

Contents

Contents	1
2 Laws of Large Numbers	2
2.1 Independence	2
2.2 Weak Laws of Large Numbers	6
2.3 Triangular Arrays	10
2.4 Borel-Cantelli Lemmas	12
2.5 Kolmogorov 0-1 Law	15
2.6 Strong Law of Large Numbers	16
2.7 Large Deviations	21
3 Weak Convergence and CLT	24
3.1 Weak Convergence	25
3.2 Characteristic Functions	31
3.3 Weak Convergence	33
3.4 Central Limit Theorem	37
3.5 Poisson Convergence & Poisson Processes	40
3.6 Conditional Probabilities	44

Chapter 2

Laws of Large Numbers

2.1 Independence

Beginning of Sept.12, 2022

First, some definitions/recaps on independence of events and σ -fields:

- Independence of two events: we say events A, B are independent, $A \perp B$, if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- Independence of two σ -fields: \mathcal{F}, \mathcal{G} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$.
- For *more than 2 events*: A_1, \dots, A_n are **mutually independent** if

$$\mathbb{P}(\bigcap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i) \quad \text{for all } I \in \{1, \dots, n\}. \quad (*)$$

- Similarly, for more than 2 sigma fields, we say $\mathcal{A}_1, \dots, \mathcal{A}_n$ are independent if the above product identity holds for all $A_i \in \mathcal{A}_i$.
- We say events A_1, \dots, A_n are **pairwise independent** if

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j) \quad \text{for all } i \neq j.$$

Example: $\mathbb{P}(\bigcap A_i) = \prod \mathbb{P}(A_i)$ is insufficient. Consider two coin tosses. Let $A := \{\text{first is head}\}$, $B := \{\text{second is head}\}$, and $C := \{\text{both tosses are the same}\}$. Then $A \cap B \subset C$, so they are not mutually independent, but

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = \frac{1}{8}.$$

In fact, we also have A, B, C pairwise independent here.

- For an *infinite sequence* of A_i 's, we say they are independent if (*) holds for any *finite* $I \subset \mathbb{N}$.

Moving to independence of two random variables:

- Two random variables X, Y are independent if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B) \quad (**) \quad \text{for all } A \in \mathcal{A}, B \in \mathcal{B}$$

for all A, B in their corresponding σ -fields. It can be shown that this definition is equivalent to requiring $\sigma(X)$ and $\sigma(Y)$ to be independent.

- To show independence, it is sufficient to check (**) for $(-\infty, x] \times (-\infty, x]$ for all x, y . That is,

$$F_{(X,Y)}(x, y) = F_X(x)F_Y(y) \quad \text{for all } x, y.$$

Example: $\mathcal{A} \perp \mathcal{B}$ does not imply $\sigma(\mathcal{A}) \perp \sigma(\mathcal{B})$. (The example given in lecture relies heavily on drawings so I will replace it with one easier to type in L^AT_EX.) Let $\mathcal{A} := \{\{1, 2\}, \{3, 4\}\}$ and let $\mathcal{B} := \{\{2, 4\}\}$. Then $\{2, 4\} \in \sigma(\mathcal{A})$.

Definition: π -system and λ -system

A collection \mathcal{G} is called a **π -system** if it is nonempty and closed under finite intersections (two suffice):

- $\mathcal{G} \neq \emptyset$, and
- For $A, B \in \mathcal{G}$, $A \cap B \in \mathcal{G}$.

A collection \mathcal{G} is called a **λ -system** if \mathcal{G} contains Ω , is closed under set subtraction, and is closed under countable increasing union:

- $\Omega \in \mathcal{G}$,
- If $A \subset B$ and $A, B \in \mathcal{G}$ then $B \setminus A \in \mathcal{G}$, and
- If $A_n \in \mathcal{G}$ and $A_n \uparrow A$ then $A \in \mathcal{G}$.

The **$\pi - \lambda$ theorem** states that if \mathcal{P} is a π -system and \mathcal{L} a λ -system with $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

We will skip the proof and directly use the result to prove the following (the proof of which we again omit):

Theorem: D2.1.7

If $\mathcal{A}_1, \dots, \mathcal{A}_n$ are independent σ -fields and each \mathcal{A}_i a π -system, then the $\sigma(\mathcal{A}_i)$'s are independent.

We now discuss the independence of functions of random variable in greater generality. Suppose we have an array of independent random variables

$$\{X_{i,j} : i \leq n, j \leq m(i)\}$$

and n functions

$$\begin{aligned} X_{1,1}, \dots, X_{1,m(1)} &\mapsto f_1(X_{1,1}, \dots, X_{1,m(1)}) \\ X_{2,1}, \dots, X_{2,m(2)} &\mapsto f_2(x_{2,1}, \dots, X_{2,m(2)}) \end{aligned}$$

and so on, where each $f_i : \mathbb{R}^{m(i)} \rightarrow \mathbb{R}$. **Question:** are these random variables $f_i(\cdot)$ independent? The answer is yes, and we will formulate the question in terms of σ -fields:

Theorem: D2.1.10

Given an independent collection of σ -fields $\{\mathcal{F}_{i,j} : i \leq n, j \leq m(i)\}$, let $\mathcal{B}_i := \sigma(\mathcal{F}_{i,1}, \dots, \mathcal{F}_{i,m(i)})$ (i.e., the i^{th} row listed above). Then $\mathcal{B}_1, \dots, \mathcal{B}_n$ are independent.

Proof. For each row, let

$$A_i := \{\text{all } \bigcap_{j=1}^{m(i)} A_{i,j} \text{ with } A_{i,j} \in \mathcal{F}_{i,j}\}.$$

Then \mathcal{A}_i is a π -system that contains Ω (intersection of all $\Omega \in \mathcal{F}_{i,j}$) and also all $\mathcal{F}_{i,j}$ (intersection of $\mathcal{F}_{i,j}$ with a bunch of Ω 's). Therefore \mathcal{A}_i generates \mathcal{B}_i . Finally, the \mathcal{A}_i 's are independent:

$$\mathbb{P}\left(\bigcap_{i=1}^n \left(\bigcap_{j=1}^{m(i)} A_{i,j}\right)\right) = \prod_{i=1}^n \prod_{j=1}^{m(i)} \mathbb{P}(A_{i,j}) = \prod_{i=1}^n \mathbb{P}\left(\bigcap_{j=1}^{m(i)} A_{i,j}\right).$$

Therefore, by (D2.1.7) the \mathcal{B}_i 's are independent. \square

Beginning of Sept. 14, 2022

Theorem

Let $\{X_{i,j} : i \leq n, j \leq m(i)\}$ be independent. Then $f(X_{i,1}, \dots, X_{i,m(i)})$, $i \leq n$, are independent random variables.

Proof. Let $\mathcal{F}_{i,j} = \sigma(X_{i,j})$ and $\mathcal{B}_i := \sigma(\mathcal{F}_{i,1}, \dots, \mathcal{F}_{i,m(i)})$. By the previous theorem each \mathcal{B}_i 's are independent. Each f_i is \mathcal{B}_i -measurable so the random variables f_i are independent. \square

Fubini theorem says for $f(x, y)$ on $\Omega \times \Omega_2$,

$$\int f \, d(\mu_1 \times \mu_2) = \int_{\Omega_1} \int_{\Omega_2} f \, d\mu_2 \, d\mu_1$$

provided $f \geq 0$ or f is integrable (i.e., $\int |f| \, d(\mu_1 \times \mu_2) < \infty$). (Here since μ_i 's are probability measures they are assumed to be σ -finite.) For random variables:

Theorem: D2.1.12

Let X, Y be independent with distributions μ_X and μ_Y on \mathbb{R} . Let $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfy either $h \geq 0$ or $\mathbb{E}|h(X, Y)| < \infty$. Then

$$\mathbb{E}h(X, Y) = \iint_{\mathbb{R}^2} h(X, Y) \, d\mu_X(dx) \mu_Y(dy) \quad (*)$$

and the other of integration does not matter.

In particular, for $h(x, y) = f(x)g(y)$ with either $f, g \geq 0$ or $\mathbb{E}|f(X)|, \mathbb{E}|g(Y)| < \infty$, we have

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}f(X)\mathbb{E}g(Y), \quad (**)$$

i.e., independence \Rightarrow (product of $\mathbb{E} = \mathbb{E}$ of product).

Proof. (*) follows from Fubini since the distribution of (X, Y) is $\mu_X \times \mu_Y$ by independence.

For (**),

$$\begin{aligned}
 \mathbb{E}[f(X)g(Y)] &= \iint_{\mathbb{R}^2} f(x)g(y) \mu_X(dx)\mu_Y(dy) \\
 &= \int_{\mathbb{R}} g(y) \int_{\mathbb{R}} f(x) \mu_X(dx) \mu_Y(dy) \\
 &= \left(\int_{\mathbb{R}} f(x) \mu_X(dx) \right) \int_{\mathbb{R}} g(y) \mu_Y(dy) = \mathbb{E}f(X)\mathbb{E}g(Y).
 \end{aligned}$$

□

By induction, we may generalize the above result into any finite number of random variables. That is, for independent X_1, \dots, X_n with $\mathbb{E}|\prod X_i| < \infty$, we have $\mathbb{E}[\prod X_i] = \prod \mathbb{E}X_i$.

Sums of Independent Random Variables

Let X, Y be independent with distribution functions F and G . The d.f. of $X + Y$ is the **convolution**

$$H(z) = \mathbb{P}(X + Y \leq z) = \int_{-\infty}^{\infty} F(z - y) d(G(y)) =: (F * G)(z).$$

To see this, we apply Fubini to $1_{x+y \leq z}$:

$$H(z) = \mathbb{E}1_{\{X+Y \leq z\}} = \iint 1_{\{x \leq z-y\}} dF(x) dG(y) = \int F(z-y) dG(y).$$

Note by doing $\{y \leq x - z\}$ first we obtain see that $F * G \equiv G * F$.

Example. Let X be uniform on $[0, 2]$ and Y is exponential with parameter λ . That is, X has $1/2$ on $[0, 2]$ and Y has $\lambda e^{-\lambda y}$ on $[0, \infty)$. The distribution function of Y is $1 - e^{-\lambda y}$ for $y \geq 0$. Then

$$H(z) = \int_{-\infty}^{\infty} \underbrace{(1 - e^{-\lambda(z-y)}) 1_{\{z-y \geq 0\}}}_{F(z-y)} \underbrace{\frac{1}{2} 1_{[0,2]} dy}_{dG(y)}.$$

That is,

$$H(z) = \begin{cases} 0 & z < 0 \\ \int_0^z (1 - e^{-\lambda z} e^{\lambda y})/2 dy & 0 \leq z \leq 2 \\ \int_0^2 (1 - e^{-\lambda z} e^{\lambda y})/2 dy & z > 2 \end{cases} = \begin{cases} 0 & z < 0 \\ \frac{z}{2} - \frac{1 - e^{-\lambda z}}{2\lambda} & 0 \leq z \leq 2 \\ 1 - e^{-\lambda z} \frac{e^{2\lambda} - 1}{2\lambda} & z > 2 \end{cases}$$

Let μ_n be a probability measure on $(\mathbb{R}^n, \mathcal{R}^n)$. We can make a random vector with distribution μ_n : we take $(\Omega, \mathcal{F}, \mathbb{P}) = (\mathbb{R}^n, \mathcal{R}^n, \mu_n)$ and (X_1, \dots, X_n) to be identity.

Infinite Sequence of Random Variables

We say **finite-dimensional** distributions of $\{X_n, n \geq 1\}$ are all distributions of form $\{X_i, i \leq I\}$ for $I \subset \mathbb{N}$ finite. By using marginals is sufficient to consider $I = \{1, \dots, n\}$. Suppose we are given μ_n on $(\mathbb{R}^n, \mathcal{R}^n)$ for every n .

Question: is there a \mathbb{P} on $(\mathbb{R}^{\mathbb{N}}, \mathcal{R}^{\mathbb{N}})$ with distribution μ_n for the first n coordinates? That is,

$$\mathbb{P}(A_1 \times \dots \times A_n \times \mathbb{R} \times \dots) = \mu_n(A_1 \times \dots \times A_n)?$$

(Well of course no, since if $n > m$, μ_n determines what μ_m would be.) What if this consistency is satisfied?

Theorem: Kolmogorov Extension Theorem

Let μ_n be a p.m. on $(\mathbb{R}^n, \mathcal{R}^n)$ for all n . Suppose consistency holds among the μ_n 's, i.e.,

$$\mu_{n+1}(A \times \mathbb{R}) = \mu_n(A) \quad \text{for all } A = \prod_{i=1}^n (a_i, b_i] \text{ and } n \geq 1.$$

(In reality the above choice of A can be anything in \mathcal{R}^n ; we just picked the most canonical one.) Then there exists a unique \mathbb{P} on $(\mathbb{R}^{\mathbb{N}}, \mathcal{R}^{\mathbb{N}})$ with

$$\mathbb{P}(\prod_{i=1}^n (a_i, b_i] \times \mathbb{R} \times \mathbb{R} \times \dots) = \mu_n(\prod_{i=1}^n (a_i, b_i]).$$

(Sets of form $A \times \mathbb{R} \times \mathbb{R} \times \dots$ with $A \in \mathcal{R}^n$ is a **cylinder set** in $\mathbb{R}^{\mathbb{N}}$. They form a σ -field.)

2.2 Weak Laws of Large Numbers

Some recaps:

- We say $X_n \rightarrow X$ in **probability** (i.e. in measure) if $\mathbb{P}(|X_n - X| > \epsilon) \rightarrow 0$ as $n \rightarrow \infty$.
- We say $X_n \rightarrow X$ in **L^p** (where $p > 0$) if $\mathbb{E}(|X_n - X|^p) \rightarrow 0$ as $n \rightarrow \infty$.
 - For $p \geq 1$, this is equivalent to $\|X_n - X\|_p \rightarrow 0$.
 - For $p < 1$ this does not hold as such $\|\cdot\|_p$ does not define a norm.
 - In principle the X_n can have infinite p^{th} moment but the definition still makes sense.

Beginning of Sept. 16, 2022

Theorem

Convergence in L^p implies convergence in probability.

Proof. Suppose $X_n \rightarrow X$ in L^p . Then for all $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| > \epsilon) = \mathbb{P}(|X_n - X|^p > \epsilon^p) \leq \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p} \rightarrow 0$$

The converse fails due to mass escaping. For example, consider a coin with probability of heads $1/n$. Let U be uniform on $[0, 1]$. Define

$$X_n = \begin{cases} U & \text{if tails} \\ U + n^{1/p} & \text{if heads.} \end{cases}$$

Then

$$\mathbb{P}(|X_n - U| > \epsilon) = \mathbb{P}(\text{tails}) = \frac{1}{n} \rightarrow 0$$

whereas for all n ,

$$\mathbb{E}(|X_n - U|^p) = \frac{1}{n} (n^{1/p})^p = 1.$$

More recaps:

- If $\mathbb{E}X^2, \mathbb{E}Y^2 < \infty$, we defined the **covariance** $\text{cov}(X, Y) := \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y)) = \mathbb{E}(XY) - \mathbb{E}X\mathbb{E}Y$.
- X, Y are **uncorrelated** if $\text{cov}(X, Y) = 0$. Notation: $\sigma_X := \text{cov}(X, X) = \text{var}(X)^{1/2}$.
- The **correlation** coefficient of $X - Y$ is invariant under affine mappings of X, Y (but cov is not, which makes it dependent on units). In particular it computes the covariance of standardized X, Y :

$$\rho(X, Y) := \text{cov}\left(\frac{(X - \mathbb{E}X)}{\sigma_X}, \frac{(Y - \mathbb{E}Y)}{\sigma_Y}\right) = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1].$$

- Given X, Y , by minimizing $\mathbb{E}[(Y - (aX + b))^2]$, the quantity $\mathbb{E}[(Y - (aX + b))^2]/\sigma_Y^2$ is the “fraction of Y variance due to deviation from the best fit line (i.e., not caused by X)”, and it is $1 - \rho(X, Y)^2$.
- Variance of sums $S_n = X_1 + \dots + X_n$:

$$\begin{aligned} \text{var}(S_n) &= \mathbb{E}\left[\sum_{i=1}^n (X_i - \mathbb{E}X_i)\right]^2 \\ &= \mathbb{E}\sum_{i=1}^n \sum_{j=1}^n (X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j) \\ &= \sum_{i=1}^n \text{var}(X_i) + 2 \sum_{i < j} \text{cov}(X_i, X_j). \end{aligned}$$

- Independence implies zero correlation, but not conversely: consider the distribution of (X, Y) defined uniformly on $\{(0, 0)\} \cup \{\pm 1\} \times \{\pm 1\}$ (i.e. each point with $1/5$ probability). By symmetry, the correlation of (X, Y) is 0, but $Y = 0$ only if $X = 0$.

Theorem: L^2 weak Law, D2.2.3

Suppose X_1, X_2, \dots are uncorrelated with $\mathbb{E}X_i = \mu$ for each i and $\text{var}(X_i) \leq C < \infty$. Then $S_n/n \rightarrow \mu$ in L^2 (and therefore in probability).

Proof. A one liner proof:

$$\mathbb{E}\left(\frac{S_n}{n} - \mu\right)^2 = \text{var}(S_n/n) = \frac{1}{n^2} \sum_{i=1}^n \text{var}(X_i) \leq \frac{C}{n} \rightarrow 0. \quad \square$$

Beginning of Sept. 19, 2022

Theorem

If $X \geq 0$ and $p > 0$, then

$$\mathbb{E}X^p = \int_0^\infty px^{p-1}\mathbb{P}(X > x) dx.$$

Proof. We take $g(x) = x^p$ for $x \geq 0$ and 0 otherwise. Then

$$\begin{aligned} \mathbb{E}(X^p) &= \mathbb{E}g(X) = \lim_{b \rightarrow \infty} \int_{[0, b]} g(x) dF(x) \\ &= \lim_{b \rightarrow \infty} -\mathbb{P}(X > b)b^p + \lim_{b \rightarrow \infty} \int_{[0, b]} px^{p-1}\mathbb{P}(X > x) dx. \end{aligned}$$

- If $\mathbb{E}(X^p) < \infty$, from homework we know $\mathbb{P}(X > b)b^p \rightarrow 0$, so the claim is true.

