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Chapter 2

Laws of Large Numbers

2.1 Independence

Beginning of Sept.12, 2022
First, some definitions/recaps on independence of events and o-fields:
* Independence of two events: we say events A, B are independent, A 1 B, if P(An B) = P(A)P(B).
* Independence of two o-fields: F, G are independent if P(An B) =P(A)P(B) forall Ae F and Beg.
* For more than 2 events: Ai,..., A, are mutually independent if

P(NA;)=[]P(4;)  forall Te{1,..,n}. )

iel €A
* Similarly, for more than 2 sigma fields, we say A, ..., A,, are independent if the above product identity holds
forall 4; € A,.

* We say events Aq,..., A,, are pairwise independent if
IP)(AZ N A]) = IP(AZ)]P)(AJ) forall 7 # J-

Example: P(( A;) = []PP(A;) is insufficient.  Consider two coin tosses. Let A := {first is head},

B := {second is head}, and C := {both tosses are the same}. Then An B c C, so they are not mutually

independent, but
P(An BnC) = P(A)P(B)P(C) = é

In fact, we also have A, B, C pairwise independent here.

* For an infinite sequence of A;’s, we say they are independent if (*) holds for any finite I c N.
Moving to independence of two random variables:
* Two random variables X,Y are independent if
P(X eY,Y e B)=P(X € A)P(Y € B) )

2



CSCI 567 Machine Learning 1 - Independence YQL

for all A, B in their corresponding o-fields. It can be shown that this definition is equivalent to requiring o (X)

and o(Y") to be independent.

» To show independence, it is sufficient to check (**) for (—oo, 2] x (—o0,z] for all z,y. That is,
Fixyy(z,y) = Fx(x)Fy (y) for all z, y.

Example: A | B does not imply o(.A) L o(B). (The example given in lecture relies heavily on drawings
so I will replace it with one easier to type in BIgX.) Let A := {{1,2},{3,4}} and let B := {{2,4}}. Then

(2,4} € 5 (A).

[ Definition: 7-system and \-system

A collection § is called a w-system if it is nonempty and closed under finite intersections (two suffice):
* G+, and
e ForA,BeG, AnBeg.

A collection G is called a A-system if G contains 2, is closed under set subtraction, and is closed under

countable increasing union:
* Qeg,
* If Ac Band A, B €G then B\A € G, and
e IfA,cGand A,, t Athen Acg.

The 7 - A theorem states that if P is a 7-system and £ a A-system with P c £, then o(P) c L.

We will skip the proof and directly use the result to prove the following (the proof of which we again omit):

Theorem: D2.1.7

If Ay, ..., A, are independent o-fields and each .4; a w-system, then the o(.4;)’s are independent.

We now discuss the independence of functions of random variable in greater generality. Suppose we have an array
of independent random varaibles

{Xi i<n,j<m(1)}
and n functions

X141, ~-~7X1,m(1) > fi (X1,17 -'-7X1,m(1))

X2,1, sy X2,m(2) = f2(9C2,17 ) X2,m(2))

and so on, where each f; : R”() - R. Question: are these random variables f;(-) independent? The answer is yes,

and we will formulate the question in terms of o-fields:
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Theorem: D2.1.10

Given an independent collection of o-fields {F; ; : i < n,j < m(3)}, let B; = 0(Fr1,.... Fim(iy) (€., the i

row listed above). Then By, ..., B,, are independent.

Proof. For each row, let
m()
Ai = {all ﬂ Ai,j with Ai,j € .7:2‘7_7‘}.
i=1
Then A; is a 7-system that contains € (intersection of all Q2 € F; ;) and also all F; ; (intersection of F; ; with a

bunch of 2’s). Therefore A; generates B;. Finally, the A;’s are independent:

n m(i) n m(i) n m(s)
PO Aiy) =TT ITP(A) =TIPCN Aij)
i=1 j=1 i=1 j=1 i=1  j=1
Therefore, by (D2.1.7) the B;’s are independent. O

Beginning of Sept. 14, 2022
Theorem

Let {X;; : i < n,j < m(i)} be independent. Then f(Xj1,..., X;m()), @ < n, are independent random

variables.

