mnultivariate normal, consider µ = 0 and r < d (rank). We take X1, ...,Xr ∼ N (0, S̃) where S̃ is

invertible. we put X = (X1, ...,Xr,0, ...,0) corresponding to block diagonal S̃,0. Then TX has covariance matrix

TSTT . Given Σ, we want to choose S̃, T so that TSTT = Σ.

We know there exists a unitary matrix T with TΣT = diagonal (λ2
1, ..., λ

2
r,0, ...). Let D̃ = diagonal (λ2

1, ..., λ
2
r) and let

X̃ ∼ N (0, D̃), X = (X̂,0, ...,0). Then TX has covariance matrix TDTT since TT = T −1.

Proposition

If X ∼ N (µ,Σ) with Σ nonsingular, then the marginals Xi are normal.

Proof. WLOG µ = 0 and we are looking at the first coordinate, X1.

The claim is easy if Σ has first row (σ2
1 ,0, ...,0)T and column (σ2

1 ,0, ...,0). In this case,

fX(x) = C exp(−xTΣ−1x/2) = C exp(− x2
1

2σ2
1

− g(x2, ..., xd)).

Therefore

fX1(x) = ∫
x2,...,xd

fX(x1, ..., xd) dx2...xd

= Const exp(− x2
1

2σ2
1

).
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Since fX1 integrates to 1 the constant must match up, so X1N (0, σ2
1).

For the general case, we need to find T so that TX ’s covariance has the special form with (TX)1 =X1.

We take unitary U such that the 1st row of U is perpendicular to the jth column of Σ−1/2 j ⩾ 2. Take T = UΣ−1/2.

Then TX has covariance matrix

TΣTT = UΣ−1/2ΣΣ−1/2UT = UUT = I.

[To be fixed]

Example. Multivariate normal implies normal marginals, but not the converse. For example let X =
N (0,1) and ξ = ±1 with probably 0.5 each, independent of X.

Let Y = (X, ξX), so it’s on either diagonal with probability 0.5. Clearly Y is not a bivariate normal, even if

its covariance matrix is I.

If X,X2, ...,Xd are independent N (µi, σ
2
i ), then X = (X1, ...,Xd) ∼ N (µ,Σ) with Σ = diagonal (σ2

1 , ..., σ
2
d). Since

fX(x) =
d

∏
i=1

fXi(xi) =
d

∏
i=1

1√
2πσi

exp(−xi/(2σ2
i )) =

1

(2π)d/2∣Σ∣1/2
exp(−xTΣ−1x/2),

we obtain the following result:

Proposition

While not necessarily true for other distributions, for (X1, ...,Xn)multivariate normal, Xi’s are uncorrelated

iff Xi’s are independent.

(The previous example we have shows that if (X1,X2) is not multivariate normal, even if it has normal

marginals, then (uncorrelated but dependent) can happen.)

If X ∼ N (0,Σ), and T is invertible, then TX has density

fTX(x) =
1

∣T ∣
fX(T −1x) =

1

(2π)d/2∣T ∣∣Σ∣1/2
exp(xTT −TΣ−1T −1x/2)

= 1

(2π)d/2∣TΣTT ∣1/2
exp(−xT (TΣTT )−1x/2) ∼ N (0, TΣTT ).

Therefore the marginals are normal, in particular (TX)1. Since T is arbitrary, θ ⋅X is normal for all θ ∈ Rd, with

var(θ ⋅X) = θTΣθ.

More generally, if X ∼ N (µ,Σ) and T is invertible then TX ∼ N (Tµ,TΣTT ).

Characteristic functions of N (µ,Σ)

φX(θ) = Eeiθ⋅X = φθ⋅X(1) = exp(−var(θ ⋅X)/2) = exp(−θTΣθ/2).
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CLT in Rd

Theorem

Let X1,X2, ... be i.i.d. in Rd with finite mean EX1 = µ and finite covaraince matrix Σ. Let Sn =X1 + ... +Xn.

Then (Sn − nµ)/
√
n converges in distribution to N (0,Σ).

Proof. By Cramer-Wold it suffices to show

θ ⋅ Sn − nµ√
n
→ θ ⋅X in distribution for all θ ∈ Rd.

Note var(θ ⋅X) = θTΣθ so θ ⋅X ∼ N (0, θTΣθ). This is a one-dimensional distribution, so

θ ⋅ Sn − nµ√
n
= ∑

n
i=1Xi ⋅ θ − nθ ⋅ µ√

n
→ N (0,var(Xi ⋅ θ)) = N (0, θTΣθ).

3.6 Conditional Probabilities

It can be shown that given n coin tosses, X = (number of heads)2 has mean (n + n2)/2. Viewing n as a variable we

therefore obtain

E(X ∣ N = n) = n + n2

4
or more geneerally E(X ∣ N) = N +N2

4
.

Now consider the integral over an event in σ(N), say {N ⩽ 2}. Average of X on {N = n} is

1

P(N = n) ∫{N=n}
X dP

so

∫
{N⩽2}

X dP =
2

∑
n=0
∫
{N=n}

X dP = ∫
{N⩽2}

1

4
(N2 +N) dP

and more generally, for any {N ∈ A} ∈ σ(N),

∫
{N∈A}

X dP = ∫
{N∈A}

N +N2

4
dP.

Another example: consider Ω = [0,1] = A1 ∪A2 ∪A3 disjoint, and let X be a r.v. and Y = σ(A1,A2,A3). Let Y be

constant on each Aj with value
1

P(Aj) ∫Aj

X dP. Then Y is (the only r.v.) measurable w.r.t. Y and that

∫
B
Y dP = ∫

B
X dP for all B ∈ Y.

General case

Let X be a r.v. with E∣X ∣ <∞ on (Σ,F0,P)
Suppose we have partial information to

F = {all events known to occur or not}.

F is a σ-algebra. We want to formalize E(X ∣ F):
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Definition

Let (Ω,F0,P) be a probability space and let F ⊂ F0 be a σ-algebra. Let X be a r.v. with E∣X ∣ <∞. We define

E(X ∣ F) to be any r.v. Y with

(1) Y ∈ F , and

(2) ∫
A
Y dP = ∫

A
X dP, for all A ∈ F .

Lemma

If Y,Y ′ satisfy (1) and (2) above, then Y = Y ′ a.s.

Proof. Fix ϵ > 0. Consider A = {Y − Y ′ ⩾ ϵ}. By (2)

0 = ∫
A
(Y − Y ′) dP ⩾ ϵP(A)

so P(A) = 0.

Lemma

Y satisfying (1) and (2) exists.

Proof. Consider measures on F only:

P̃ = P∣F and ν(A) = ∫
A
X dP, for A ∈ F .

Clearly if P̃ (A) = 0 we have ν(A) = 0, so ν ≪ P̃ (absolute continuity). By Radon-Nikodym there exists a density
dν

dP̃
, F -measurable, such that for all A ∈ F ,

∫
A
X dP = ν(A) = ∫

A

dν

dP̃
dP̃ = ∫

A

dν

dP̃
dP.

That is, setting Y to the Radon-Nikodym derivative
dν

dP̃
works.

Properties of conditional probabilities:

(1) P(A ∣ F) = E(1A ∣ F) (definition),

(2) P(A ∣ F) ∈ F , and

(3) ∫
B
P(A ∣ F) dP = ∫

B
1A dP = P(A ∩B) for all B ∈ F .
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