- If $\mathbb{E}(X^p) = \infty$, then

$$\infty = \mathbb{E}(X^p) \leq \lim_{b \rightarrow \infty} \int_{[0,b]} px^{p-1} \mathbb{P}(X > x) dx = \int_0^\infty px^{p-1} \mathbb{P}(X > x) dx. \quad \square$$

Recall from L^2 weak law, if X_1, X_2, \dots are i.i.d. with $\mathbb{E}X_1 = \mu$ and $\mathbb{E}X_1 < \infty$, then

$$\mathbb{P}(|S_n/n - \mu| > \epsilon) \rightarrow 0 \quad \text{for all } \epsilon > 0.$$

What if we weaken the assumptions? What if $\mathbb{E}X_1 = \infty$ or undefined? Is there $\{\mu_n\}$ such that $\mathbb{P}(|S_n/n - \mu_n| > \epsilon) \rightarrow 0$, or does the sequence S_n/n retain its randomness?

Intuitively, if S_n/n settles down, no particular X_i should contribute much to this quantity. To formulate, we require that

$$\mathbb{P}(|X_j|/n > \delta \text{ for some } j \geq 0) \rightarrow 0 \quad \text{for all } \delta.$$

This is the same as requiring

$$1 - \mathbb{P}(|X_n| \leq \delta_n)^n = 1 - (1 - \mathbb{P}(|X_1| > \delta_n))^n \rightarrow 1.$$

We use the fact that if for $a_n \in (0, 1)$ with $a_n \rightarrow 0$ and $b_n \rightarrow \infty$, $(1 - a_n)^{b_n} \rightarrow 1$ if and only if $a_n b_n = 0$. To see this: for small a_n (or equivalently large n),

$$e^{-2a_n} \leq 1 - a_n \leq e^{-a_n} \implies e^{-2a_n b_n} \leq (1 - a_n)^{b_n} \leq e^{-a_n b_n}.$$

Therefore,

$$\begin{aligned} \mathbb{P}(|X_j|/n > \delta \text{ for some } j \leq n) \rightarrow 0 &\Leftrightarrow n \mathbb{P}(|X_1| > \delta_n) \rightarrow 0 \text{ for all } \delta \\ &\Leftrightarrow \delta n \mathbb{P}(|X_1| > \delta_n) \rightarrow 0 \text{ for all } \delta \\ &\Leftrightarrow x \mathbb{P}(|X_1| > x) \rightarrow 0 \text{ as } x \rightarrow \infty. \end{aligned}$$

When is there $\{\mu_n\}$ with $\mathbb{P}(|S_n/n - \mu_n| > \epsilon) \rightarrow 0$ for all ϵ ?

Truncation

A **truncation** of X is $\bar{X} = X 1_{\{|X| \leq M\}}$ for some M , so in particular it is bounded. For some proofs about S_n/n , below is a roadmap:

- prove the result for $\bar{S} = \bar{X}_1 + \dots + \bar{X}_n$,
- show $S_n - \bar{S}_n$ is small, e.g., $\mathbb{P}(S_n - \bar{S}_n) \rightarrow 0$ or $\mathbb{E}[(S_n - \bar{S}_n)^2] \rightarrow 0$.

The Weak Law of Large Numbers

Theorem: WLLN, D2.2.12

Let X_1, X_2, \dots be i.i.d. In order that there exists $\{\mu_n\}$ such that $S_n/n - \mu_n$ in probability, it is necessary and sufficient that

$$x \mathbb{P}(|X_1| > x) \rightarrow 0 \quad \text{as} \quad x \rightarrow \infty.$$

If so, $\mu_n = \mathbb{E}[X_1 1_{\{|X_1| \leq n\}}]$ works.

Proof. We prove the sufficiency part only; the necessity part is beyond the scope even in Durrett's book.

- We first truncate the variables and define $X_{n,k} := X_k 1_{\{|X_k| \leq n\}}$. Let $S'_n = \sum_{k=1}^n X_{n,k}$.
- We show truncation “does little:”

$$\begin{aligned}\mathbb{P}(S'_n \neq S_n) &= \mathbb{P}(|X_k| > n \text{ for some } k \leq n) \\ &\leq n\mathbb{P}(|X_1| > n) \rightarrow 0 \text{ by union bound.}\end{aligned}$$

- We show the theorem holds for truncated random variables: by Chebyshev,

$$\begin{aligned}\mathbb{P}\left(\left|\frac{S'_n}{n} - \mu_n\right| > \epsilon\right) &\leq \frac{\text{var}(S'_n/n)}{\epsilon^2} = \frac{\text{var}(X_{n,1})}{\epsilon^2 n} \leq \frac{\mathbb{E}X_{n,1}^2}{\epsilon^2 n} \\ &= \epsilon^{-2} n^{-1} \int_0^\infty 2y\mathbb{P}(|X_{n,1}| > y) dy \\ &\leq \underbrace{\epsilon^{-2} n^{-1} \int_0^n 2y\mathbb{P}(|X_1| > y) dy}_{\text{average of } 2y\mathbb{P}(|X_1| > y) \text{ on } [0, n]} \rightarrow 0.\end{aligned}$$

- Combine and QED:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu_n\right| > \epsilon\right) \leq \mathbb{P}(S_n \neq S'_n) + \mathbb{P}\left(\left|\frac{S'_n}{n} - \mu_n\right| > \epsilon\right) \rightarrow 0. \quad \square$$

Given a random variable, we consider the **standardized random variable** $(X - \mathbb{E}X)/\sigma_X$ whenever this makes sense. For $b > \sigma_X$,

$$\mathbb{P}\left(\left|\frac{E - \mathbb{E}X}{b}\right| > \epsilon\right) = \mathbb{P}\left(\left|\frac{X - \mathbb{E}X}{\sigma_X}\right| > \frac{\epsilon b}{\sigma_X}\right) \leq \frac{\text{var}((X - \mathbb{E}X)/\sigma_X)}{\epsilon^2 b^2 / \sigma_X^2} = \frac{\sigma_X^2}{\epsilon^2 b^2},$$

which is small for $b \gg \sigma_X$. This proves the following theorem:

Theorem: D2.2.6

Let $\{T_n\}$ be random variables. If $\text{var}(T_n)/b_n^2 \rightarrow 0$, then $\frac{T_n - \mathbb{E}T_n}{b_n} \rightarrow 0$ in probability.

Beginning of Sept.92022

Consider a geometric distribution with parameter p :

- $\mathbb{P}(X = n) = (1 - p)^{n-1}p$.
- $\mathbb{E}X = 1/p$.
- $\mathbb{E}(X(X - 1)) = \sum_{n=1}^{\infty} n(n-1)(1 - p)^{n-2}(1 - p)p = \frac{2 - 2p}{p^2}$, so
- $\text{var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \frac{2 - 2p}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p}$.

Example: The coupon collector's problem. Suppose each cereal box has one of the n coupons equally likely. Let T_n be the time to get all n .

Let R be repeats and N be new coupons. The outcome is a sequence of R 's and N 's. Let $X_{n,k}$ be the

time from getting the $(k-1)^{\text{th}}$ coupon to the k^{th} new coupon. It follows immediately that the $X_{n,k}$'s are independent from each other, with $T_n = \sum_{k=1}^n X_{n,k}$. In particular,

$$X_{n,k} \sim \text{geometric}\left(\frac{n-k+1}{n}\right),$$

so

$$\mathbb{E}T_n = 1 + \frac{n}{n-1} + \frac{n}{n-2} + \dots + n = n(1 + 1/2 + \dots + 1/n) \sim n \log n.$$

On the other hand,

$$\text{var}(T_n) = \sum_{k=1}^n \text{var}(X_{n,k}) \leq \sum_{k=1}^n \left(\frac{n}{n-k+1}\right)^2 = \frac{n^2 \pi^2}{6}.$$

Since $\text{var}(T_n)/(n \log n)^2 \rightarrow 0$, by D2.2.6, $(T_n - \mathbb{E}T_n)/(n \log n) \rightarrow 0$ in probability, i.e.,

$$\frac{T_n}{n \log n} \rightarrow 1 \quad \text{in probability.}$$

2.3 Triangular Arrays

Consider a **triangular array** $\{X_{n,k} : n \geq k, k \leq k_n\}$ where the n^{th} row has k_n variables.

Theorem: D2.2.11, WLLN for triangular arrays

Let $\{X_{n,k}\}$ be given. Let $b_n \rightarrow \infty$ and

$$a_n := \sum_{k=1}^{k_n} \mathbb{E}(X_{n,k} \mathbf{1}_{\{|X_{n,k}| \leq b_n\}}).$$

Assume

$$\sum_{k=1}^{k_n} \mathbb{P}(|X_{n,k}| > b_n) \rightarrow 0 \quad \text{as } n \rightarrow \infty \quad (1)$$

and

$$b_n^{-2} \mathbb{E}(X_{n,k}^2 \mathbf{1}_{\{|X_{n,k}| \leq b_n\}}) \rightarrow 0 \quad \text{as } n \rightarrow \infty, \quad (2)$$

then $(S_n - a_n)/b_n$ converges to 0 in probability.

In the i.i.d. case, where $X_{n,k} = X_k$ and $k_n = b_n = n$, (1) says $n \mathbb{P}(|X_1| > n) \rightarrow 0$ and (2) says $n^{-1} \mathbb{E}(X_1^2 \mathbf{1}_{\{|X_1| \leq n\}}) \rightarrow 0$.

Theorem: D2.2.14, Finite mean of WLLN

Let X_1, X_2, \dots be i.i.d. with $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}X_1 = \mu$. Then $S_n/n \rightarrow \mu$ in probability without any assumption on the second moment.

Proof. We use WLLN 2.2.12. Let $\mu_n := \mathbb{E}(X_1 \mathbf{1}_{\{|X_1| \leq n\}})$. We know $\mu_n \rightarrow \mu$ by DCT. Also,

$$x \mathbb{P}(|X_1| > x) = \mathbb{E}(x \mathbf{1}_{\{|X_1| > x\}}) = \mathbb{E}(|X_1| \mathbf{1}_{\{|X_1| > x\}}) \rightarrow 0$$

again using DCT. Therefore by 2.2.12 $S_n/n - \mu_n \rightarrow 0$ in probability, so $S_n/n \rightarrow \mu$ in probability. \square

If $X_1 \geq 0$, $\mathbb{E}X_1 = \infty$, we can compare X_1 with the truncated variables to see $S_n/n \rightarrow \infty$. Nevertheless, we can still ask if there exist a_n, b_n such that $(S_n - a_n)/b_n \rightarrow 0$ in probability.

Example: D2.2.16 St. Petersburg paradox. Game: win 2^j if first heads toss is trial j , $j \geq 1$. Note that $S_n/n \rightarrow \mu$ implies that μ is the “fair price” to pay to play one game. Let X_k be the r.v. describing the amount of games won by game k . Then

$$\mathbb{E}X_1 = \sum_{j \geq 1} 2^j 2^{-j} = \infty.$$

Then a_n is the “fair price for n games.” By 2.2.11 (triangular array WLLN), we take $X_{n,k} = X_k$ for $k \leq n$ and $\{b_n\}$ to be determined. Let

$$a_n = n\mathbb{E}(X_1 1_{\{X_1 \leq b_n\}}).$$

We want b_n to satisfy two things:

- the truncation probability $n\mathbb{P}(X_1 > b_n) \rightarrow 0$,
- $b_n^{-2}n\mathbb{E}(X_1^2 1_{\{X_1 \leq b_n\}}) \rightarrow 0$, and
- $b_n \leq ca_n$.

For tails:

$$\mathbb{P}(X_1 \geq 2^m) = \mathbb{P}(\text{first } m-1 \text{ all tails}) = 2^{-m+1}.$$

Example: D2.2.16 St. Petersburg paradox.

Consider X_1, X_2, \dots i.i.d. with $X_1 = 2^{-j}$ with probability 2^{-j} . Then $\mathbb{E}X_1 = \infty$. Treat this as a game, but the paradox is the expected value is infinite and we cannot play an infinite amount of times. The question: how much we should pay to play this game n times?

We construct a_n, b_n such that

- $n\mathbb{P}(X_1 > b_n) \rightarrow 0$,
- $b_n^{-2}n\mathbb{E}(X_1^2 1_{\{X_1 \leq b_n\}}) \rightarrow 0$, and
- $b_n \leq ca_n$.

If so, by WLLN (2.2.11), $(S_n - a_n)/b_n \rightarrow 0$ in probability.

From 2.2.11, we simply pick

$$a_n = n\mathbb{E}(X_1 1_{\{X_1 \leq b_n\}})$$

and $P(X_1 \geq 2^m) = 2^{-m+1}$. We take b_n of form $2^{m(n)}$.

In order for the first condition to be satisfied, $n2^{-m(n)+1} \rightarrow 0$ implies the candidate $m(n) = \log_2 n + K(n)$ with $K(n) \rightarrow \infty$. Then $2^{m(n)} = n2^{-K(n)}$. For the truncation condition,

$$\mathbb{E}(X_1^2 1_{\{X_1 \leq 2^{m(n)}\}}) = \sum_{j=1}^{m(n)} 2^{2j} \mathbb{P}(X_1 = 2^j) = 2^{m(n)+1}.$$

Therefore $b_n^{-2}n\mathbb{E}(X_1^2 1_{\{X_1 \leq b_n\}}) = 2^{-2m(n)}n2^{m(n)+1} = 2^{-K(n)+1}$. Letting $n \rightarrow \infty$ this term does converge to 0.

Finally, to check the third condition, we want

$$a_n = n\mathbb{E}(X_1 1_{\{X_1 \leq b_n\}}) = n \sum_{j=1}^{m(n)} 2^j \mathbb{P}(X_1 = 2^j) = nm(n).$$

That is, we want

$$\frac{a_n}{b_n} = \frac{nm(n)}{2^{m(n)}} = \frac{m(n)}{2^{K(n)}} = \frac{\log_2(n) + K(n)}{2^{K(n)}}.$$

If we take $K(n) = \log_2 \log_2 n$ then the fraction will converge to 1, and we are finally done:

$$\frac{S_n - n(\log_2 n + \log_2 \log_2 n)}{n \log_2 n} \rightarrow 0 \quad \text{in probability.}$$

Since $\log_2 \log_2 n / \log_2 n \rightarrow 0$, we have

$$\frac{S_n - n \log_2 n}{n \log_2 n} \rightarrow 0 \quad \text{in probability,}$$

so

$$\frac{S_n}{n \log_2 n} \rightarrow 1 \quad \text{in probability.}$$

That is, a fair price for playing n games is paying $\log_2 n$ per play.

2.4 Borel-Cantelli Lemmas

Some very quick recap: if $\{A_n\}$ are subsets of Ω , then

$$\limsup A_n = \bigcap_{m \geq 1} \bigcup_{n \geq m} A_n = \{\omega : \omega \in A_n \text{ i.o. (infinitely often)}\}$$

and

$$\liminf A_n = \bigcup_{m \geq 1} \bigcap_{n \geq m} A_n = \{\omega : \omega \in A_n \text{ eventually / for all but finitely many } A_n\}$$

Theorem: First Borel-Cantelli Lemma

Let $\{A_n\}$ be events with $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$. Then $\mathbb{P}(\limsup A_n) = \mathbb{P}(A_n \text{ i.o.}) = 0$.

Proof. For all m , $\mathbb{P}(A_n \text{ i.o.})$ has to occur after m , so

$$\mathbb{P}(A_n \text{ i.o.}) \leq \mathbb{P}(\bigcup_{n \geq m} A_n) \leq \sum_{n \geq m} \mathbb{P}(A_n) \rightarrow 0 \quad \text{as } m \rightarrow \infty. \quad \square$$

The converse does not hold, as illustrated by $A_n = (0, 1/n)$ on the unit interval equipped with the uniform probability. With independence of events, however, we have the following result:

Theorem: Second Borel-Cantelli Lemma

Let $\{A_n\}$ be independent with $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$. Then $\mathbb{P}(A_n \text{ i.o.}) = 1$.

We first need a lemma: if $0 < a_n < 1$, $\prod_{i=1}^{\infty} (1 - a_n) > 0$ if and only if $\sum_{n=1}^{\infty} x_i < \infty$. When x is small, $e^{-2x} < 1 - x < e^{-x}$ and we obtain the claim after some algebra.

Proof of Borel-Cantelli. Fix m . Using continuity of probability on decreasing events,

$$\begin{aligned}\mathbb{P}(\text{no } A_n \text{'s after some index } m) &= \lim_{k \rightarrow \infty} \mathbb{P}(\text{no } A_n \text{'s from index } m \text{ to } k) \\ &= \lim_{k \rightarrow \infty} \prod_{n=m}^k (1 - \mathbb{P}(A_n)) = \prod_{n \geq m} (1 - \mathbb{P}(A_n)) = 0.\end{aligned}$$

Therefore, $\mathbb{P}(\text{some } A_n \text{ after index } m, \text{ for all } m) = 1$. \square

Example. Let X_1, X_2, \dots be i.i.d. exponential with parameter λ , i.e., with density $\lambda e^{-\lambda x}$ on $[0, \infty)$. Goal: find $\{c_n\}$ with $\limsup X_n/c_n = 1$ a.s.; we call c_n the max growth rate of X_n . That is, for all ϵ , we want

$$\mathbb{P}(X_n/c_n > 1 + \epsilon \text{ i.o.}) = 0 \quad \text{and} \quad \mathbb{P}(X_n/c_n > 1 - \epsilon \text{ i.o.}) = 1.$$

By first and second B-C, it is sufficient to show that

$$\sum_{n \geq 1} \mathbb{P}(X_n > (1 + \epsilon)c_n) = \sum_{n \geq 1} e^{-\lambda(1+\epsilon)c_n} < \infty$$

and

$$\sum_{n \geq 1} \mathbb{P}(X_n > (1 - \epsilon)c_n) = \sum_{n \geq 1} e^{-\lambda(1-\epsilon)c_n} = \infty$$

for all ϵ . We let c_n be such that $e^{-\lambda c_n} = 1/n$, i.e., $c_n = \log n / \lambda$. And this works.