Proof. Let F; j = 0(X; ;) and B; := 0(Fi 1, ..., Fi m(:))- By the previous theorem each B;’s are independent. Each

fi is B;-measurable so the random variables f; are independent. O

Fubini theorem says for f(z,y) on Q x Q,,

ffd(ﬂlxm):fﬂlfﬂzfdugdul

provided f > 0 or f is integrable (i.e., f |f] d(p1 % po) < o0). (Here since p;’s are probability measures they are

assumed to be o-finite.) For random variables:

Theorem: D2.1.12

Let X,Y be independent with distributions px and py on R. Let h : R? — R satisfy either h > 0 or
E|h(X,Y)| < oo. Then
BA(X,Y) = [ h(XY) dpx (da)y (d9) *)

and the other of integration does not matter.

In particulag, for h(z,y) = f(x)g(y) with either f,g > 0 or E|f(X)|,E|g(Y)]| < oo, we have
E[f(X)g(Y)] = Ef(X)Eg(Y), )

i.e., independence = (product of E = E of product).

Proof. (*) follows from Fubini since the distribution of (X,Y") is ux x uy by independence.

4
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For (**),
E[/()90)] = [[, £(@)9(y) nx (@da)ny (dy)
= fR 9(y) fR f(@)px (dz)py (dy)
([ s@ux@) [ g (ay) =E£CORg(Y), =
By induction, we may generalize the above result into any finite number of random variables. That is, for indepen-

dent X1, ..., X,, with E|[T X;| < oo, we have E[[] X;] = [IEX;.

Sums of Independent Random Variables

Let X,Y be independent with distribution functions F' and G. The d.f. of X +Y is the convolution

H(z) =P(X+Y <2) = [~ F(z-p)d(G(y)) = (F* G)(2),

To see this, we apply Fubini to 1, ,<.:

H(z) =Elxoven = [[laemy) AF@)AGW) = [F(z-y) dG(y).

Note by doing {y < = — z} first we obtain see that ' x G =G * F.

Example. Let X be uniform on [0,2] and Y is exponential with parameter A. That is, X has 1/2 on [0, 2]

and Y has A\e™Y on [0, c0). The distribution function of Y is 1 — e~*¥ for y > 0. Then

[e2e) _ — 1
H(z) = [oo (1-e y))l{z—yZO} 51[0,2] dy.

PG 4G(y)
That is,
0 2<0 0 z<0
Z 2 l-e?*
H(z) = fo(l—e_)‘ze)‘y)/Qdy 0<z€2 =42 -—~ 0<2<2
/02(1—6*’\ze’\y)/2dy z2>2 1—e"\282;7;1 z> 2.

00—
Let ., be a probability measure on (R",R™). We can make a random vector with distribution y,,:we take (Q, F,P) =
(R™,R", ) and (X3, ..., X,,) to be identity.

Infinite Sequence of Random Variables

We say finite-dimensional distributions of {X,,,n > 1} are all distributions of form {X;,i: < I} for I c N finite. By
using marginals is sufficient to consider I = {1, ...,n}. Suppose we are given u,, on (R", R™) for every n.

Question: is there a P on (RY, R") with distribution s, for the first n coordinates? That is,
P(A; x ... x Ay x Rx..) = pp(Ag x ..o x Ay)?

(Well of course no, since if n > m, u, determines what u.,, would be.) What if this consistency is satisfied?
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Theorem: Kolmogorov Extension Theorem

Let p,, be a p.m. on (R™, R"™) for all n. Suppose consistency holds among the u,,’s, i.e.,
tnt1(AxR) = p,(A4) for all A = H(ai, b;]and n > 1.
=1

(In reality the above choice of A can be anything in R"; we just picked the most canonical one.) Then there

exists a unique P on (RY, RY) with
P(H(ai,bi] xR xR x ) = Mn(H(ai,bi]).
i=1 =1

(Sets of form A x R xR x ... with A € R" is a cylinder set in RY. They form a o-field.)

2.2 Weak Laws of Large Numbers

Some recaps:
* We say X,, > X in probability (i.e. in measure) if P(|X,, - X|>¢) > 0 asn — oco.
* Wesay X,, > X in LP? (where p > 0) if E(|X,, - X|’) > 0 as n > oo.

- For p > 1, this is equivalent to | X,, - X |, — 0.
- For p < 1 this does not hold as such | - |, does not define a norm.

— In principle the X,, can have infinite p™ moment but the definition still makes sense.

Beginning of Sept. 16, 2022

Theorem

Convergence in LP implies convergence in probability.

Proof. Suppose X,, » X in LP. Then for all € > 0,

— p
P(X, - X|>¢€) =P(|X,, - X|° > €’) < w -
€
The converse fails due to mass escaping. For example, consider a coin with probability of heads 1/n. Let U be
uniform on [0, 1]. Define
U if tails
X, =
U +n'/?  if heads.
Then

1
P(|X, - U|>¢) = P(tails) = — - 0

n

whereas for all n,
E(X, - UP) = = (niPyp = 1

More recaps:
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* If EX? EY? < 0o, we defined the covariance cov(X,Y) = E((X -EX)(Y -EX)) =E(XY) -EXEY.
* X,Y are uncorrelated if cov(X,Y") = 0. Notation: o := cov(X, X) = var(X)/2.

* The correlation coefficient of X —Y is invariant under affine mappings of X,Y (but cov is not, which makes

it dependent on units). In particular it computes the covariance of standardized X,Y:

e[-1,1].

p(X,Y) = COV((X ~EX) (Y —EY)) _cov(X,Y)

ox oy oxOy

* Given X, Y, by minimizing E[(Y - (aX +b))?], the quantity E[(Y - (aX +b))?]/o% is the “fraction of Y variance
due to deviation from the best fit line (i.e., not caused by X)”, and itis 1 - p(X,Y)2.

* Variance of sums S,, = X1 + ... + X,,:

M=

Var(Sn):E[ (X; - IEX)]

1

i(Xi -EX;)(X, -EX;)

<.
I

™=

=E

,_.

1=

n

=Y var(X;) +2) cov(X;, X;).

i=1 i<j

* Independence implies zero correlation, but not conversely: consider the distribution of (X,Y") defined uni-
formly on {(0,0)} u{£1} x {1} (i.e. each point with 1/5 probability). By symmetry, the correlation of (X,Y")
is 0, but Y =0 only if X =0.

Theorem: L? weak Law, D2.2.3

Suppose X1, X, ... are uncorrelated with EX; = p for each i and var(X;) < C < co. Then S,,/n - p in L?
(and therefore in probability).

Proof. A one liner proof:

2 n
E(& —u) =var(S,/n) = % > var(X;) < ¢ - 0. O
n n? o n

Beginning of Sept. 19, 2022

Theorem

If X >0and p >0, then
EX? - f peP 'P(X > 1) da.
0

Proof. We take g(z) = «® for x > 0 and 0 otherwise. Then

E(X?) =EBg(X) = Jim [ g(x) dF(2)
= lim ~P(X > b)b7 + lim f[ paB(X > ) da.
— 00 07b

b—oo

* IfE(X?) < oo, from homework we know P(X > b)b? — 0, so the claim is true.

7
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* If E(X?) = oo, then
00 = E(X”) < lim /[O’b] pa? 'B(X > 2) da = fompxpflp(x > 2) da. O
Recall from L? weak law, if X, X,, ... are i.i.d. with EX; = y and EX; < oo, then
P(|S,/n—ul>€) =0 for all e > 0.

What if we weaken the assumptions? What if EX; = co or undefined? Is there {x,,} such that P(|S,,/n—p,| >€) = 0,
or does the sequence S, /n retain its randomness?
Intuitively, if S,, /n settles down, no particular X; should contribute much to this quantity. To formulate, we require
that

P(|X,|/n > 6 for some j >0) -0 for all 6.

This is the same as requiring
1= B(X,] < 6,)" =1 - (1= B(IX] > 8,)" ~ 1.

We use the fact that if for a,, € (0,1) with a,, - 0 and b,, = oo, (1~ a,)’ - 1 if and only if a,b, = 0. To see this: for

small a,, (or equivalently large n),

e_2an g 1 —ay, g e_an [ e_2anbn S (1 _ an)bn < e_a"b".

Therefore,

P(|X;|/n > ¢ for some j < n) - 0 < nP(|X|>J,) >0 forall §
< onlP(|X4| > 0,) — 0 for all §

< 2P(|X1|>z) > 0as z > oo.

When is there {u,, } with P(|S,,/n — un| > €) - 0 for all €?

Truncation

A truncation of X is X = X1{|x|<ar} for some M, so in particular it is bounded. For some proofs about S, /n, below

is a roadmap:
e prove the result for S = X| +... + X,

e show S,, - S, is small, e.g., P(S,, - S,,) - 0 or E[(S,, - S,,)?] - 0.