Some quick recap of convergence a.s. and in probability:

- If $X_n \rightarrow X$ a.s. then $1_{\{|X_n - X| > \epsilon\}} \rightarrow 0$ a.s. for all $\epsilon > 0$, so

$$\mathbb{P}(|X_n - X| > \epsilon) = \mathbb{E}1_{\{|X_n - X| > \epsilon\}} \rightarrow 0$$

by bounded convergence theorem, so $X_n \rightarrow X$ in probability.

- The converse is false, as illustrated by the scanning intervals. Let \mathbb{P} be uniform on $[0, 1]$ and consider $[0, 1], [0, 1/2], [1/2, 1], [0, 1/3], [1/3, 2/3], [2/3, 1]$, and so on.

However, the following does hold:

Proposition

If $X_n \rightarrow X$ in probability then there exists a subsequence $X_{n_k} \rightarrow X$ a.s.

Proof. Take a sequence of increasing indices n_k such that

$$\mathbb{P}(|X_{n_k} - X| > 1/k) < 2^{-k}.$$

Using Borel-Cantelli,

$$\sum_k \mathbb{P}(|X_{n_k} - X| > 1/k) < \infty$$

so $\mathbb{P}(|X_{n_k} - X| > 1/k \text{ i.o.}) = 0$ and $X_{n_k} \rightarrow X$ a.s. \square

Recall from analysis that in a metric space, $y_n \rightarrow y$ iff every subsequence y_{n_k} has a further subsequence converging to y . Using this fact we obtain a stronger characterization of convergence in probability:

Theorem: D2.3.2

$X_n \rightarrow X$ in probability iff for every subsequence $\{X_{n_k}\}$ there exists a further subsequence converging a.s. to X .

In particular, this theorem implies that there is no metric $d(X, Y)$ such that $X_n \rightarrow X$ a.s. iff $d(X_n, X) \rightarrow 0$. On the other hand, $d(X, Y) := \mathbb{E}(|Y - X|)/(1 + |Y - X|)$ satisfies $X_n \rightarrow X$ in probability iff $d(X_n, X) \rightarrow 0$. More generally, any g bounded, invertible, concave, with $g(0) = 0$ works, like $g(t) = t/(1 + t)$.

Proof. The forward direction follows from the previous proposition.

Conversely, fix $\epsilon > 0$ and let $y_n = \mathbb{P}(|X_n - X| > \epsilon)$. The assumption implies that for any $\{y_{n_k}\}$, there exists a further subsequence $\{y_{n_{k(\ell)}}\}$ converging to 0. Using the previous remark, $y_n \rightarrow 0$, i.e., $X_n \rightarrow X$ a.s. \square

Corollary: D2.3.4

If $X_n \rightarrow X$ in probability and $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then $f(X_n) \rightarrow f(X)$ in probability.

Proof. We use the previous theorem twice. For all $\{X_{n_k}\}$ there exists a further subsequence $\{X_{n_{k(\ell)}}\}$ converging to X a.s., and by continuity $f(X_{n_{k(\ell)}}) \rightarrow f(X)$ a.s. Now using D2.3.2 again, $f(X_n) \rightarrow f(X)$ in probability. \square

Theorem: D2.3.8

Suppose X_1, X_2, \dots are i.i.d. with $\mathbb{E}|X_1| = \infty$. Then

$$\mathbb{P}\left(\lim_{n \rightarrow \infty} \frac{S_n}{n} \text{ exists and is finite}\right) = 0.$$

Proof. We first show that $\mathbb{P}(|X_n|/n > 1 \text{ i.o.}) = 1$ and that

$$\mathbb{P}\left(\left|\frac{S_{n+1}}{n+1} - \frac{S_n}{n}\right| > \frac{1}{2} \text{ i.o.}\right) = 1.$$

- For the first claim:

$$\infty = \mathbb{E}|X_1| = \int_0^\infty \mathbb{P}(|X_1| > n) dx \leq \sum_{n \geq 1} \mathbb{P}(|X_1| > n) = \sum_{n \geq 1} \mathbb{P}(|X_n| > n)$$

so by the second B-C, $\mathbb{P}(|X_n| > n \text{ i.o.}) = 1$ and in particular $\mathbb{P}(|X_n|/n > 1 \text{ i.o.}) = 1$.

- To show the second claim, define

$$C := \{\omega : \lim_{n \rightarrow \infty} S_n/n \text{ exists and is finite}\}.$$

Note that

$$-\frac{S_{n+1}}{n+1} + \frac{S_n}{n} = \frac{S_n}{n} - \frac{S_n}{n+1} + \frac{X_{n+1}}{n+1}.$$

Therefore, for a.e. $\omega \in C$, $S_n/(n(n+1)) \rightarrow 0$ (since S_n/n is finite) and $|X_{n+1}|/(n+1) > 1$ i.o., so

$$\left| \frac{S_n}{n} - \frac{S_{n+1}}{n+1} \right| > \frac{1}{2} \text{ i.o.}$$

- Therefore $\mathbb{P}(C) = \mathbb{P}\left(C \cap \left\{ \left| \frac{S_n}{n} - \frac{S_{n+1}}{n+1} \right| > \frac{1}{2} \text{ i.o.} \right\}\right) = 0$ and we are done.

□

2.5 Kolmogorov 0-1 Law

Previously, we have shown:

- (1) If A_n 's are independent then $\mathbb{P}(A_n \text{ i.o.}) = 0$ or 1 by the first and/or second B-C.
- (2) We have also shown that if X_1, X_2, \dots are i.i.d. exponential r.v.'s with parameter λ then $\limsup_{n \rightarrow \infty} X_n / \log n = 1/\lambda$ a.s., so

$$\mathbb{P}\left(\limsup_{n \rightarrow \infty} \frac{X_n}{\log n} > c\right) = \begin{cases} 1 & \text{if } c < 1/\lambda \\ 0 & \text{if } c > 1/\lambda. \end{cases}$$

Beginning of Sept. 29, 2022

We define $F_n := \sigma(X_n, X_{n+1}, \dots)$ for each n , and we define $\mathcal{T} := \bigcap_{n \geq 1} \mathcal{F}_n$, the **tail σ -field**.

Example: $\{S_n/n \rightarrow \mu\}$ is a tail event. To see this, we fix $m < n$ and get

$$\frac{S_n}{n} = \frac{S_m}{n} + \frac{X_{m+1} + \dots + X_n}{n}.$$

Now letting $n \rightarrow \infty$ we see $S_n/n \rightarrow \mu$ iff $(X_{m+1} + \dots + X_n)/n \rightarrow \mu$. In particular, the right side quantity does not depend on which m we start with.

Theorem: Kolgomorov 0-1 Law

Let X_1, X_2, \dots be random variables. Then $\mathbb{P}(A) = 0$ or 1 for $A \in \mathcal{T}$.

Proof. Idea: it suffices to show that if $A \in \mathcal{T}$ then \mathbb{P} is independent of itself, i.e., $\mathbb{P}(A \cap A) = \mathbb{P}(A)^2$. In fact, we'll show $A \perp B$ for every event $B \in \sigma(X_1, X_2, \dots)$.

Preliminaries. For events A, B , we define a distance $d(A, B) := \mathbb{P}(A \Delta B) = \mathbb{E}|1_A - 1_B|$. (This is a pseudo-metric but can be 0 when $A \neq B$.) An important property: $d(A \cup B, G \cup H) = d(A, G) + d(B, H)$. Same for intersections. More formally, given $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and \mathcal{G} a collection of events, we say $A \in \mathcal{F}$ is **approximable** by \mathcal{G} if for every $\epsilon > 0$, there exists $G \in \mathcal{G}$ with $d(A, G) < \epsilon$.

Idea, continued: we approximate any B by $\tilde{B} \in \sigma(X_1, \dots, X_n)$ for some n w.r.t. our distance defined above. We also approximate A by some $\tilde{A} \in \sigma(X_{n+1}, X_{n+2}, \dots)$. Note that these two σ -fields are indeed independent, and \tilde{A} and \tilde{B} are independent. Intuitively, this gives

$$\mathbb{P}(A \cap B) \approx \mathbb{P}(\tilde{A} \cap \tilde{B}) = \mathbb{P}(\tilde{A})\mathbb{P}(\tilde{B}) \approx \mathbb{P}(A)\mathbb{P}(B).$$

Lemma. If \mathcal{G} is a field then $\{\text{all events approximable by } \mathcal{G}\}$ is a σ -field.

Proof of subclaim. Closedness under countable union is immediate by using $\epsilon/2^{-n}$ along with the fact that \mathcal{G} is a field. If A_1, A_2, \dots are approximable by G_1, G_2, \dots with errors $< \epsilon/2^n$, we have

$$\mathbb{P}\left(\left(\bigcup_{n \geq 1} G_n\right) \Delta \left(\bigcup_{n \geq 1} A_n\right)\right) \leq \mathbb{P}\left(\left(\bigcup_{n \geq 1} G_n\right) \Delta \left(\bigcup_{n \geq 1}^k A_n\right)\right) + \mathbb{P}\left(\bigcup_{n \geq 1} A_n\right) - \mathbb{P}\left(\bigcup_{n=1}^k A_n\right) \rightarrow \sum_{n=1}^k \epsilon 2^{-n} < \epsilon \quad (*)$$

as $k \rightarrow \infty$.

END OF CLAIM OF LEMMA.

Now we prove the Kolmogorov 0-1 law. We apply the lemma to $\mathcal{G} = \bigcup_{n \geq 1} \sigma(X_1, \dots, X_n)$ which is a field. We approximate $B \in \sigma(X_1, X_2, \dots)$ by $\tilde{B} \in \sigma(X_1, \dots, X_n)$ for some n with error $< \epsilon$. For $A \in \mathcal{T}$, we apply the lemma to $\bigcup_{k \geq n} \sigma(X_{n+1}, \dots, X_k)$ and get $\tilde{A} \in \sigma(X_{n+1}, \dots, X_{n_k})$, also with error $< \epsilon$. Then by $(*)$ we are done! \square

Using Kolmogorov 0-1 law on $A = \{S_n/n \rightarrow \mu\}$ can be approximated in $\sigma(X_1, \dots, X_m)$, even though it doesn't depend on X_1, \dots, X_m for any given m , as shown before stating the theorem. The approximation will be by something like

$$\tilde{A} = \{|S_m/m - \mu| < \epsilon \text{ for all } m \in [k, n]\}$$

for some n, k, m .

Related Result

We consider permutable events. A **finite permutation** π of \mathbb{N} is one with $\pi(i) = i$ for all but finitely many i 's. Here we have $\Omega = \mathbb{R}^{\mathbb{N}}$ and X_1, X_2, \dots random variables (coordinates in Ω). Let $\omega = (\omega_i, i \geq 1)$. Consider $\pi\omega = (\omega_{\pi(1)}, \omega_{\pi(2)}, \dots)$, i.e., $(\pi\omega)_i = \omega_{\pi(i)}$. We say event A is **permutable** if $\pi^{-1}A = A$ for every finite permutation π , and we let \mathcal{E} be the collection of all permutable events.

It is easy to check that \mathcal{E} is a σ -field. Also, if $A \in \sigma(X_{n+1}, X_{n+2}, \dots)$, then the occurrence of A is unaffected by the permutation of X_1, \dots, X_n . In particular, any $A \in \mathcal{J}$ is permutable, so $\mathcal{T} \subset \mathcal{E}$.

An example of permutable sets: $\{S_n \in B \text{ i.o.}\}$: if the sum is in B then mixing the first (finitely many) coordinates does not change the fact that S_n is still in B . However, $\{S_n \in B \text{ i.o.}\}$ is not a tail event: if we change the value of $X_1(\omega)$ dramatically, every $S_n(\omega)$ will be affected.

Theorem: Hewitt-Savage 0-1 Law

If X_1, X_2, \dots are i.i.d. and $A \in \mathcal{E}$ then $\mathbb{P}(A) = 0$ or 1 .

2.6 Strong Law of Large Numbers

Beginning of Sept. 30, 2022

Theorem: WLLN, D2.4.1

Let X_1, X_2, \dots be i.i.d. (pairwise in fact suffice) with $\mathbb{E}|X_1| < \infty$. Then $S_n/n \rightarrow \mu = \mathbb{E}X_1$ almost surely.

Proof. Idea: we assume $X_1 \geq 0$ or otherwise we use $X = X^+ - X^-$. Then S_n and n are both increasing in n . Consider a subsequence, say $k(n) = \lfloor \alpha^n \rfloor$ with $\alpha > 1$ but close to 1. For the indices in between the subsequences,

i.e., for $k(n) \leq m \leq k(n+1)$,

$$\frac{S_{k(n)}}{k(n)} \frac{k(n)}{k(n+1)} = \frac{S_{k(n)}}{k(n+1)} \leq \frac{S_m}{m} \leq \frac{S_{k(n+1)}}{k(n)} = \frac{S_{k(n+1)}}{k(n+1)} \frac{k(n+1)}{k(n)}.$$

As $n \rightarrow \infty$, $k(n)/k(n+1) \rightarrow 1/\alpha$ and $k(n+1)/k(n) \rightarrow \alpha$. Therefore if we show convergence of the subsequence $S_{k(n)}/k(n) \rightarrow \mu$, then

$$\frac{\mu}{\alpha} \leq \liminf_{m \rightarrow \infty} \frac{S_m}{m} \leq \limsup_{m \rightarrow \infty} \frac{S_m}{m} \leq \alpha\mu,$$

and since α is arbitrary, we are done.

Proof of SLLN. **Step 1.** We truncate as usual: let $Y_n = X_n 1_{\{X_n \leq n\}}$ and let $T_n = \sum_{i=1}^n Y_i$. Then

$$\sum_{n \geq 1} \mathbb{P}(X_n \neq Y_n) = \sum_{n \geq 1} \mathbb{P}(X_n > n) = \sum_{n \geq 1} \mathbb{P}(X_1 > n) < \infty$$

since $\mathbb{E}X_1 < \infty$. Therefore, by B-C, $\mathbb{P}(X_n \neq Y_n \text{ i.o.}) = 0$. Since there are only finite number of different terms between S_n and T_n , $(S_n/n) - (T_n/n) \rightarrow 0$. Therefore it suffices to show $T_n/n \rightarrow \mu$ almost surely.

Step 2. We apply B-C to T_n/n . Using Chebyshev,

$$\mathbb{P}\left(\left|\frac{T_k - \mathbb{E}T_k}{k}\right| > \epsilon\right) \leq \frac{\text{var}(T_k)}{k^2\epsilon^2} = \frac{1}{k^2\epsilon^2} \sum_{i=1}^k \text{var}(Y_i).$$

But $\text{var}(Y_i)$ may not $\rightarrow 0$. and then the terms on the RHS is bounded from below by some constant divided by k , not summable. Remedy:

Step 3. Apply step 2 to a subsequence $k(n) = \lfloor \alpha^n \rfloor \geq \alpha^n/2$. Then

$$\begin{aligned} \sum_{n=1}^{\infty} \mathbb{P}\left(\left|\frac{T_{k(n)} - \mathbb{E}T_{k(n)}}{k(n)}\right| > \epsilon\right) &\leq \sum_{n=1}^{\infty} \frac{1}{\epsilon k(n)^2} \sum_{i=1}^{k(n)} \text{var}(Y_i) \\ &= \sum_{i=1}^{\infty} \epsilon^{-2} \text{var}(Y_i) \sum_{k(n) \geq i} \frac{1}{k(n)^2} \\ &\leq \sum_{i=1}^{\infty} 4\epsilon^{-2} \text{var}(Y_i) \sum_{k(n) \geq i} \alpha^{-2n} \\ &\leq \sum_{j=1}^{\infty} 4\epsilon^{-2} \text{var}(Y_j) \frac{1}{j^2} \frac{1}{1 - \alpha^{-2}} \\ &= \frac{4\epsilon^{-2}}{1 - \alpha^{-2}} \sum_{j=1}^{\infty} \frac{\text{var}(Y_j)}{j^2} \leq \frac{4\epsilon^{-2}}{1 - \alpha^{-2}} \sum_{j=1}^{\infty} \frac{\mathbb{E}Y_j^2}{j^2} \end{aligned} \tag{*}$$

Since

$$\mathbb{E}Y_j^2 = \int_0^{\infty} 2y \mathbb{P}(Y_j > y) dy \leq \int_0^j 2y \mathbb{P}(X_1 > y) dy,$$

the sum in (*) becomes

$$\begin{aligned} \sum_{j=1}^{\infty} \frac{\mathbb{E}Y_j^2}{j^2} &= \sum_{j=1}^{\infty} j^{-2} \int_0^{\infty} 1_{\{Y_j > y\}} 2y \mathbb{P}(X_1 > y) dy \\ &= \int_0^{\infty} \left(\sum_{j > y} j^{-2} \right) 2y \underbrace{\mathbb{P}(X_1 > y) dy}_{\text{integrable}} \end{aligned} \tag{**}$$

Since $\sum_{j > y} j^{-2} \approx y^{-1}$, it can be shown that (D2.4.4)

$$\left(\sum_{j > y} j^{-2} \right) 2y \leq 4 \quad \text{for all } y.$$

Hence $(**)$ $\leq 4\mathbb{E}X_1 < \infty$. Then $(*)$ and B-C says

$$\mathbb{P}\left(\frac{|T_{k(n)} - \mathbb{E}T_{k(n)}|}{k(n)} > \epsilon \text{ i.o.}\right) = 0 \quad \text{for all } \epsilon,$$

so

$$\frac{T_{k(n)} - \mathbb{E}T_{k(n)}}{k(n)} \rightarrow 0 \text{ a.s.} \quad \text{and} \quad \frac{T_{k(n)}}{k(n)} \text{ and } \frac{S_{k(n)}}{k(n)} \rightarrow \mu \text{ a.s.}$$

We have shown the a.s. convergence of a subsequence of $S_{k(n)}/k(n)$. By a remark made earlier we are done. \square

Beginning of Oct. 3, 2022

Example: Renewal theory. Let X_1, X_2, \dots be i.i.d. with $0 < X_i < \infty$. Let $T_n = X_1 + \dots + X_n$ and think of T_n as the time of n^{th} occurrence of some event. Let $N_t := \sup\{n : T_n \leq t\}$. Think of X_i as the lifespans of light bulbs and a person replaces a light bulb right when it burns out. Then N_t is the number of light bulbs that have burnt out by time t .