The Weak Law of Large Numbers
Theorem: WLLN, D2.2.12
Let X, X, ... be i.i.d. In order that there exists {u,} such that S, /n — u, in probability, it is necessary and

sufficient that

2P(| X1 >x) > 0 as X — o0.

If 50, pn = E[X11{|x,|<n} ] WOTkS.
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Proof. We prove the sufficiency part only; the necessity part is beyond the scope even in Durrett’s book.

* We first truncate the variables and define X, 5, := Xz 1{x,|<n}- Let S}, = Z Xn k-
k=1

¢ We show truncation “does little:”
P(S), #S,) =P(|Xx| >n for some k < n)

<nP(]X1|>n) - 0 by union bound.

* We show the theorem holds for truncated random variables: by Chebyshey,

S

p(|%

,LLn > € X
2 eZn eZn

) . var(S),/n)  var(X, 1) . EXTQLJ
<X 6 -

=¢2pt fo 2yP(| X501 > y) dy

<ent fo 2yP(|X1| > ) dy — 0.

average of 2yP(|X1| > y) on [0, n]

¢ Combine and QED:

4

S
ﬂ_‘un
n

S,

]P( L ,Ufn
n
Given a random variable, we consider the standardized random variable (X — EX)/ox whenever this makes

P(‘E—bIEX o

which is small for b > ox. This proves the following theorem:

>e)<P(S7l¢S;L)+P(

>e)—>0. O

sense. For b > o,

X-EX| eb var((X -EX)/ox) o%
= IF) > — < = -,
€2b?/o? €2h?

ox ox
Theorem: D2.2.6

Let {T,} be random variables. If var(7},)/b2 — 0, then T";i]ET" — 0 in probability.

n

Beginning of Sept.92022
Consider a geometric distribution with parameter p:

* P(X=m) = (1-p)" .

* EX =1/p.
o n-2 2—217
* E(X(X-1))=> n(n-1)(1-p)"*(1-p)p= e , SO
n=1
2-2 1 1 1 1
. var(X):EX2—(]EX)2:TP+,_72:72_7'
p p P p p

Example: The coupon collector’s problem. Suppose each cereal box has one of the n coupons equally
likely. Let T,, be the time to get all n.

Let R be repeats and N be new coupons. The outcome is a sequence of R’s and N’s. Let X,, ; be the
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time from getting the (k — 1)™ coupon to the k™ new coupon. It follows immediately that the X,, ;s are

independent from each other, with T}, = Z X, k. In particular,

k=1
-k+1
Xy 1 ~ geometric (u) ,
n
SO
ET), =1+ ——+ +ootn=n(l+1/2+...+1/n) ~nlogn.
n-1 n-2
On the other hand,

var(T,) = i var(X,, 1) < i ( z )2 = n27r2.

= o\n-k+1 6

Since var(T},)/(nlogn)? - 0, by D2.2.6, (T, - ET,,)/(nlogn) - 0 in probability, i.e.,

T,
nlogn

-1 in probability.

2.3 Triangular Arrays

Consider a triangular array {X,, ; : n > k, k < k,,} where the n™ row has k,, variables.

Theorem: D2.2.11, WLLN for triangular arrays

Let {X,, 1} be given. Let b,, > oo and

kﬂ,
Ap = Z E(Xn,k]-ﬂXn)k\sbn})'
k=1

Assume .
Z]P’(|Xn7k|>bn) -0 asn — oo 1D
k=1
and
be(XZ,klﬂXn,kan}) -0 asn — oo, 2)

then (S, — a,,)/b, converges to 0 in probability.
In the iid. case, where X, = X; and k, = b, = n, (1) says nP(|X1| > n) - 0 and (2) says
nE(XT1x,0<ny) = 0.

Theorem: D2.2.14, Finite mean of WLLN

Let X, X, ... be i.i.d. with E|X;| < co and EX; = u. Then S, /n — p in probability without any assumption

on the second moment.

Proof. We use WLLN 2.2.12. Let pu,, := E(X11y|x,|<n})- We know p,, — p by DCT. Also,
zP(|X1] > z) = E(zl{x,52y) = E(1 X1 |1 x,52)) = 0

10
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again using DCT. Therefore by 2.2.12 S,, /n — u,, — 0 in probability, so S, /n — u in probability. O

If X; >0,EX; = oo, we can compare X; with the truncated variables to see S,,/n — oo. Nevertheless, we can still

ask if there exist a,,, b, such that (S,, - a,,)/b, — 0 in probability.