Theorem: D2.4.7

If $\mathbb{E}X_1 = \mu < \infty$ and X_1, X_2, \dots are i.i.d. then

$$N_t/t \rightarrow 1/\mu \text{ a.s.}$$

Proof. Let $T(N_t)$ be the time of last renewal up to time t . Then $T(N_t) \leq t < T(N_t + 1)$, so

$$\frac{T(N_t)}{N_t} \leq \frac{t}{N_t} < \frac{T(N_t + 1)}{N_t} = \frac{T(N_t + 1)}{N_t + 1} \frac{N_t + 1}{N_t}.$$

Since $T(N_t)/N_t \rightarrow \mu$ a.s. and $(N_t + 1)/N_t \rightarrow 1$, we have $t/N_t \rightarrow \mu$ a.s. \square

SLLN when $\mathbb{E}X_1 = \infty$: we know

$$\frac{1}{n} \sum_{i=1}^n \min(X_i, M) \rightarrow \mathbb{E} \min(X_i, M) \text{ a.s.}$$

Since $\mathbb{E} \min(X_i, M) \rightarrow \mathbb{E}X_1 = \infty$ as $M \rightarrow \infty$, we also have

$$\frac{1}{n} \sum_{i=1}^n X_i \rightarrow \infty \text{ a.s.}$$

Example: Empirical d.f.'s, D2.4.8. Let X_1, X_2, \dots be i.i.d. with distribution F . We let

$$F_n(x) := \frac{1}{n} \sum_{m=1}^n 1_{\{X_m \leq x\}}.$$

Namely, $F_n(x)$ is the observed frequency of values that are $\leq x$. For fixed x , $1_{\{X_i \leq x\}}$ are i.i.d. with mean $F(x)$, so SLLN says $F_n(x) \rightarrow F(x)$. Similarly $F_n(x-) \rightarrow F(x-)$ a.s.

Theorem: Gilvenko-Cantelli, D2.4.9

We have “almost sure” uniform convergence:

$$\sup_x |F_n(x) - F(x)| \rightarrow 0 \text{ a.s.}$$

Proof. Idea: if F_n is close to F at two points a, b where $F(b) - F(a)$ is small, then F_n is close to F in all $[a, b]$ by monotonicity.

Fix $k \geq 1$. We let

$$I_j := \{x : 1/k \leq F(x) \leq (j+1)/k\}, 0 \leq i \leq k.$$

This is either an empty set or an interval, so say $I_j = [a_j, b_j]$. If $I_j \neq \emptyset$, then $F(a_j), F(b_j-)$ are in $[j/k, (j+1)/k]$. For all j , there exists $n_0(j)$ such that $n \geq n_0(j)$ implies (almost surely)

$$\begin{cases} |F_n(a_j) - F(a_j)| \leq 1/k \\ |F_n(b_j-) - F(b_j-)| \leq 1/k. \end{cases}$$

That is, on the endpoints, we have convergence.

What about in-between? For $x \in I_j$, we have

$$F_n(x) \geq F_n(a_j) \geq F_n(a_j) - \frac{1}{k} \geq \frac{j-1}{k} \geq F(x) - \frac{2}{k}.$$

The other direction is similar:

$$F_n(x) \leq F_n(b_j-) \leq F(b_j-) + \frac{1}{k} \leq \frac{j+2}{k} \leq F(x) + \frac{2}{k}.$$

Therefore the supremum is bounded by $2/k \rightarrow 0$, and we are done! \square

An alternate proof of SLLN uses $k(n) = n^2$, where the goal is to bound

$$\mathbb{P}\left(\left|\frac{S_m - S_{k(n)}}{k(n)}\right| > \epsilon \text{ for some } k(n) \leq m \leq k(n+1)\right).$$

To do so, we need the following theorem:

Theorem: D2.5.5, Kolmogorov's maximal inequality

If X_1, \dots, X_n are independent (not requiring i.i.d.) with $\mathbb{E}X_i = 0$ and $\text{var}(X_i) < \infty$. Then

$$\mathbb{P}(\max_{1 \leq k \leq n} |S_k| \geq x) \leq \frac{\text{var}(S_n)}{x^2}.$$

Note that Chebyshev gives $\mathbb{P}(|S_k| \geq x) \leq \text{var}(S_n)/x^2$ so this is strictly stronger.

Proof. We decompose the events according to the k^{th} occurrence:

$$A_k := \{|S_k| \geq x \text{ but } |S_j| < x \text{ for } j < k\}.$$

It is clear that the A_i 's are disjoint. We show that $\text{var}(S_n) = \mathbb{E}(S_n)^2 \geq x^2 \mathbb{P}(\max \geq x)$. For this:

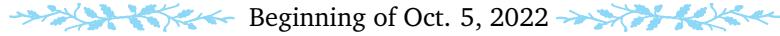
$$\begin{aligned} \mathbb{E}S_n^2 &\geq \sum_{k=1}^n \int_{A_k} S_n^2 d\mathbb{P} \\ &= \sum_{k=1}^n \int_{A_k} (S_k^2 + 2S_k(S_n - S_k) + (S_n - S_k)^2) d\mathbb{P} \\ &\geq \sum_{k=1}^n \left[\int_{A_k} x^2 d\mathbb{P} + \int_{\Omega} 1_{A_k} 2S_k(S_n - S_k) d\mathbb{P} \right]. \end{aligned}$$

The first \geq is because the A_k 's are disjoint. We use x^2 as a lower bound for S_k over A_k by definition, and we note that $(S_n - S_k)^2 \geq 0$. Finally, we note that $1_{A_k} 2S_k$ depends only on what happens on the first k sets and $S_n - S_k$

depends on something else, so they are independent. Therefore

$$\int_{\Omega} 1_{A_k} 2S_k (S_n - s_K) \, d\mathbb{P}$$

the product of expected values, is the expected value of products, and $\mathbb{E}(S_n - S_k) = 0$. Therefore $\mathbb{E}S_n^2 \geq x^2 \sum_{k=1}^n \mathbb{P}(A_k) = x^2 \mathbb{P}(\max|S_k| \geq x)$. \square

 Beginning of Oct. 5, 2022

Proposition: Ottaviani's inequality

Let X_1, X_2, \dots be independent and $a > 0$. Then

$$\mathbb{P}\left(\max_{j \leq n} |S_j| > 2a\right) \cdot \min_{j \leq n} \mathbb{P}(|S_n - S_k| \leq a) \leq \mathbb{P}(|S_n| > a).$$

To apply this theorem, suppose we know $\min_{j \leq n} \mathbb{P}(|S_n - S_k| \leq a) \leq c$, then

$$\mathbb{P}\left(\max_{j \leq n} |S_j| > 2a\right) \leq \frac{1}{c} \mathbb{P}(|S_n| > a).$$

Proof. We define

$$A_j = \{|S_i| \leq 2a \text{ for all } i \leq j \text{ and } |S_j| \geq 2a\}.$$

Then

$$\begin{aligned} \mathbb{P}(|S_n| > a) &\geq \sum_{k=1}^n \mathbb{P}(|S_n| > a \text{ and } A_k) \\ &\geq \sum_{k=1}^n \mathbb{P}(|S_n - S_k| \leq a \text{ and } A_k) \\ &= \sum_{k=1}^n \mathbb{P}(|S_n - S_k| \leq a) \mathbb{P}(A_k) \\ &\geq \min_{k \leq n} \mathbb{P}(|S_n - S_k| \leq a) \cdot \mathbb{P}\left(\bigcup_{k \leq n} A_k\right) \\ &= \min_{k \leq n} \mathbb{P}(|S_n - S_k| \leq a) \mathbb{P}\left(\max_{k \leq n} |S_k| > 2a\right). \end{aligned}$$

\square

Example. If $x\mathbb{P}(|X_1| > x) \rightarrow 0$ but $\mathbb{E}|X_1| = \infty$, and if X and $-X$ have the same distribution (i.e., X is symmetric), then by weak law, $S_n/n \rightarrow$ the truncated mean in probability, which is always 0. However, since the mean is infinite, S_n/n will not converge to 0 almost surely.

Theorem: D2.5.8 Kolmogorov's three-series theorem

Let X_1, X_2, \dots be independent. Let $A > 0$ and let Y_i be $X_i 1_{\{|X_i| \leq A\}}$. Then $\sum_{n=1}^{\infty} X_i$ converges almost surely if and only if the following are all satisfied:

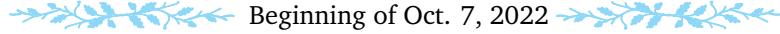
- $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > A) < \infty$,
- $\sum_{n=1}^{\infty} \mathbb{E}Y_n$ converges, and
- $\sum_{n=1}^{\infty} \text{var}(Y_n)$ converges.

Note that (i) A is chosen arbitrarily, so the three conditions cannot depend on A ; (ii) if $\sum_{n=1}^{\infty} \text{var}(Y_n) = \infty$, then $\text{var}(\sum_{j=m}^n Y_n) \rightarrow \infty$ as $n \rightarrow \infty$, for all m , which implies the variate is staying big for the tail, and so we don't expect the tail of $\sum_{n=1}^{\infty} X_i$ to converge to 0.

2.7 Large Deviations

Let X_1, X_2, \dots be i.i.d. and let $S_n = X_1 + \dots + X_n$, as usual. SLLN says if $\mathbb{E}|X_1| < \infty$ then $S_n/n \rightarrow \mu$ a.s. How big is $\mathbb{P}(S_n/n > a)$, for some $a > \mu$?

Main idea: consider the **exponential moment**: $\varphi(t) = \mathbb{E}(\exp(tX)) < \infty$ for some t . Then $\mathbb{P}(S_n > na) \rightarrow 0$ decays exponentially.

 Beginning of Oct. 7, 2022

For a sequence $b_n \rightarrow 0$ converging to 0, we say b_n decays like e^{-cn} if

$$-c = \lim \frac{1}{n} \log b_n,$$

or equivalently, for $\epsilon > 0$,

$$e^{-(c+\epsilon)n} \leq b_n \leq e^{-(c-\epsilon)n}$$

for sufficiently large n .

Similarly, we want to show that $\mathbb{P}(S_n/\mu > a)$ decays like $e^{-I(a)n}$ for some $I(a) > 0$. Question: what is

$$\gamma(a) = \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(S_n/n > a)?$$

We define $\pi_a := \mathbb{P}(S_n/n \geq a)$. We claim that $\log \pi_n$ is **superadditive**: $\pi_{m+n} \geq \pi_m \pi_n$, so $\log \pi_{m+n} \geq \log \pi_n + \log \pi_m$. This is true because

$$\mathbb{P}(S_{m+n} \geq (m+n)a) \geq \mathbb{P}(S_n \geq na, S_{n+m} - S_n \geq ma) = \mathbb{P}(S_n \geq na, S_m \geq ma) = \mathbb{P}(S_n \geq na) \mathbb{P}(S_m \geq ma).$$

Lemma: D2.7.1

If γ_n is superadditive, then $\gamma/n \rightarrow \sup_m \gamma_m/m$.

Proof. Call the supremum limit c . It suffices to show $0 \leq \liminf \leq \limsup \leq c$.

$\limsup \leq c = \sup$ is trivial by definition.

Conversely, we need to show $\liminf \gamma_n/n \geq \gamma_m/m$ for all m . Induction says if $n = n_1 + \dots + n_k$ then $\gamma_n \geq \gamma_{n_1} + \dots + \gamma_{n_k}$.

In particular, if we fix m , then we can write n as $n = km + \ell$ with $0 \leq \ell < m$. Then,

$$\frac{\gamma_n}{n} \geq \frac{k\gamma_m + \gamma_\ell}{km + \ell} = \frac{km}{km + \ell} \frac{\gamma_m}{m} + \frac{\gamma_\ell}{km + \ell}.$$

As $n \rightarrow \infty$ so $k \rightarrow \infty$, ℓ is bounded, so $km/(km + \ell) \rightarrow 1$. So does $\gamma_\ell/(km + \ell)$. Therefore,

$$\liminf_{n \rightarrow \infty} \frac{\gamma_n}{n} \geq \frac{\gamma_m}{m}. \quad \square$$

Therefore, $\mathbb{P}(S_n/n \leq a) \leq e^{\gamma(a)n}$ in particular, since $\gamma(a) \geq n^{-1} \log \mathbb{P}(S_n/n \geq a)$ as shown above. That is, this exponential decay rate is also an upper bound for $\mathbb{P}(S_n/n \leq a)$.

Suppose MGF $\varphi(\theta) = \mathbb{E}e^{\theta X}$ is finite in $(-\delta, \delta)$. In this interval,

$$\frac{X^k e^{\theta X}}{e^{(\theta+\epsilon)X}} = X^k e^{-\epsilon X} \rightarrow 0$$

as $X \rightarrow \infty$. In particular, if $\theta \in (-\delta, \delta)$, so does the new quantity when ϵ is small, so $\mathbb{E}(X^k e^{\theta X})$ is finite, for all k . In particular, for $k = 1$,

$$\lim_{h \rightarrow 0} \mathbb{E} \left(\frac{e^{(\theta+h)X} - e^{\theta X}}{h} \right) = \lim_{h \rightarrow 0} \mathbb{E} \left(e^{\theta X} \frac{e^{hX} - 1}{h} \right).$$

Assuming h positive,

$$\left| \frac{e^{hX} - 1}{h} \right| \leq \begin{cases} |X| & \text{if } X < 0 \\ X e^{hX} & \text{if } X \geq 0 \end{cases}$$

We have shown that $X e^{hX}$ is integrable for small h , so indeed we can apply DCT and obtain $\varphi'(\theta) = \mathbb{E}(X e^{\theta X})$. Similarly, if we differentiate twice, we obtain $\varphi''(\theta) = \mathbb{E}(X^2 e^{\theta X})$, and so on. Also,

$$(\log \varphi)'(\theta) = \frac{\varphi'(\theta)}{\varphi(\theta)} = \frac{\int X e^{\theta X} d\mathbb{P}}{\int e^{\theta X} d\mathbb{P}}.$$

Given $g \geq 0$, we can define a probability measure by

$$\nu(A) = \frac{\int_A g d\mathbb{P}}{\int g d\mathbb{P}},$$

“ \mathbb{P} weighted by g ”, and equivalently

$$\mathbb{E}_\nu 1_A = \frac{\int 1_A g d\mathbb{P}}{\int g d\mathbb{P}}.$$

Using standard measure theory argument, we obtain

$$\mathbb{E}_\nu f = \frac{\int f g d\mathbb{P}}{\int g d\mathbb{P}}.$$

Therefore, $(\log \varphi)'(\theta)$ can be thought of as $\mathbb{E}_{\nu_\theta} X$, under the tilted distribution of ν_θ .

Also,

$$(\log \varphi)''(\theta) = \frac{\varphi(\theta)\varphi''(\theta) - \varphi'(\theta)^2}{\varphi(\theta)^2} = \frac{\int X^2 e^{\theta X} d\mathbb{P}}{\int e^{\theta X} d\mathbb{P}} - \left(\frac{\int X e^{\theta X} d\mathbb{P}}{\int e^{\theta X} d\mathbb{P}} \right)^2,$$

namely $\text{var}_{\nu_\theta}(X)$, which is nonnegative. Therefore, $\log \varphi$ is convex. Also note $(\log \varphi)(0) = 0$ with $(\log \varphi)'(0) = \mathbb{E}X$. What about MGF of sums S_n for i.i.d. random variables?

$$\varphi_{S_n}(\theta) = \mathbb{E}e^{\theta(X_1 + \dots + X_n)} = \varphi(\theta)^n.$$

Now we fix $\theta > 0$. Then

$$\mathbb{P}(S_n/n > a) = \mathbb{P}(e^{\theta S_n} > e^{\theta na}),$$

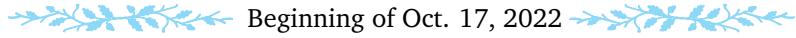
so by Markov, this is bounded from above by

$$\mathbb{P}(S_n/n > a) \leq \frac{\mathbb{E} e^{\theta S_n}}{e^{\theta na}} = \frac{\varphi(\theta)^n}{e^{\theta na}} = \exp(-(a\theta - \log \varphi(\theta))n).$$

To show exponential decay, it suffices to show the above exponent is positive. In particular, if

$$I(a) := \sup_{\theta > 0} (a\theta - \log \varphi(\theta)) > 0$$

we are done. Indeed! $a > \mathbb{E}X$, and $\log \varphi$ is convex, so if we start at the origin and draw a line $a\theta$, it is steeper than $\log \varphi$ so it will go above the graph of $\log \varphi$, resulting in a positive supremum.

 Beginning of Oct. 17, 2022

Large Deviations Regime

We define $X_i = \pm 1$, $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$, and consider the trajectory $\{S_j, j \leq n\}$. We define a new probability measure $Q(\{S_j, j \leq n\})$ as

$$Q(\{S_j, j \leq n\}) := \frac{\mathbb{P}(\{S_j, j \leq n\}) \exp(\beta N_n)}{Z_n(\beta)}$$

where N_n is the number of times the trajectory touches the x -axis and $Z_n(\beta)$ is the scaling constant to make Q a probability measure.

One can show that $\mathbb{P}(S_j = 0) \approx C/\sqrt{j}$, so $\mathbb{E}(N_n) = \sum_{j=1}^n \mathbb{P}(S_j = 0) \sim c\sqrt{n}$.

We first assume that $N_n \approx \lambda n$. What λ is optimal under such assumption? Note that $\{N_n \geq \lambda n\}$ is a large deviation event since $\mathbb{E}\tau = \infty$, and $N_n \geq \lambda n$ is asking for finite gap between returns. Then $\mathbb{P}(N_n \geq \lambda n) \approx e^{-I(\lambda)n}$, so

$$\mathbb{P}(N_n \geq \lambda n) e^{\beta \lambda n} \approx e^{(\beta \lambda - I(\lambda))n}.$$

The optimal λ is therefore the quantity that maximizes the above expression.