Example: D2.2.16 St. Petersburg paradox. Game: win 2/ if first heads toss is trial j, j > 1. Note that
Sp/n — p implies that p is the “fair price” to pay to play one game. Let X}, be the r.v. describing the among
of games won by game k. Then

EX; =) 2727 =o.
j=1

Then a,, is the “fair price for n games.” By 2.2.11 (triangular array WLLN), we take X, , = X}, for £ <n and
{b,} to be determined. Let

Ap = nE(Xll{Xlsbn})~

We want b,, to satisfy two things:
* the truncation probability nP(X; > b,) — 0,
* b2 nE(X{1(x,<,}) — 0, and
* b, <can.

For tails:
P(X; > 2™) = P(first m — 1 all tails) = 27",

Example: D2.2.16 St. Petersburg paradox.

Consider X, X, ... i.i.d. with X; = 277 with probability 277. Then EX; = co. Treat this as a game, but the
paradox is the expected value is infinite and we cannot play an infinite amount of times. The question: how
much we should pay to play this game n times?

We construct a,,, b,, such that
* nP(X;>0b,)—0,
* b,2nE(X{1{x,<,}) — 0, and
* b, <can,.

If so, by WLLN (2.2.11), (S, — a5, ) /b, — 0 in probability.
From 2.2.11, we simply pick

an = nE(X11{x,<,})
and P(X; > 2™) = 271, We take b,, of form 27("),
In order for the first condition to satisfied, n2~™(")*! - 0 implies the candidate m(n) = log, n + K (n) with
K(n) - oo. Then 2" = n2=K(")_ For the truncation condition,

m(n)
E(X? 1y, comm) = > 2%P(X; = 27) = 2m(m+L,

J=1

Therefore b, *nE(X71;x,<p,y) = 272 (MWn2m(+1 = =K+ Letting n — oo this term does converge to 0.

11
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Finally, to check the third condition, we want

an =nE(X1l{x, 1) =n Y, 2P(X, = 27) = nm(n).
j=1

That is, we want
a, _nm(n) m(n) logy(n)+ K(n)

bn om(n) - 2K (n) - 2K (n)

If we take K (n) = log,log, n then the fraction will converge to 1, and we are finally done:

Sy —n(logy n + log, log, n)
—

0 in probability.
nlogsn

Since log, log, n/logy n — 0, we have

Sn—nlogyn | 0 in probability,
nlog,n

so
Sn

nlog,n

-1 in probability.

That is, a fair price for playing n games is paying log, n per play.

2.4 Borel-Cantelli Lemmas
Some very quick recap: if {A,,} are subsets of (2, then

limsup A4, = () J An ={w:we A, io. (infinitely often) }

m21nzm

and

liminf A, = |J () 4n = {w:w € A, eventually / for all but finitely many 4, }

m21nzm

Theorem: First Borel-Cantelli Lemma

Let {4, } be events with " P(A,) < co. Then P(limsup 4,,) =:P(4,, i.0.) =0.

n=1

Proof. For all m, P(A,, i.0.) has to occur after m, so

P(A, i0.)<P(J 4,) < Y P(4,) -0 as m — oo. O

nzm nzm

The converse does not hold, as illustrated by A,, = (0,1/n) on the unit interval equipped with the uniform probabil-

ity. With independence of events, however, we have the following result:

Theorem: Second Borel-Cantelli Lemma

Let {A,} be independent with )" P(A,,) = co. Then P(4,, i.0.) = 1.

n=1

12
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We first need a lemma: if 0 < a, <1, [[(1 - a,) >0 if and only if  z; < co. When x is small, e** <1 -z < e * and
=1 n=1
we obtain the claim after some algebra.

Proof of Borel-Cantelli. Fix m. Using continuity of probability on decreasing events,

P(no A,’s after some index m) = k}im P(no A,’s from index m to k)

k
= lim H (1-P(4,)) = [T (1-P(A,)) =0.

nzm

Therefore, P(some A,, after index m, for all m) = 1.

Example. Let X, X5, ... be i.i.d. exponential with parameter ), i.e., with density Ae™** on [0, o). Goal:

find {¢,} with limsup X,,/c, =1 a.s.; we call ¢,, the max growth rate of X,,. That is, for all ¢, we want
P(X,/c, >1+€i0.)=0 and P(X,/c,>1-¢€i0.)=1.

By first and second B-C, it is sufficient to show that

SP(X, > (1+€)e,) = Y e e < oo

n>1 nx1

and

S P(X, > (1-€)cy) = Y e M) = oo

nx1 nx1

for all e. We let ¢,, be such that e™**» = 1/n, i.e., ¢, = logn/\. And this works.
Beginning of Sept. 26, 2022
Some quick recap of convergence a.s. and in probability:
* If X,, » X as. then 1yx, _x|»e; = 0 a.s. forall € >0, so
P(|X, - X[>€) =Elgx,-x}5e; = 0
by bounded convergence theorem, so X,, — X in probability.

* The converse is false, as illustrated by the scanning intervals. Let P be uniform on [0,1] and consider
[0,1],[0,1/2],[1/2,11,[0,1/3], [1/3,2/3], [2/3,1], and s0 on.

However, the following does hold:

Proposition

If X,, -» X in probability then there exists a subsequence X,,, - X a.s.

Proof. Take a sequence of increasing indices ny, such that
P(|X,, - X|>1/k) <27

13
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Using Borel-Cantelli,

S P(|X,, - X| > 1/k) < 00
k

so P(|X,,, - X|>1/kio.)=0and X,,, - X a.s. O
Recall from analysis that in a metric space, y,, — y iff every subsequence y,,, has a further subsequence converging

to y. Using this fact we obtain a stronger characterization of convergence in probability:

Theorem: D2.3.2

X, — X in probability iff for every subsequence {X,, } there exists a further subsequence converging a.s. to
X.

In particular, this theorem implies that there is no metric d(X,Y’) such that X,, - X a.s. iff d(X,,,X) - 0. On
the other hand, d(X,Y) := E(|Y - X|)/(1 +|Y - X]) satisfies X,, - X in probability iff d(X,,X) — 0. More
generally, any g bounded, invertible, concave, with g(0) = 0 works, like g(t) = t/(1 +t).

Proof. The forward direction follows from the previous proposition.
Conversely, fix e > 0 and let y,, = P(|X,, - X| > €). The assumption implies that for any {y,, }, there exists a

further subsequence {y,,,, } converging to 0. Using the previous remark, y,, - 0, i.e., X,, > X a.s. O

[ Corollary: D2.3.4

If X,, > X in probability and f : R — R is continuous, then f(X,) — f(X) in probability.

Proof. We use the previous theorem twice. For all {X,,, } there exists a further subsequence {X,, , } converging

to X a.s., and by continuity f(X,,) = f(X) a.s. Now using D2.3.2 again, f(X,) — f(X) in probability. [

Theorem: D2.3.8

Suppose X1, Xo, ... are i.i.d. with E|X;| = co. Then

]P’( lim & exists and is ﬁnite) =0.

n—oo 1

Proof. We first show that P(|X,,|/n > 1i.0.) = 1 and that
{

w0 =EXi| = [ B(Xi|>n) do < P> ) = ¥ B(X|> )
nx1

n>1

Sn+1 Sn

n+1 n

1
> — i.o.) =1.
2

¢ For the first claim:

so by the second B-C, P(|X,,| > n i.0.) = 1 and in particular P(|X,,|/n > 1i.0.) = 1.
¢ To show the second claim, define

C:={w: lim S, /n exists and is finite}.

14
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Note that
Sn+1 Sn Sn Sn XTL+1
== .
n+l n n n+l n+l
Therefore, for a.e. we C, S,/(n(n+1)) - 0 (since S, /n is finite) and |X,,+1|/(n + 1) > 1 i.0., sO
Sn Spe1| 1.
— - > — i.0.
n n+l| 2
* Therefore P(C)=P[Cn Sn _ Snrt > —i.0.} | =0 and we are done.
n n+l1| 2
O

2.5 Kolmogorov 0-1 Law

Previously, we have shown:

(1) If A,’s are independent then P(A,, i.0.) =0 or 1 by the first and/or second B-C.

(2) We have also shown that if X;, X, ... are i.i.d. exponential r.v.’s with parameter A then limsup X,,/logn = 1/A

n—oo

a.s., so

. X 1 ife<1/A
]P’(hmsup > )
n—eo logn 0 ife>1/A

Beginning of Sept. 29, 2022

We define F), := 0(X,,, Xy+1, ...) for each n, and we define 7 := (1) F,,, the tail o-field.
nx1

Example: {S,,/n — u} is a tail event. To see this, we fix m < n and get
Sn _ Sm N Xops1 + ..+ Xy,

n n n

Now letting n — oo we see S, /n — p iff (X,41 + ... + X;,)/n — p. In particular, the right side quantity does not

depend on which m we start with.