Furthermore, for all $\beta > 0$, there is λ for which the ma is positive. (For ≥ 3 dimensions, need $\beta > \beta_c$ for some $\beta_c > 0$.)

Chapter 3

Weak Convergence and CLT

Notation: we use $\sigma(X)$ to denote the standard deviation of X .

Let X_1, X_2, \dots be i.i.d. with $\sigma^2 = \text{var}(X_1) < \infty$. Then $\sigma(S_n) = \sigma\sqrt{n}$, so $S_n - \mathbb{E}S_n$ “grows like \sqrt{n} .” What happens to

$$\frac{S_n - \mathbb{E}S_n}{\sqrt{n}}$$

as $n \rightarrow \infty$? This quantity always has zero mean and variance σ^2 , so in particular it does not converge in probability. We will show that this quantity converges in **distribution** to a standard normal Z :

$$\mathbb{P}\left(\frac{S_n - \mathbb{E}S_n}{\sigma\sqrt{n}} \leq x\right) \rightarrow \mathbb{P}(Z \leq x).$$

For triangular arrays $X_{n,k}$ ($n \geq 1, k \leq k_n$), the row sums $S_n = \sum_{k=1}^{k_n} X_{n,k}$ connects to this quantity:

$$\frac{S_n - \mathbb{E}S_n}{\sigma\sqrt{n}} = \sum_{k=1}^n \frac{X_k - \mathbb{E}X_k}{\sigma\sqrt{n}}.$$

General principle: $S_n \rightarrow Z$ if X_n, k 's are approximately independent and with high probability, no one $X_{n,k}$ contributes much to S_n . We will expand on this more rigorously later.

Example: Coin toss. Let $X_i = \pm 1$ with probability $1/2$ each. Let $+1$ be heads and -1 tails. Then $S_n = \text{number of heads} - \text{number of tails}$. The **DeMoivre-Laplace limit theorem** states that

$$\mathbb{P}(S_n/\sqrt{n} \in [a, b]) \rightarrow \mathbb{P}(Z \in [a, b]).$$

Proof sketch: consider even indices $\mathbb{P}(S_{2n} = 2k)$ for some k . That is, we get $n+k$ heads and $n-k$ tails in $2n$ tosses. This probability is

$$\mathbb{P}(S_{2n} = 2k) = \binom{2n}{n+k} 2^{-2n} \approx \frac{1}{\sqrt{\pi n}} e^{-k^2/n}$$

uniformly over k with $(k/n)^3 n \rightarrow 0$, i.e., $k \ll n^{2/3}$. Then, for $x = 2k/\sqrt{2n}$,

$$\mathbb{P}(S_{2n}/\sqrt{2n} = x) = \frac{1}{\sqrt{\pi n}} e^{-x^2/2} = \frac{2}{\sqrt{2n}} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$$

The last two terms reminds of standard Gaussian. Now note that

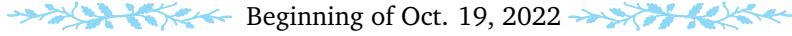
$$\mathbb{P}\left(\frac{S_{2n}}{\sqrt{2n}} = x\right) = \mathbb{P}\left(\frac{S_{2n}}{\sqrt{2n}} \in (x - 1/\sqrt{2n}, x + 1/\sqrt{2n})\right)$$

since S_{2n} is discrete. On the other hand,

$$\mathbb{P}(z \in (x - 1/\sqrt{2n}, x + 1/\sqrt{2n})) = \int_{x-1/\sqrt{2n}}^{x+1/\sqrt{2n}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \sim \frac{2}{\sqrt{2n}} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$$

Now sum over all $x = 2k/\sqrt{2n}$ in $[a, b]$, and fill in all the $\epsilon - \delta$ proof.

3.1 Weak Convergence

 Beginning of Oct. 19, 2022

Given a sequence of distribution functions F_n , we say $F_n \rightarrow F$ **weakly** if $F_n(x) \rightarrow F(x)$ at all continuity points of F . Why continuity points only? Consider $F_n(x) = 1_{[1/n, \infty)}$, which should converge to a point mass at 0, with $F(x) = 1_{[0, \infty)}$. However, $F_n(0) = 0$.

We say $X_n \rightarrow X$ **in distribution** if the distribution functions converge weakly. Our previous De Moivre-Laplace theorem then states that S_n/\sqrt{n} converges in distribution to $\mathcal{N}(0, 1)$.

Note that this simply says $\mathbb{P}(X_n \in (-\infty, x]) \rightarrow \mathbb{P}(X \in (-\infty, x])$ for continuity points x , but does not require $\mathbb{P}(X_n \in A) \rightarrow \mathbb{P}(X \in A)$ for all Borel A . We will discuss more on what A satisfies such limit equation.

Example: Geometric r.v.'s. Let X_p be such that $\mathbb{P}(X_p = n) = (1-p)^{n-1}p$. What happens when $p \rightarrow 0$?

First note that $\mathbb{E}X_p = 1/p$, so $\mathbb{E}(pX_p) = 1$. Natural question: does pX_p has a limit in distribution?

For fixed x , $x/p \sim \lfloor x/p \rfloor$ (meaning ratio $\rightarrow 1$) as $p \rightarrow 0$. What about $\mathbb{P}(pX_p > x)$?

First, $\mathbb{P}(X_p > n) = (1-p)^n$ (i.e., first n all tails). Therefore,

$$\mathbb{P}(pX_p > x) = \mathbb{P}(X_p > x/p) = \mathbb{P}(X_p > \lfloor x/p \rfloor) = (1-p)^{\lfloor x/p \rfloor}.$$

Taking log, we obtain

$$\log(1-p)^{\lfloor x/p \rfloor} = \left\lfloor \frac{x}{p} \right\rfloor \log(1-p) \sim \frac{x}{p}(-p) = -x.$$

Therefore $\mathbb{P}(pX_p > x) \rightarrow e^{-x}$, an exponential with parameter 1.

Example: Density functions. If $F_n \rightarrow F$ weakly, it is not necessarily true that their derivatives $f_n \rightarrow f$ weakly.

Consider $f_n = 2$ on $(j - 1/2^n, j/2^n]$ for odd j and 0 for even j . Then F_n almost looks like diagonal and in fact it converges to $F(x) = x$. But clearly $f_n \not\rightarrow f \equiv 1$.

Proposition: Scheffe's Theorem

If f_n, f are densities of μ_n and μ , and if $f_n \rightarrow f$ pointwise, then $\sup_{B \in \mathcal{B}} |\mu_n(B) - \mu(B)| \rightarrow 0$.

Proof. Let $B_n := \{x : f_n(x) > f(x)\}$. Then

$$\sup_{B \in \mathcal{B}} (\mu_n(B) - \mu(B)) = \mu_n(B_n) - \mu(B_n) = \int (f_n - f)^+ dx.$$

Similarly,

$$\sup_{B \in \mathcal{B}} (\mu(B) - \mu_n(B)) = \int (f_n - f)^- dx.$$

Since f_n and f are densities, the two lines above are equal. It suffices to show $\int (f_n - f)^- dx \rightarrow 0$ as $n \rightarrow \infty$. To do so we use DCT: $(f_n - f)^- \rightarrow 0$ a.s. and is bounded by f , so by DCT, the integral converges to 0. \square

Lemma

For all distribution function F , there exists a random variable Y on $([0, 1], \mathcal{B}, \mathbb{P})$ with \mathbb{P} uniform, such that Y has distribution function F .

Proof. If F is continuous and strictly increasing, let $Y(\omega) = F^{-1}(\omega)$. Then $Y(\omega) \leq t$ iff $\omega \leq F(t)$ iff $\omega \in [0, F(t)]$, so $\mathbb{P}(Y \leq t) = \mathbb{P}(Y \in [0, F(t)]) = F(t)$.

More generally, let $Y(\omega) := \sup\{y : F(y) < \omega\}$. Then $Y(\omega) \leq t$ iff $\omega \leq F(t)$ iff $\omega \in [0, F(t)]$, and we are done. \square

If X_n and Y_n have the same distribution, X and Y have the same distribution, and $X_n \rightarrow X$ a.s., is it true that $Y_n \rightarrow Y$ a.s.? The answer is no.

Example. Let $X \sim \mathcal{N}(0, 1)$, and let $X_n = X$ for all n . Then $X_n \rightarrow X$ trivially. Let Y_n be i.i.d. standard normals, and clearly $Y_n \not\rightarrow \mathcal{N}(0, 1) := Y$.

Beginning of Oct. 21, 2022

Theorem: Convergence in distribution vs a.s.

If $F_n \rightarrow F$ in distribution, then there exist Y_n, Y with distribution functions F_n, F such that $Y_n \rightarrow Y$ almost surely.

Proof. The existence of Y_n, Y have been shown above. We need to only consider $\omega \in [0, 1]$ for which $F^{-1}(\omega)$ contains 0 or 1 point. Fix ω and let $t = Y(\omega)$. Then

$$F^{-1}(\omega) = \emptyset \text{ or } \{t\}.$$

Therefore, for such points, for all $\delta > 0$,

$$F(t - \delta) < F(t) < F(t + \delta).$$

Choose δ such that $t \pm \delta$ are continuity points of F . Then, for large n , $F_n(t - \delta) < F(t) < F_n(t + \delta)$, so $t - \delta \leq Y_n(\omega) \leq t + \delta$, and similarly $t - \delta \leq Y(\omega) \leq t + \delta$. Since δ is arbitrary, $Y_n \rightarrow Y$ a.s., as there can only be countably many exceptions (countable jumps). \square

Theorem: D3.2.9, Characterization of Weak Convergence

$X_n \rightarrow X$ in distribution iff $\mathbb{E}g(X_n) \rightarrow \mathbb{E}g(X)$ for all bounded continuous g .

Proof. Suppose $X_n \rightarrow X$ weakly. Take Y_n with the same distribution of X_n and Y similarly, with $Y_n \rightarrow Y$ almost surely. Let g be bounded and continuous. Then $g(Y_n) \rightarrow g(Y)$ a.s., so $\mathbb{E}g(Y_n) \rightarrow \mathbb{E}g(Y)$ by bounded convergence theorem.

Conversely, suppose $\mathbb{E}g(X_n) \rightarrow \mathbb{E}g(X)$ for all bounded continuous functions. We want

$$\mathbb{E}1_{(-\infty, x]}(X_n) \rightarrow \mathbb{E}1_{(-\infty, x]}(X)$$

for all continuity points x .

$1_{(-\infty, x]}$ isn't continuous, but it can be approximated by 1 on $(-\infty, x - \epsilon)$, 0 on (x, ∞) , and linear in between. We call this function $g_{x-\epsilon, x}$ and define $g_{x, x+\epsilon}$ similarly. By assumption,

$$\mathbb{E}g_{x-\epsilon, x}(X_n) \rightarrow \mathbb{E}g_{x-\epsilon, x}(X) \geq F(x - \epsilon)$$

and

$$\mathbb{E}g_{x, x+\epsilon}(X_n) \rightarrow \mathbb{E}g_{x, x+\epsilon}(X) \leq F(x + \epsilon).$$

Then since $F(x - \epsilon) \leq \liminf_{n \rightarrow \infty} F_n(x) \leq \limsup_{n \rightarrow \infty} F_n(x) \leq F(x + \epsilon)$, if x is a continuity point, we obtain the claim. \square

Remark. Note that we can weaken the assumption and only require g to be continuous a.e.: denote the discontinuity set as D_g ; if $\mathbb{P}(X \in D_g) = 0$ and $X_n \rightarrow X$ in distribution, then $\mathbb{E}g(X_n) \rightarrow \mathbb{E}g(X)$.

Corollary

If $X_n \rightarrow X$ in distribution and f is continuous, then $f(X_n) \rightarrow f(X)$ in distribution too.

Proof. If g is bounded, then $g \circ f$ is bounded, so $\mathbb{E}g(f(X_n)) \rightarrow \mathbb{E}g(f(X))$. Using the previous theorem once more, $f(X_n) \rightarrow f(X)$ in distribution. \square

Corollary

If $X_n \rightarrow X$ almost surely, then $X_n \rightarrow X$ in distribution.

We have shown that there exists a metric w.r.t. convergence in probability: $|X - Y|/(1 + |X - Y|)$. There also exists metrics (one example is Lévy metric) for convergence in distribution.

Proposition: Convergence in probability \Rightarrow in distribution

Slick proof. It suffices to show that for all subsequence, there exists a further subsequence converging almost surely (then such sub-subsequence converges in distribution). And this is true as shown previously. Finally, since there is a metric for convergence in distribution, the full sequence indeed $\rightarrow X$ in distribution.

More revealing proof. Let g be bounded continuous, with $|g| \leq K$. By uniform continuity on compact sets, given

M and ϵ , there exists δ satisfying the uniform continuity criterion on $[-M, M]$. Then

$$\begin{aligned} |\mathbb{E}g(X_n) - \mathbb{E}g(X)| &= \int_{\Omega} |g(X_n) - g(X)| d\mathbb{P} \\ &\leq \int_{|X| \leq M, |X_n - X| < \delta} |g(X_n) - g(X)| d\mathbb{P} + \int_{|X| > M} \dots d\mathbb{P} + \int_{|X_n - X| \geq \delta} \dots d\mathbb{P} \\ &\leq \int_{|X| \leq M, |X_n - X| < \delta} \epsilon d\mathbb{P} + \int_{|X| > M} 2K d\mathbb{P} + \int_{|X_n - X| \geq \delta} 2K d\mathbb{P} \\ &\leq \epsilon + 2K\mathbb{P}(|X| > M) + 2K\mathbb{P}(|X_n - X| \geq \delta). \end{aligned}$$

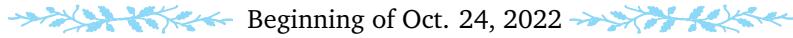
Hence,

$$\limsup_{n \rightarrow \infty} |\mathbb{E}g(X_n) - \mathbb{E}g(X)| \leq \epsilon + 2K\mathbb{P}(|X| > M) \quad \text{for all } M, \epsilon.$$

Since M, ϵ are arbitrary, we see $\limsup_{n \rightarrow \infty} |\mathbb{E}g(X_n) - \mathbb{E}g(X)| = 0$, as claimed. \square

Remark: Converse is false. Let X_n, X be i.i.d. $\mathcal{N}(0, 1)$. Then clearly $X_n \rightarrow X$ in distribution, but not in probability.

However, (shown in HW), if $X_n \rightarrow c$ for some constant c , then indeed $X_n \rightarrow c$ in probability.

 Beginning of Oct. 24, 2022

Let X be any random variable. Then for all $\epsilon > 0$ there exists M such that $\mathbb{P}(|X| > M) < \epsilon$. We say $\{X_n\}$ is **tight** if given ϵ , there exists M such that $\mathbb{P}(|X_n| > M) < \epsilon$ for all n . One easy example: if $\{\mu_n\}$ is bounded, and $X_n \sim \mathcal{N}(\mu_n, 1)$, then $\{X_n\}$ are tight.

Remark. In general, if $X_n \rightarrow X, Y_n \rightarrow Y$ in distribution, $X_n + Y_n \not\rightarrow X + Y$ in distribution. Example: let $X_n = X = Y = 1$ if heads and 0 if tails, and let $Y_n = 0$ if heads and 1 if tails. Then clearly $X_n + Y_n$ is constantly 1 whereas $X + Y$ is either 2 or 0.

Theorem: Slutsky's Theorem

If $X_n \rightarrow X$ in distribution and $Y_n \rightarrow 0$ in distribution, then $X_n + Y_n \rightarrow X$ in distribution.

Proof. Using the bounded function characterization of convergence in distribution, let g be bounded with $|g| \leq K$. Given $M, \epsilon > 0$, there exists δ satisfying the uniform continuity criterion on $[-M, M]$. Then

$$\mathbb{E}|g(X_n + Y_n) - g(Y_n)| \leq \int_{|X_n| \leq M, |Y_n| < \delta} \epsilon d\mathbb{P} + \int_{|X_n| > M} 2K d\mathbb{P} + \int_{|Y_n| \geq \delta} 2K d\mathbb{P}$$

just like in the proof of D3.2.9, characterization of weak convergence. \square

Proposition: Tightness lemma

If $X_n \rightarrow X$ in distribution then $\{X_n\}$ is tight.

Proof. Let F_n be the d.f. of X_n and f that of X . Let $\epsilon > 0$. Clearly,

$$\mathbb{P}(|X_n| > M) \leq F_n(-M) + 1 - F_n(M).$$

We take M_0 such that $\pm M_0$ are continuity points of F , and

$$F(-M_0) + 1 - F(M_0) < \frac{\epsilon}{2}.$$

Hence by assumption there exists n_0 such that if $n \geq n_0$,

$$F_n(-M_0) + 1 - F_n(M_0) < \epsilon.$$

For each one in the first finitely many terms, there exists M_i with $F_i(-M_i) + 1 - F_i(M_i) < \epsilon$. Take the maximum among $M_i, i = 1, 2, \dots, n_0 - 1$, and M_0 , we finish the proof. \square

If $X_n \rightarrow X$ in distribution, for what A does $\mathbb{P}(X_n \in A) \rightarrow \mathbb{P}(X \in A)$? Intuitively, for an open set, X_n 's distribution may converge to the boundary, resulting in a loss of probability.

Theorem: D3.2.11

The following are equivalent:

- (1) $X_n \rightarrow X$ in distribution,
- (2) For all open sets G , $\liminf_{n \rightarrow \infty} \mathbb{P}(X_n \in G) \geq \mathbb{P}(X \in G)$,
- (3) For all closed sets K , $\limsup_{n \rightarrow \infty} \mathbb{P}(X_n \in K) \leq \mathbb{P}(X \in K)$, and
- (4) For every Borel A with $\mathbb{P}(X \in \partial A) = 0$, $\mathbb{P}(X_n \in A) \rightarrow \mathbb{P}(X \in A)$.

Proof. (1) \Rightarrow (2). Let X_n and Y_n have the same distribution, and same for X, Y . Assume $Y_n \rightarrow Y$ a.s. Let G be open. Then $Y \in G$ means $Y_n \in G$ “eventually.” That is,

$$1_G(Y) = \liminf_{n \rightarrow \infty} 1_G(Y_n).$$

By Fatou, taking expectation gives

$$\mathbb{P}(Y \in G) \leq \mathbb{E}(\liminf_{n \rightarrow \infty} 1_G(Y_n)) \leq \liminf_{n \rightarrow \infty} \mathbb{P}(Y_n \in G).$$

(2) \Rightarrow (3). Take complements.

(2), (3) \Rightarrow (4). Suppose $\mathbb{P}(X \in \partial A) = 0$. We denote the interior as A° and closure \bar{A} . Then $\mathbb{P}(X \in A^\circ) = \mathbb{P}(X \in A) = \mathbb{P}(X \in \bar{A})$. We apply (2) to A° and (3) to \bar{A} and obtain the claim.

(4) \Rightarrow (1). Let A take form $(-\infty, x]$. If $\mathbb{P}(X = x) = 0$ then the d.f. is continuous at x . Done. \square

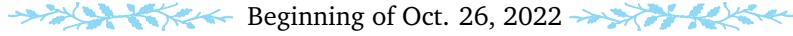
Example. Let X_n be uniform on $[-n-1, -n] \cup [-1, 1] \cup [n, n+1]$. For $x \geq 1$, the distribution function $F_n(x) \rightarrow 3/4 =: F(x)$. Note that F is a measure but not a probability measure anymore — mass escapes at infinity!

In general: if F is right-continuous and nondecreasing, if $F_n(x) \rightarrow F(x)$ for every continuity point of F , we say $F_n \rightarrow F$ vaguely. The above example shows that if F_n are distribution functions and $F_n \rightarrow F$ vaguely, it is still not

necessarily true that F is a CDF.

Theorem: Helly selection theorem

Every sequence $\{F_n\}$ of distribution functions has a subsequence $\{F_{n_k}\}$ converging vaguely to F for some F , again, not necessarily a probability measure. “Almost compactness, but not quite.”

 Beginning of Oct. 26, 2022

Proposition

Suppose $\{F_n\}$ are distribution functions and $F_n(q) \rightarrow G(q)$ for all $q \in Q$, Let $F(x) = G(x+)$. Then $F_n \rightarrow F$ vaguely.

Proof. From analysis, F is continuous. Also $F \geq G$. If $r > s$, then $G(r) \geq G(s+) = F(s)$.

Let x be a continuity point of F and let $\epsilon > 0$. Take $r_1 < r_2 < x < s$ with $r_1, r_2, s \in \mathbb{Q}$, and

$$F(x) - \epsilon < F(r_1) \leq F(r_2) \leq F(x) \leq F(s) < F(x) + \epsilon.$$

By definition/assumption $F_n(r_2) \rightarrow G(r_2) \geq F(r_1)$ by the previous observation. Also, $F_n(s) \rightarrow G(s) \leq F(s)$. Therefore $F_n(x)$ is sandwiched between $F(x) - \epsilon$ and $F(x) + \epsilon$. \square

Proof of Helly selection theorem. We use the diagonal method. Enumerate Q by $\{q_i\}$.

There exists a subsequence S_1 on which $F_n(q_1) \rightarrow$ some constant $G(q_1)$ by compactness of $[0, 1]$ (we are defining the values of G at rationals using compactness). We can pick a further subsequence S_2 on which $F_n(q_1) \rightarrow G(q_1)$ and $F_n(q_2) \rightarrow G(q_2)$. So on and so forth. We now take the i^{th} element in S_i , and the nearly formed sequence $n(k)$ satisfies $F_{n(k)}(q_i) \rightarrow G(q_i)$ for all $q_i \in \mathbb{Q}$, and by the previous remark we are done. \square

Theorem: D3.2.13

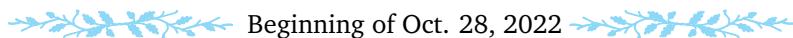
Let $\{F_n\}$ be a sequence of distribution functions. Then every subsequential limit is a d.f. iff $\{F_n\}$ is tight.

Proof. Let μ_n be the probability measure corresponding to F_n .

First suppose $\{F_n\}$ is tight. Let $\epsilon > 0$. By assumption there exists M such that $\mu_n([-M, M]) > 1 - \epsilon$ for all n . If a subsequence $\mu_{n_k} \rightarrow \mu$ vaguely, we want to show that $\mu(\mathbb{R}) = 1$. Indeed, assuming F is a continuity point (which we can always choose so),

$$\mu(\mathbb{R}) \geq \mu([-M, M]) \geq \limsup \mu_{n_k}([-M, M]) > 1 - \epsilon.$$

Conversely, suppose $\{F_n\}$ is not tight. That is, there exists $\epsilon > 0$ such that for all M , there exists $\mu_{n(M)}$ with $\mu_{n(M)} \leq 1 - \epsilon$. WLOG assume $n(1) < n(2) < \dots$. Then there exists a further subsequence $n(M_k)$ on which $F_{n(M_k)}$ converges vaguely to some μ by Helly. Then for all continuity points a of μ , $\mu((-a, a]) = \lim_k \mu_{n(M_k)}((-a, a]) \leq \liminf_k \mu_{n(M_k)}((-M_k, M_k])$ for large M_k . Then the quantity is bounded by $1 - \epsilon$, and so $\mu(\mathbb{R}) \leq 1 - \epsilon$, and we are done. \square

 Beginning of Oct. 28, 2022

Theorem: D3.2.14, Sufficient condition for tightness

Suppose there exists $\varphi : \mathbb{R} \rightarrow [0, \infty)$ with $\varphi \rightarrow \infty$ as $|x| \rightarrow \infty$ and $\mathbb{E}\varphi(X_n)$ is (uniformly) bounded. Then $\{X_n\}$ is tight.

For example, if $\mathbb{E}|X_n|$ or $\mathbb{E}\log(1 + |X_n|)$ is bounded, then $\{X_n\}$ is tight.

Proof. Define $\varphi_0(x) := \inf\{\varphi(t) : |t| \geq |x|\}$. By assumption φ_0 is symmetric/even and monotonically $\rightarrow \infty$ on $[0, \infty)$. Also, $\varphi_0 \leq \varphi$, so $\mathbb{E}\varphi_0(X_n)$ also has (uniformly) bounded expectation, say by some K . WLOG we can further assume φ_0 to be strictly increasing on $[0, \infty)$ by adding something strictly increasing and also bounded bounded to it. Then

$$\mathbb{P}(|X_n| \geq M) = \mathbb{P}(\varphi_0(X_n) \geq \varphi_0(M)) \leq \frac{\mathbb{E}\varphi_0(X_n)}{\varphi_0(M)} \leq \frac{K}{\varphi_0(M)}.$$

Given $\epsilon > 0$, choose M large with $K/\varphi_0(M) < \epsilon$, and we are done. \square

3.2 Characteristic Functions

Let X be a random variable. We define the complex function $\varphi_X(t) := \mathbb{E}e^{itX} = \mathbb{E}\cos(tX) + i\mathbb{E}\sin(tX)$ to be its **characteristic function**. Note immediately that

$$|\varphi_X(t)| \leq \mathbb{E}|e^{itX}| = 1 \quad \text{with} \quad \varphi_X(0) = 1.$$

Example. Let X be uniform on $[-1, 1]$. Then

$$\varphi_X(t) = \int_{-1}^1 \frac{1}{2}(\cos tx + i \sin tx) dx = \frac{1}{2} \frac{\sin tx}{t} \Big|_{-1}^1 + 0 = \frac{\sin t}{t}.$$

Example 3.2.1. We will show later that if $\mathbb{E}|X| < \infty$ then $\varphi'_X(t) = \frac{d}{dt} \int e^{itX} d\mathbb{P} = \int iX e^{itX} d\mathbb{P}$. For example if X is standard normal, then

$$\varphi'_X(t) = \int iX e^{itx} f(x) dx.$$

Note that $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ satisfies $f'(x) = -xf(x)$, so the cosine part is an odd function, and so

$$\varphi'_X(t) = - \int x \sin(tx) f(x) dx = \int \sin(tx) f'(x) dx.$$

IBP and we obtain $\varphi'_X(t) = -t\varphi_X(t)$ with initial condition $\varphi_X(0) = 1$. This gives $\varphi_X(t) = \exp(-t^2/2)$.

Proposition

For all X , $\varphi_X(t)$ is uniformly continuous. (We will drop the subscript X for convenience.)

Proof. Since

$$|\varphi(t+h) - \varphi(t)| = \mathbb{E}|e^{i(t+h)X} - e^{itX}| = \mathbb{E}|e^{ihX} - 1|,$$

$|e^{ihX} - 1| \leq 2$, and $e^{ihX} \rightarrow 0$ as $h \rightarrow 0$, by DCT the limit is 0, uniform in t . \square

Remark. If X is symmetric, i.e., X and $-X$ have the same distribution, $\varphi_X(t) = \overline{\varphi_X(t)}$ so $\varphi_X(t) \in \mathbb{R}$.

Question. Does φ_X determine the distribution of X . Furthermore, can we calculate the distribution of μ from φ_X ?

Relation to Fourier transform: given f , we define

$$\hat{f}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itx} f(x) dx = \frac{1}{\sqrt{2\pi}} \varphi(-t).$$

If the density $f \in L^2$ and $\varphi \in L^1$ (i.e. integrable), then

$$f(x) = \hat{f}(-x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} \hat{f}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{itx} \varphi(-t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt.$$

Hence (since $\varphi \in L^1$, Fubini applies)

$$\begin{aligned} \mu((a, b)) &= \int_a^b f(x) dx = \frac{1}{2\pi} \int_a^b \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_a^b e^{-itx} \varphi(t) dx dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt. \end{aligned}$$

Theorem: Inversion Formula

If μ is a probability measure with ch.f. φ , then

$$\lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = \mu((a, b)) + \mu(\{a\})/2 + \mu(\{b\})/2.$$

Beginning of Halloween, 2022

Proof. For convenience, define $I_T := \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = \int_{-T}^T \int_{\mathbb{R}} e^{itX} \mu(dx) dt$. By Fubini,

$$I_T = \int_{\mathbb{R}} \int_{-T}^T \frac{e^{it(x-a)} - e^{it(x-b)}}{it} dt \mu(dx).$$

Define $R(\theta, T) := \int_{-T}^T \frac{e^{it\theta} - 1}{it} dt$. Then the inner integral above is $R(x-a, T) - R(x-b, T)$. Note that R is real since R is odd, and so only the real part remains:

$$R(\theta, T) = \int_{-T}^T \frac{\sin(\theta t)}{t} dt = 2 \operatorname{sgn}(\theta) \int_{\theta}^{T|\theta|} \frac{\sin u}{u} du.$$

Because of the sign function, $R(x-a, T) - R(x-b, T)$ depends on the relative position of x to a and b .

Since $\int_0^{\infty} \frac{\sin u}{u} du = \pi/2$, $R(\theta, T) \rightarrow g(x) := \begin{cases} 2\pi & x \in (a, b) \\ \pi & x \in \{a, b\} \\ 0 & \text{otherwise.} \end{cases}$ Then, by bounded convergence,

$$\frac{1}{2\pi} I_T = \frac{1}{2\pi} \int_{\mathbb{R}} (R(x-a, T) - R(x-b, T)) \mu(dx) \rightarrow \frac{1}{2\pi} \int_{\mathbb{R}} g(x) \mu(dx) = \mu((a, b)) + \frac{1}{2}\mu(\{a\}) + \frac{1}{2}\mu(\{b\}).$$

□

Theorem: D3.3.14

If $\varphi \in L^1$, then μ has a bounded continuous density

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \varphi(y) dy.$$

Proof. We want to show that for $a < b$, $\mu((a, b)) = \int_a^b \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \varphi(y) dy dx$. Note that

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| = \left| \int_a^b e^{-ity} dy \right| \leq |b - a|,$$

so (defining I_T as above), $I_T \rightarrow I_\infty$. Therefore

$$\begin{aligned} \mu((a, b)) + \mu(\{a\})/2 + \mu(\{b\})/2 &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_a^b e^{-itx} dx \varphi(t) dt \\ &= \int_a^b \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt \mu(dx). \end{aligned}$$

Call the last quantity $h(a, b)$. We want to show that $h(a, b) = \mu((a, b))$. This is because as an integral, h is continuous in (a, b) . The absense of jumps imply that $\mu(\{a\}), \mu(\{b\}) = 0$ for a, b . So $h(a, b) = \mu((a, b))$ for all a, b . \square

3.3 Weak Convergence

If $X_n \rightarrow X$ weakly, then $\varphi_{X_n}(t) = \mathbb{E}(r \cos(tX_n) + i \sin(tX_n))$, a bounded continuous function, must also converge to $\varphi_X(t)$ pointwise.

Conversely, if $\varphi_n \rightarrow \varphi$ pointwise, does the measures μ_n associated with φ_n necessarily converge to some μ weakly? The answer is no.

Example. Let U_1, U_2, \dots be i.i.d. over $[-1, 1]$, and let $S_n = \sum_{i=1}^n U_i$. Then $\varphi_{U_1}(t) = \sin t / t$, and $\varphi_{S_n}(t) = \varphi_{U_1}(t)^n$. As $n \rightarrow \infty$, φ equals 0 only when $t = 0$ and $\rightarrow 0$ otherwise. However, S_n is not converging in distribution. Furthermore, the limit $\varphi = 1_{\{0\}}$ is not continuous, so it cannot be a ch.f. anyway. Therefore $\{S_n\}$ does not converge weakly.

Theorem: Continuity theorem, D3.3.17

Let μ_n be probability measures with ch.f. φ_n . Let μ be a probability measure with ch.f. φ .

- (1) If $\mu_n \rightarrow \mu$ weakly, then $\varphi_n(t) \rightarrow \varphi(t)$ pointwise.
- (2) Conversely, if $\varphi_n \rightarrow \varphi$ pointwise, and φ is continuous at 0, then $\mu_n \rightarrow \mu$ weakly, and μ has ch.f. φ .

Remark: “General principle”. The behavior of φ near 0 is related (in various ways) to “the measure μ near ∞ ,” e.g. moments, tail probabilities, etc.

Intuitively, for small t , e^{itX} is close to 1 unless X is big, pushing the value away from 1 significantly.

Proposition: Tightness from char functions

Let φ be the ch.f. of μ . Then for all $u > 0$, $\mu(\{x : |x| > 2/u\}) \leq u^{-1} \int_{-u}^u (1 - \varphi(t)) dt$.

Proof. We plug in the definition of $\varphi(t)$.

$$\begin{aligned} \frac{1}{u} \int_{-u}^u (1 - \varphi(t)) dt &= \frac{1}{u} \int_{-u}^u \int_{\mathbb{R}} (1 - e^{-itx}) \mu(dx) dt \\ &= \int_{\mathbb{R}} \frac{1}{u} \int_{-u}^u (1 - e^{itx}) dt \mu(dx) \\ &= 2 \int_{\mathbb{R}} \left(\frac{1 - (\sin ux)}{ux} \right) \mu(dx). \end{aligned}$$

For $|y| \geq 2$, $|\sin y/y| \leq 1/2$, so integrating over $\{|x| \geq 2/u\}$ gives an lower bound $2 \int_{|x| \geq 2/u} 1/2 \mu(dx)$. \square

Beginning of Nov. 2, 2022

Proof of continuity theorem. (i) True. (ii) By the lemma, for $u > 0$,

$$\mu_n(\{|x| \geq 2/u\}) = \frac{1}{u} \int_{-u}^u (1 - \varphi_n(t)) dt.$$

By bounded convergence theorem, this converges to the integral with integrand φ_n replaced by φ , as $n \rightarrow \infty$. Given $\epsilon > 0$, choose u such that last integral $< \epsilon$. Then beyond some N_0 ,

$$\frac{1}{u} \int_{-u}^u (1 - \varphi_n(t)) dt < \epsilon \quad \text{for all } n \geq N_0,$$

so μ_n is tight, as there exists $M \geq 2/u$ such that $\mu_n(\{|x| > M\}) < \epsilon$ for all $n \geq N$, and there are only finitely many early terms, which we can bound individually.

Finally, we show that the full sequence converges. If $\mu_n \rightarrow \mu$ weakly then there exists a subsequence $\varphi_{n_k} \rightarrow$ (ch.f. of μ), so φ must be the ch.f. of μ . Thus the full sequence μ_n converges to μ . \square

Differentiation and Moments

When can we differentiate

$$\varphi(t) = \int_{\mathbb{R}} e^{itx} \mu(dx) ?$$

Note that

$$\frac{\varphi(x+h) - \varphi(x)}{h} = \int_{\mathbb{R}} e^{itx} \frac{e^{ihx} - 1}{h} \mu(dx).$$

The term $(e^{ihx} - 1)/h$ is bounded by $|x|$, so it is integrable as $h \rightarrow 0$. Thus it is sufficient to require $\mathbb{E}|X| = \int_{\mathbb{R}} |x| \mu(dx) < \infty$. Then

$$\varphi'(t) = \int_{\mathbb{R}} ix e^{itx} \mu(dx).$$

More generally, to take the n^{th} derivative, it suffices to require $\mathbb{E}|X|^n < \infty$, with $\varphi^{(n)}(t) = \int_{\mathbb{R}} (ix)^n e^{itx} \mu(dx)$. Note that the expression holds independent of t .

Theorem

(Conversely,) if $\varphi^{2n}(0)$ exists and is finite, then $\mathbb{E}|X|^{2n} < \infty$. (Does not necessarily work for odd powers.)

Proof. We will prove the special $k = 1$ case: assume $\varphi''(0)$ is finite. We write it out:

$$\begin{aligned}\varphi''(0) &= \lim_{h \rightarrow 0} \frac{\varphi(x) - 2\varphi(0) + \varphi(-h)}{h^2} \\ &= \lim_{h \rightarrow 0} \int_{\mathbb{R}} \frac{e^{itx} - 2 + e^{-ihx}}{h^2} \mu(dx) \\ &= -2 \lim_{h \rightarrow 0} \int_{\mathbb{R}} \frac{1 - \cos(hx)}{h^2} \mu(dx).\end{aligned}$$

By Fatou's lemma (and since limit exists),

$$\varphi''(0) \leq -2 \int_{\mathbb{R}} x^2 \mu(dx) = -\mathbb{E}X^2$$

so $\mathbb{E}|X|^2$ is finite. For $k \geq 2$, we need to induct on k and apply the above argument to $X^2/\mathbb{E}X^2\mu(dx)$. \square

Taylor-type Expansions

Expanding φ around 0 gives

$$e^{itX} = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} X^k = \sum_{k=0}^n \frac{(it)^k}{k!} X^k + \mathcal{O}(|tX|^{n+1})$$

as $|tX| \rightarrow 0$. Clearly we can take the expected value of the first finite sum, when $\mathbb{E}|X|^n < \infty$. But what about the remainder? A lemma from Durrett —

Proposition: D3.3.19

$$\left| e^{ix} - \sum_{m=0}^n \frac{(ix)^m}{m!} \right| \leq \min \left(\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right).$$

Proof sketch. Integrate by parts and iterate:

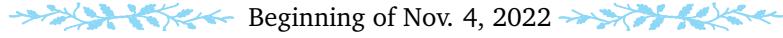
$$e^{ix} = 1 + ix + \sum_{k=0}^n \frac{i^k}{k!} x^k + \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds.$$

This will give

$$\left| \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds \right| \leq \frac{|x|^{n+1}}{(n+1)!}. \quad \square$$

Now looking back at Taylor expansions:

$$\left| \mathbb{E}e^{itX} - \sum_{m=0}^n \mathbb{E} \frac{(itX)^m}{m!} \right| \leq \mathbb{E} \min(|tX|^{n+1}, 2|tX|^n).$$

 Beginning of Nov. 4, 2022

Convex Combinations of r.v.'s

If μ_1, \dots, μ_n are probability measures and $\sum_{i=1}^n \lambda_i = 1$, then the weighted sum $\sum_{i=1}^n \lambda_i \mu_i$ is also a probability measure. Similarly, if μ_s is a probability measure for all $s \in I$, and ν is a measure on I , then (assuming measurability)

$$\int_I \mu_s \nu(ds)$$

is also a probability measure, with ch.f. $\int_I \varphi_s(t) \nu(ds)$ where φ_s is the ch.f. of μ_s .

Example. Let $f_1(x) = (1 - \cos x)/(\pi x^2)$, which has ch.f. $\varphi_1(t) = \max(1 - |t|, 0)$. If s is any scalar then X/s has ch.f. $\varphi_s(t_0 = \varphi_1(t/s))$.

Then we can consider combinations of φ_i 's. For example, we note that $f_1/3 + 2f_5/3$ is a density with ch.f. $\varphi_1/3 + 2\varphi_5/3$.

Theorem: Polya's criterion, D3.3.22

Let $\varphi \geq 0$ with $\varphi(0) = 1$, and $\varphi(t) = \varphi(-t)$. Furthermore assume φ is decreasing and convex on $(0, \infty)$ with $\lim_{t \rightarrow 0} \varphi(t) = 1$ and $\lim_{t \rightarrow \infty} \varphi(t) = 0$. Then φ is a ch.f.

Proof. Idea: express $\varphi(t)$ as $\int_0^\infty \varphi_s(t) \nu(ds)$ as defined in the example above for some ν . If we can differentiate inside this integral, then φ convex implies φ' exists a.e. and increasing, and $\varphi'(t) = \int_0^\infty \varphi'_s(t) \nu(ds)$. But note that $\varphi'_s(t) = 0$ if $s \leq t$, so this equals $-\int_t^\infty s^{-1} \nu(ds)$. So, as a measure, $d\varphi'(t) = t^{-1} \nu(dt)$, and $\nu(dt) = t d\varphi'(t)$ is our candidate for ν .

We may assume $\varphi(\infty) = 0$. Assume φ' is right-continuous (if not, replace it with $F(t) = \varphi'(t+)$). Define ν by $\nu([0, t]) = \int_0^t s d\varphi'(s)$. Then

$$d\varphi'(t) = t^{-1} \nu(dt)$$

as a measure. For $t > 0$,

$$\varphi'(\infty) - \varphi'(t) = \int_t^\infty d\varphi'(s) = \int_{(t, \infty)} s^{-1} \nu(ds),$$

so

$$\varphi'(t) = - \int_{(t, \infty)} s^{-1} \nu(ds) \text{ a.e.}$$

Since φ is convex,

$$\begin{aligned} \varphi(\infty) - \varphi(t) &= \int_t^\infty \varphi'(u) du = - \int_t^\infty \int_{(u, \infty)} s^{-1} \nu(ds) du \\ &= - \int_{(t, \infty)} \int_{(t, s)} s^{-1} du \nu(ds) \\ &= - \int_{(t, \infty)} (1 - t/s) \nu(ds) \\ &= - \int_{(t, \infty)} \varphi_s(t) \nu(ds) \end{aligned}$$

and we are done, following our previous observation. □

Back to Taylor series: if *all* moments $\mathbb{E}|X|^k$ are finite, can we conclude

$$\mathbb{E}e^{itX} = \mathbb{E} \sum_{k=0}^{\infty} \frac{i^n X^n}{n!} t^n = \sum_{k=0}^{\infty} \frac{i^n \mathbb{E}|X|^n}{n!} t^n?$$

The answer is still no in general.

All $\mathbb{E}(X^k)$ finite implies all $\varphi^{(k)}(t)$ exist for all t , with

$$\varphi^{(k)}(\theta) = \mathbb{E}((iX)^k e^{i\theta X}) \text{ and } \varphi^{(k)}(0) = i^k \mathbb{E}X^k.$$

If the full Taylor series

$$\sum_{k=0}^{\infty} \frac{\varphi^{(k)}(\theta)}{k!} (1-\theta)^k = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbb{E}((iX)^k e^{i\theta X})) t^k$$

has a positive radius of convergence $r > 0$ for some θ , then the values $\mathbb{E}((iX)^k e^{i\theta X})$ determine φ in an interval around θ , $(\theta - r, \theta + r)$. Further, $r > 0$ iff

$$\limsup_{k \rightarrow \infty} \left| \frac{1}{k!} \mathbb{E}((iX)^k e^{i\theta X}) \right|^{1/k} < \infty.$$

By Stirling, $k! \geq (k/e)^k$, so this is true for all θ , if

$$\limsup_{k \rightarrow \infty} \frac{(\mathbb{E}|X|^k)^{1/k}}{k} < \infty.$$

That is, it suffices to require that “moments don’t grow too fast:”

$$\mathbb{E}|X|^k \leq (ck)^k \text{ for some } c.$$

Theorem: D3.3.25

If $\{\mu_{2k}\} > 0$ with $\limsup_{k \rightarrow \infty} \frac{\mu_{2k}^{1/k}}{k} < \infty$, then there exists at most one distribution with moments $\mathbb{E}X^k = \mu_k$, for all k .

3.4 Central Limit Theorem

Beginning of Nov. 7, 2022

From Taylor’s theorem, $|\log(1+z) - z| = \mathcal{O}(|z|^2)$ as $z \rightarrow 0$, so if $c_n \rightarrow c$ in \mathbb{C} , then $(1+c_n/n)^n \rightarrow e^c$ as $n \rightarrow \infty$, and

Theorem: i.i.d. CLT

Let X_1, X_2, \dots be i.i.d., with $\mathbb{E}X_1 = \mu$ and $\text{var}(X_1) = \sigma^2 \in (0, \infty)$, then

$$\frac{S_n - n\mu}{\sigma n^{1/2}} \rightarrow \mathcal{N}(0, 1)$$

in distribution.

Proof. We first assume $\mu = 0$. From D3.3.20 $\varphi_{X_1}(t) = \mathbb{E} \exp(itX_1) = 1 - \sigma^2 t^2/2 + o(t^2)$ as $t \rightarrow 0$. Hence

$$\varphi_{S_n/(\sigma\sqrt{n})}(t) = \mathbb{E} \exp(itS_n/(\sigma\sqrt{n})) = \varphi_{S_n}(1/(\sigma\sqrt{n})) = \varphi_{X_1}(1/(\sigma\sqrt{n}))^n.$$

For t fixed, this quantity becomes $(1 - t^2/(2n) + o(1/\sigma))^n = (1 - (t^2 - nt_n)/(2n))^n$. The numerator is converging to t^2 , so by the previous observation, the entire quantity converges to $\exp(-t^2/2)$, and we are done. \square

Example. A business rounds all transformations to the nearest integer, so the error X in one transaction is a uniform distribution (though unrealistic) on $[-0.5, 0.5]$. Let $n = 100$ be the number of transactions. Then

$\mathbb{E}X_1 = 0$ and $\text{var}(X_1) = 1/12$.

$$\mathbb{P}(|\text{total error}| > 20) = \mathbb{P}\left(\frac{S_n - 0}{\sqrt{n}/\sqrt{12}} > \frac{20 - 0}{\sqrt{n}/\sqrt{12}}\right) \approx \mathbb{P}(z > 2.19) \approx 0.14.$$

How about triangular arrays? Suppose the variables on the n^{th} row are independent, $S_n = \sum_{k=1}^{k(n)} X_{n,k}$, and $\mathbb{E}X_{n,m} = 0$.

When does $S_n \rightarrow \mathcal{N}(0, \sigma^2)$ in distribution?

The basic condition is to require the triangular array to be **uniformly asymptotically negligible** (UAN):

$$\sum_{k=1}^{k(n)} \mathbb{P}(|X_{n,m}| > \epsilon) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Note that

$$\begin{aligned} \text{UAN} &\iff \prod_{k=1}^{k(n)} (1 - \mathbb{P}(|X_{n,k}| > \epsilon)) \rightarrow 1 \\ &\iff \prod_{k=1}^{k(n)} \mathbb{P}(|X_{n,k}| \leq \epsilon) \rightarrow 1 \\ &\iff \mathbb{P}(|X_{n,m}| = \epsilon \text{ for all } n \leq k(n)) \rightarrow 1. \end{aligned}$$

To get the result from CLT we want $\varphi_{S_n}(t) = \prod_{k=1}^{k(n)} \varphi_{X_{n,k}}(t) = \prod_{k=1}^{k(n)} \left(1 - \frac{t^2 \sigma_{n,k}^2}{2} + \text{some error}\right) \rightarrow e^{-t^2 \sigma^2/2}$.

Proposition

Let $\lambda_{n,m} \in \mathbb{C}$ form a triangular array. If

$$(1) \quad \sum_{k=1}^{k(n)} \lambda_{n,k} \rightarrow \lambda,$$

$$(2) \quad \max_{\text{row}} |\lambda_{n,m}| \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ and}$$

$$(3) \quad \sup_{n \geq 1} \sum_{k=1}^{k(n)} |\lambda_{n,k}| < \infty,$$

$$\text{then } \prod_{k=1}^{k(n)} (1 + \lambda_{n,k}) \rightarrow e^\lambda.$$

Proof. We consider $|\log \prod_{k=1}^{k(n)} (1 + \lambda_{n,k}) - \sum_{k=1}^{k(n)} \lambda_{n,k}|$:

$$\begin{aligned} \text{LHS} &= \sum_{k=1}^{k(n)} |\log(1 + \lambda_{n,k}) - \lambda_{n,k}| \\ &\leq K \sum_{k=1}^{k(n)} |\lambda_{n,k}|^2 \\ &\leq K \left(\sup_n \sum_{k=1}^{k(n)} |\lambda_{n,k}| \right) \max_{m \geq k_n} |\lambda_{n,m}| \rightarrow 0. \end{aligned}$$

Finally since $\sum_{k=1}^{k(n)} \lambda_{n,k} \rightarrow \lambda$, we are done. \square

Proposition: D3.4.3

Let $z_1, \dots, z_n, w_1, \dots, w_n \in \mathbb{C}$, all with modulus $\leq K$. Then

$$\left| \prod_{m=1}^n z_m - \prod_{m=1}^n w_m \right| \leq K^{n-1} \sum_{m=1}^n |z_m - w_m|.$$

Proof. Trivial for $n = 1$. If $n > 1$, we use triangle inequality to remove z_1 and w_1 to get

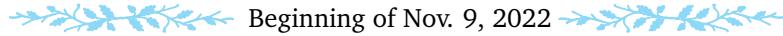
$$\begin{aligned} \left| \prod_{m=1}^n z_m - \prod_{m=1}^n w_m \right| &\leq \left| z_1 \prod_{m=2}^n z_m - z_1 \prod_{m=2}^n w_m \right| + \left| z_1 \prod_{m=2}^n w_m - w_1 \prod_{m=2}^n w_m \right| \\ &\leq K \left| \prod_{m=2}^n z_m - \prod_{m=2}^n w_m \right| + K^{n-1} |z_1 - w_1|. \end{aligned} \quad \square$$

Theorem: D3.4.10, Lindeberg-Feller Theorem

Let $X_{n,m}$ be a triangular array with independent random variables and zero mean. If

- (1) $\sum_{m=1}^n \mathbb{E}X_{n,m}^2 \rightarrow \sigma^2 > 0$, and
- (2) $\sum_{m=1}^n \mathbb{E}(X_{n,m}^2 1_{\{|X_{n,m}|>\epsilon\}}) \rightarrow 0$ for all ϵ ,

then the row sums S_n converges to $\mathcal{N}(0, \sigma^2)$ in distribution.

 Beginning of Nov. 9, 2022

Note that (ii) implies UAN by Chebyshev. Also, L-F CLT covers the i.i.d. case which we are already familiar with: for X_1, X_2, \dots i.i.d., we simply let $X_{n,m} = X_m/\sqrt{n}$.

Proof of L-F CLT. We let $\varphi_{n,m}$ be the ch.f. of $X_{n,m}$, and similarly $\sigma_{n,m}^2$ the variance = $\mathbb{E}X_{n,m}^2 = \text{var}(X_{n,m})$.

First observation:

$$\begin{aligned} \max_{m \leq n} \sigma_{n,m}^2 &= \max_{m \leq n} [\mathbb{E}(X_{n,m}^2 1_{|X_{n,m}| \leq \epsilon}) + \mathbb{E}(X_{n,m}^2 1_{|X_{n,m}| > \epsilon})] \\ &\leq \epsilon^2 + \sum_{k=1}^n \mathbb{E}(X_{n,k}^2 1_{|X_{n,k}| > \epsilon}). \end{aligned}$$

The sum $\rightarrow 0$ by (ii), so $\max_{m \leq n} \sigma_{n,m}^2 \rightarrow 0$.

Next, we note that $\varphi_{S_n}(t) = \prod_{m=1}^n \varphi_{X_{n,m}}(t)$ and compare this to $\prod_{m=1}^n (1 - (t^2 \sigma_{n,m}^2)/2)$. Note that $|\varphi_{n,m}| \leq 1$, and $|1 - (t^2 \sigma_{n,m}^2)/2| \leq 1$ for n large and t fixed by the observation above. Therefore, by D3.4.3 (the inequality just shown above)

$$\left| \varphi_{S_n}(t) - \prod_{m=1}^n (1 - t^2 \sigma_{n,m}^2/2) \right| \leq \sum_{m=1}^n |\varphi_{X_{n,m}}(t) - 1 + t^2 \sigma_{n,m}^2/2|.$$

From D3.3.20 we can bound the error of expansions by $|\varphi_{X_{n,m}}(t) - 1 + t^2 \sigma_{n,m}^2/2| \leq t^2/6 \cdot \mathbb{E} \min(|t| \|X_{n,m}\|^3, 6|X_{n,m}|^2)$. For $|X_{n,m}| \leq \epsilon$ we consider $|X_{n,m}|^2$; otherwise we consider the latter. We thus obtain the following bound:

$$|\varphi_{X_{n,m}}(t) - 1 + t^2 \sigma_{n,m}^2/2| \leq \frac{t^2}{6} \mathbb{E}(|t| \|X_{n,m}\|^3 1_{|X_{n,m}| \leq \epsilon}, 6|X_{n,m}|^2 1_{|X_{n,m}| > \epsilon}).$$

Bounding $|t||X_{n,m}|^3$ by $t\epsilon|X_{n,m}|^2$ and using assumption (ii) yield

$$\limsup_{n \rightarrow \infty} \sum_{m=1}^n |\varphi_{X_{n,m}}(t) - 1 + t^2 \sigma_{n,m}^2/2| \leq \frac{t^3}{6} \epsilon \sum_{m=1}^n \sigma_{n,m}^2 + 0.$$

Convergence of $\sum \sigma_{n,m}^2$ imply in particular that they are bounded in n , regardless of ϵ . Thus the upper limit is 0. It remains to notice that $\prod_{m=1}^n (1 - t^2 \sigma_{n,m}^2/2) \rightarrow \exp(-t^2 \sigma^2/2)$, the ch.f. of $\mathcal{N}(0, \sigma^2)$. \square

Example: Normal approximation to binomial. Let S_n be the number of success in n independent trials, each with success probability p . If A_i is the event of success on trial i , then $S_n = \sum_{i=1}^n 1_{A_i}$. We have $\mathbb{E}1_{A_i} = p$ and $\text{var}(1_{A_i}) = p(1-p)$, so $(S_n - np)/\sqrt{np(1-p)} \rightarrow \mathcal{N}(0, 1)$ in distribution. For integer valued distributions, we often apply continuity corrections to obtain better approximation results.

3.5 Poisson Convergence & Poisson Processes

Beginning of Nov. 14, 2022

Theorem: D3.6.1

Let $\{A_{n,m}\}$ be a triangular array with n on n^{th} row. Assume it is row-independent (within each row). Let $S_n = \sum_{m=1}^n 1_{A_{n,m}}$. If $\sum_{m=1}^n \mathbb{P}(A_{n,m}) \rightarrow \lambda$ as $n \rightarrow \infty$, and if $\max_{m \leq n} \mathbb{P}(A_{n,m}) \rightarrow 0$ as $n \rightarrow \infty$, then $S_n \rightarrow \text{Poisson}$ with parameter λ as $n \rightarrow \infty$.

Proof. Note that

$$\varphi_{S_n}(t) = \prod_{m=1}^n (1 + \mathbb{P}(A_{n,m})(e^{it} - 1)).$$

Let $\lambda_{n,m} = \mathbb{P}(A_{n,m})(e^{it} - 1)$. By assumption, $\sum_{m=1}^n \lambda_{n,m} \rightarrow \lambda(e^{it} - 1)$, and $\sum_{m=1}^n |\lambda_{n,m}| \leq 2 \sum_{m=1}^n \mathbb{P}(A_{n,m}) \rightarrow 2\lambda$ and is in particular bounded. Finally, $\max_{m \leq n} |\lambda_{n,m}| \rightarrow 0$ as $n \rightarrow \infty$. By a previous proposition,

$$\prod_{m=1}^n (1 + \lambda_{n,m}) \rightarrow e^{\lambda(e^{it}-1)},$$

the ch.f. of a parameter λ Poisson. \square

Theorem: D3.7.1

Let $\{X_{n,m}\}$ be a row-independent triangular array with $m \leq n$, $n \geq 1$. Assume X are integer valued random variables. Let $p_{n,m} = \mathbb{P}(X_{n,m} = 1)$, $\epsilon_{n,m} = \mathbb{P}(X_{n,m} \geq 2)$, and $S_n = \sum_{m=1}^n X_{n,m}$. If $\sum_{m=1}^n p_{n,m} \rightarrow \lambda \in (0, \infty)$, $\max_{m \leq n} p_{n,m} \rightarrow 0$, and $\sum_{m=1}^n \epsilon_{n,m} \rightarrow 0$, then $S_n \rightarrow \text{Poisson}(\lambda)$. Namely, if $\mathbb{P}(X_{n,m} \geq 2)$ is sufficiently small, the result still holds.

Proof. Let $X'_{n,m} = 1_{\{X_{n,m}=1\}}$ and S'_n the row sum of $X'_{n,m}$. By D3.6.1 $S'_n \rightarrow \text{Poisson}(\lambda)$. It remains to apply Slutsky's theorem to obtain convergence in distribution of S_n as well. This is indeed true:

$$\mathbb{P}(S_n \neq S'_n) \leq \sum_{m=1}^n \epsilon_{n,m} \rightarrow 0.$$

\square

Example: Birthdays.... Consider n friends, and let N be the number of days (out of 365) with no birthdays among these friends. Then $\mathbb{P}(\text{no one on a fixed day}) = (1 - 1/365)^n \approx e^{-n/365}$, so $\mathbb{E}N = 365e^{-n/365}$. Taking $n = 365 \log(365/\lambda)$ gives $\mathbb{E}N \approx \lambda$.

This, however, does not take into dependency into account. If no one has birthday on Jan 1, then the probability of no one having birthday on Jan 2 is slightly smaller with this prior information. We can show that if we replace 365 with r_n and N with r_n , and if $r_n/n \cdot \log(r_n/\lambda) \rightarrow 1$, then $N_n \rightarrow \text{Poisson}(\lambda)$.

Poisson Processes

We now consider an arrival problem. Let λ be the arrival rate. Let $N(s, t)$ be the \mathbb{Z} -valued number of arrivals in $(s, t]$.

Suppose the following:

- (1) disjoint time intervals are independent,
- (2) distribution of $N(s, t)$ depend only on $t - s$ (once λ is fixed),
- (3) $\mathbb{P}(N(0, h) = 1) = \lambda h + o(h)$ as $h \rightarrow 0$, and
- (4) $\mathbb{P}(N(0, h) \geq 2) = o(h)$.

Theorem: D3.7.2

If $N(\cdot, \cdot)$ satisfies the above assumptions, then $N(s, t)$ is poisson distributed with parameter $\lambda(t - s)$, for all $s < t$.

Proof. WLOG assume $s = 0$. We divide $[0, \lambda t]$ into n equal subintervals and let $X_{n,m} = N((m-1)/n \cdot \lambda t, m/n \cdot \lambda t)$. The row sums are just

$$S_n = \sum_{m=1}^n X_{n,m} = N(0, \lambda t).$$

Observe that $\mathbb{P}(X_{n,m} = 1) = \lambda t/n + o(1/n)$ as $n \rightarrow \infty$, keeping λ, t fixed. Also, $\mathbb{P}(X_{n,m} \geq 2) = o(1/n)$.

Applying D3.7.1, we see $S_n \rightarrow \text{Poisson}(\lambda t)$. This holds for all n , so $N(0, \lambda t) \sim \text{Poisson}(\lambda t)$. \square

If T_1 is the time of the first arrival, then $\mathbb{P}(T_1 > t) = \mathbb{P}(N(0, t) = 0)p\mathbb{P}(\text{Poisson}(\lambda t) = 0) = e^{-\lambda t}$, so $T_1 \sim \text{exponential}(\lambda)$. We will later show that the gaps between different arrivals are also i.i.d. $\text{exponential}(\lambda)$.

Multivariate Normal

Beginning of Nov. 18, 2022

Let $X = (X_1, \dots, X_\ell)$ be a random vector with $\text{var}(X_i) < \infty$ and covariance matrix $\Sigma_{i,j} = \text{cov}(X_i, X_j)$. Then for any vector θ ,

$$\text{var}(\theta \cdot X) = \text{var}\left(\sum_{i=1}^{\ell} \theta_i X_i\right) = \sum_{i,j} \theta_i \theta_j \text{cov}(X_i, X_j) = \theta^T \Sigma \theta \in \mathbb{R}.$$

This shows Σ is PSD and symmetric. If T is a linear transformation of X , then

$$\text{cov}((TX)_i, (TX)_j) = \text{cov}\left(\sum_k T_{i,k} X_k + \sum_\ell T_{j,\ell} X_\ell\right) = (T\Sigma T^T)_{i,j}.$$

From linear algebra, since Σ is PSD, there exists an unitary U ($U^{-1} = U^*$ and orthonormal) such that $U^T \Sigma U$ is diagonal. From our remark above, viewing U^T as a linear transformation, the resulting random vector $U^T X$ has uncorrelated components.

If X has density f_X and T a multivariable linear transformation, then TX has density

$$f_{TX}(x) = \frac{1}{|\det T|} f_X(T^{-1}x).$$

Finally, we are ready to talk about multivariate normal distribution.

Of course, the standard multivariate normal has each coordinate as an independent $\mathcal{N}(0, 1)$. The density

$$f(X) = (2\pi)^{-d/2} \exp\left(-\sum_{i=1}^d x_i^2/2\right) = (2\pi)^{-1/2} \exp(-x^T I x/2) =: \mathcal{N}(0, I).$$

If T is invertible then

$$f_{TX}(x) = (2\pi)^{-d/2} |\det T|^{-1} \exp(-x^T T^{-T} T^{-1} x/2) = (2\pi)^{-d/2} |\det T|^{-1} \exp(-x(TT^*)^{-1} x/2).$$

This gives rise to a more general multivariable normal $\mathcal{N}(\mu, \Sigma)$, whose density is

$$f(x) = (2\pi)^{-d/2} |\Sigma|^{-1/2} \exp(-(x - \mu)^T \Sigma^{-1} (x - \mu)/2)$$

where $\mu \in \mathbb{R}^k$ and Σ PSD.

 Beginning of Nov. 21, 2022

For a degenerate multivariate normal, consider $\mu = 0$ and $r < d$ (rank). We take $X_1, \dots, X_r \sim \mathcal{N}(0, \tilde{S})$ where \tilde{S} is invertible. we put $X = (X_1, \dots, X_r, 0, \dots, 0)$ corresponding to block diagonal $\tilde{S}, 0$. Then TX has covariance matrix TST^T . Given Σ , we want to choose \tilde{S}, T so that $TST^T = \Sigma$.

We know there exists a unitary matrix T with $T\Sigma T^T = \text{diagonal}(\lambda_1^2, \dots, \lambda_r^2, 0, \dots)$. Let $\tilde{D} = \text{diagonal}(\lambda_1^2, \dots, \lambda_r^2)$ and let $\tilde{X} \sim \mathcal{N}(0, \tilde{D})$, $X = (\tilde{X}, 0, \dots, 0)$. Then TX has covariance matrix TDT^T since $T^T = T^{-1}$.

Proposition

If $X \sim \mathcal{N}(\mu, \Sigma)$ with Σ nonsingular, then the marginals X_i are normal.

Proof. WLOG $\mu = 0$ and we are looking at the first coordinate, X_1 .

The claim is easy if Σ has first row $(\sigma_1^2, 0, \dots, 0)^T$ and column $(\sigma_1^2, 0, \dots, 0)$. In this case,

$$f_X(x) = C \exp(-x^T \Sigma^{-1} x/2) = C \exp\left(-\frac{x_1^2}{2\sigma_1^2} - g(x_2, \dots, x_d)\right).$$

Therefore

$$\begin{aligned} f_{X_1}(x) &= \int_{x_2, \dots, x_d} f_X(x_1, \dots, x_d) dx_2 \dots x_d \\ &= \text{Const} \exp\left(-\frac{x_1^2}{2\sigma_1^2}\right). \end{aligned}$$

Since f_{X_1} integrates to 1 the constant must match up, so $X_1 \sim \mathcal{N}(0, \sigma_1^2)$.

For the general case, we need to find T so that TX 's covariance has the special form with $(TX)_1 = X_1$.

We take unitary U such that the 1st row of U is perpendicular to the j^{th} column of $\Sigma^{-1/2}$ $j \geq 2$. Take $T = U\Sigma^{-1/2}$.

Then TX has covariance matrix

$$T\Sigma T^T = U\Sigma^{-1/2}\Sigma\Sigma^{-1/2}U^T = UU^T = I.$$

[To be fixed]

□

Example. Multivariate normal implies normal marginals, but not the converse. For example let $X = \mathcal{N}(0, 1)$ and $\xi = \pm 1$ with probability 0.5 each, independent of X .

Let $Y = (X, \xi X)$, so it's on either diagonal with probability 0.5. Clearly Y is not a bivariate normal, even if its covariance matrix is I .

If X, X_2, \dots, X_d are independent $\mathcal{N}(\mu_i, \sigma_i^2)$, then $X = (X_1, \dots, X_d) \sim \mathcal{N}(\mu, \Sigma)$ with $\Sigma = \text{diagonal } (\sigma_1^2, \dots, \sigma_d^2)$. Since

$$f_X(x) = \prod_{i=1}^d f_{X_i}(x_i) = \prod_{i=1}^d \frac{1}{\sqrt{2\pi}\sigma_i} \exp(-x_i/(2\sigma_i^2)) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp(-x^T \Sigma^{-1} x/2),$$

we obtain the following result:

Proposition

While not necessarily true for other distributions, for (X_1, \dots, X_n) multivariate normal, X_i 's are uncorrelated iff X_i 's are independent.

(The previous example we have shows that if (X_1, X_2) is not multivariate normal, even if it has normal marginals, then (uncorrelated but dependent) can happen.)

If $X \sim \mathcal{N}(0, \Sigma)$, and T is invertible, then TX has density

$$\begin{aligned} f_{TX}(x) &= \frac{1}{|T|} f_X(T^{-1}x) = \frac{1}{(2\pi)^{d/2}|T||\Sigma|^{1/2}} \exp(x^T T^{-T} \Sigma^{-1} T^{-1} x/2) \\ &= \frac{1}{(2\pi)^{d/2}|T\Sigma T^T|^{1/2}} \exp(-x^T (T\Sigma T^T)^{-1} x/2) \sim \mathcal{N}(0, T\Sigma T^T). \end{aligned}$$

Therefore the marginals are normal, in particular $(TX)_1$. Since T is arbitrary, $\theta \cdot X$ is normal for all $\theta \in \mathbb{R}^d$, with $\text{var}(\theta \cdot X) = \theta^T \Sigma \theta$.

More generally, if $X \sim \mathcal{N}(\mu, \Sigma)$ and T is invertible then $TX \sim \mathcal{N}(T\mu, T\Sigma T^T)$.

Characteristic functions of $\mathcal{N}(\mu, \Sigma)$

$$\varphi_X(\theta) = \mathbb{E}e^{i\theta \cdot X} = \varphi_{\theta \cdot X}(1) = \exp(-\text{var}(\theta \cdot X)/2) = \exp(-\theta^T \Sigma \theta/2).$$

CLT in \mathbb{R}^d

Theorem

Let X_1, X_2, \dots be i.i.d. in \mathbb{R}^d with finite mean $\mathbb{E}X_1 = \mu$ and finite covariance matrix Σ . Let $S_n = X_1 + \dots + X_n$. Then $(S_n - n\mu)/\sqrt{n}$ converges in distribution to $\mathcal{N}(0, \Sigma)$.

Proof. By Cramer-Wold it suffices to show

$$\theta \cdot \frac{S_n - n\mu}{\sqrt{n}} \rightarrow \theta \cdot X \text{ in distribution for all } \theta \in \mathbb{R}^d.$$

Note $\text{var}(\theta \cdot X) = \theta^T \Sigma \theta$ so $\theta \cdot X \sim \mathcal{N}(0, \theta^T \Sigma \theta)$. This is a one-dimensional distribution, so

$$\theta \cdot \frac{S_n - n\mu}{\sqrt{n}} = \frac{\sum_{i=1}^n X_i \cdot \theta - n\theta \cdot \mu}{\sqrt{n}} \rightarrow \mathcal{N}(0, \text{var}(X_i \cdot \theta)) = \mathcal{N}(0, \theta^T \Sigma \theta).$$

□

3.6 Conditional Probabilities

It can be shown that given n coin tosses, $X = (\text{number of heads})^2$ has mean $(n + n^2)/2$. Viewing n as a variable we therefore obtain

$$\mathbb{E}(X \mid N = n) = \frac{n + n^2}{4} \text{ or more generally } \mathbb{E}(X \mid N) = \frac{N + N^2}{4}.$$

Now consider the integral over an event in $\sigma(\mathbb{N})$, say $\{N \leq 2\}$. Average of X on $\{N = n\}$ is

$$\frac{1}{\mathbb{P}(N = n)} \int_{\{N=n\}} X \, d\mathbb{P}$$

so

$$\int_{\{N \leq 2\}} X \, d\mathbb{P} = \sum_{n=0}^2 \int_{\{N=n\}} X \, d\mathbb{P} = \int_{\{N \leq 2\}} \frac{1}{4}(N^2 + N) \, d\mathbb{P}$$

and more generally, for any $\{N \in A\} \in \sigma(\mathbb{N})$,

$$\int_{\{N \in A\}} X \, d\mathbb{P} = \int_{\{N \in A\}} \frac{N + N^2}{4} \, d\mathbb{P}.$$

Another example: consider $\Omega = [0, 1] = A_1 \cup A_2 \cup A_3$ disjoint, and let X be a r.v. and $\mathcal{Y} = \sigma(A_1, A_2, A_3)$. Let Y be constant on each A_j with value $\frac{1}{\mathbb{P}(A_j)} \int_{A_j} X \, d\mathbb{P}$. Then Y is (the only r.v.) measurable w.r.t. \mathcal{Y} and that

$$\int_B Y \, d\mathbb{P} = \int_B X \, d\mathbb{P} \quad \text{for all } B \in \mathcal{Y}.$$

General case

Let X be a r.v. with $\mathbb{E}|X| < \infty$ on $(\Sigma, \mathcal{F}_0, \mathbb{P})$

Suppose we have partial information to

$$\mathcal{F} = \{\text{all events known to occur or not}\}.$$

\mathcal{F} is a σ -algebra. We want to formalize $\mathbb{E}(X \mid \mathcal{F})$:

Definition

Let $(\Omega, \mathcal{F}_0, \mathbb{P})$ be a probability space and let $\mathcal{F} \subset \mathcal{F}_0$ be a σ -algebra. Let X be a r.v. with $\mathbb{E}|X| < \infty$. We define $\mathbb{E}(X | \mathcal{F})$ to be any r.v. Y with

- (1) $Y \in \mathcal{F}$, and
- (2) $\int_A Y \, d\mathbb{P} = \int_A X \, d\mathbb{P}$, for all $A \in \mathcal{F}$.

Lemma

If Y, Y' satisfy (1) and (2) above, then $Y = Y'$ a.s.

Proof. Fix $\epsilon > 0$. Consider $A = \{Y - Y' \geq \epsilon\}$. By (2)

$$0 = \int_A (Y - Y') \, d\mathbb{P} \geq \epsilon \mathbb{P}(A)$$

so $\mathbb{P}(A) = 0$. □

Lemma

Y satisfying (1) and (2) exists.

Proof. Consider measures on \mathcal{F} only:

$$\tilde{P} = \mathbb{P}|_{\mathcal{F}} \quad \text{and} \quad \nu(A) = \int_A X \, d\mathbb{P}, \text{ for } A \in \mathcal{F}.$$

Clearly if $\tilde{P}(A) = 0$ we have $\nu(A) = 0$, so $\nu \ll \tilde{P}$ (absolute continuity). By Radon-Nikodym there exists a density $\frac{d\nu}{d\tilde{P}}$, \mathcal{F} -measurable, such that for all $A \in \mathcal{F}$,

$$\int_A X \, d\mathbb{P} = \nu(A) = \int_A \frac{d\nu}{d\tilde{P}} \, d\tilde{P} = \int_A \frac{d\nu}{d\tilde{P}} \, d\mathbb{P}.$$

That is, setting Y to the Radon-Nikodym derivative $\frac{d\nu}{d\tilde{P}}$ works. □

Properties of conditional probabilities:

- (1) $\mathbb{P}(A | \mathcal{F}) = \mathbb{E}(1_A | \mathcal{F})$ (definition),
- (2) $\mathbb{P}(A | \mathcal{F}) \in \mathcal{F}$, and
- (3) $\int_B \mathbb{P}(A | \mathcal{F}) \, d\mathbb{P} = \int_B 1_A \, d\mathbb{P} = \mathbb{P}(A \cap B)$ for all $B \in \mathcal{F}$.