Theorem: Kolgomorov 0-1 Law

Let X1, Xo, ... be random variables. Then P(A) =0 or 1 for A€ 7.

Proof. Idea: it suffices to show that if A € 7 then P is independent of itself, i.e., P(An A) = P(A)?. In fact, we'll

show A 1 B for every event B € (X1, X2, ...)-

Preliminaries. For events A, B, we define a distance d(A, B) := P(AAB) = E|14 — 1p|. (This is a pseudo-metric

but can be 0 when A # B.) An important property: d(AuB,GuH) =d(A,G) +d(B, H). Same for intersections.

More formally, given (2, F,P) a probability space and G a collection of events, we say A € F is approximable

by G if for every € > 0, there exists G € G with d(A4,G) <e.

Idea, continued: we approximate any B by B € o(X1, ..., X,,) for some n w.r.t. our distance defined above. We

also approximate A by some Ae 0(Xn+1, Xn+2,--.). Note that these two o-fields are indeed independent, and A

and B are independent. Intuitively, this gives
P(An B) ~P(An B) =P(A)P(B) ~ P(A)P(B).

15
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Lemma. If G is a field then {all events approximable by G} is a o-field.
Proof of subclaim. Closedness under countable union is immediate by using ¢/27" along with the fact that G is a

field. If Ay, A, ... are approxmaeble by G, Gs, ... with errors < ¢/2", we have

k k k
IP’((U RIS An>) < IP’((U RIS An>) FBU A - P An) > 3 e < ™)
n=1 nz1 n>1 n=1 n=1 n=1 n=1
as k’ — 00. END OF CLAIM OF LEMMA.

Now we prove the Kolgomorov 0-1 law. We apply the lemma to G = | J o(Xj, ..., X,,) which is a field. We

nz1

approximate B € 0(X1, X5,...) by Be o(Xy, ..., X,) for some n with error < e. For A ¢ T, we apply the lemma to
J 0(Xn+1,...Xy) and get Aco(Xpi1, ..ty Xn, ), also with error < e. Then by (*) we are done! O

k>n

Using Kolgomorov 0-1 law on A = {S,,/n - u} can be approximated in o (X}, ..., X, ), even though it doesn’t depend

on Xy, ..., X,, for any given m, as shown before stating the theorem. The approximation will be by something like
A ={|S,,/m - p| < € for all m € [k,n]}

for some n, k, m.

Related Result

We consider permutable events. A finite permutation 7 of N is one with 7(7) = i for all but finitely many i’s. Here we
have Q = RN and X, X», ... random variables (coordinates in ). Let w = (w;,% > 1). Consider 7w = (Wr(1)sWr(2) )
ie., (mw) —i = wr(;). We say event A is permutable if 7' A = A for every finite permutation 7, and we let £ be the
collection of all permutable events.

It is easy to check that £ is a o-field. Also, if A € 0(X,+1, X2, -..), then the occurrence of A is unaffected by the
permutation of X1, ..., X,,. In particular, any A € J is permutable, so 7 c £.

An example of permutable sets: {S,, € B i.0.}: if the sum is in B then mixing the first (finitely many) coordinates
does not change the fact that S, is still in B. However, {S,, € B i.0.} is not a tail event: if we change the value of

X1(w) dramatically, every S,,(w) will be affected.

Theorem: Hewitt-Savage 0-1 Law

If X1,X5,...areii.d. and Ae & then P(A) =0 or 1.

2.6 Strong Law of Large Numbers

Beginning of Sept. 30, 2022

Theorem: WLLN, D2.4.1

Let X1, Xo, ... be i.i.d. (pairwise in fact suffice) with E|X| < co. Then S,,/n — 1 = EX; almost surely.

Proof. Idea: we assume X; > 0 or otherwise we use X = X* - X~. Then S,, and n are both increasing in n.

Consider a subsequence, say k(n) = |a" | with a > 1 but close to 1. For the indices in between the subsequences,

16
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ie., for k(n) <m<k(n+1),

Sk(n) _k(n) _ Sk(n) <57m< Sk(n+1) _ Sk(n+1) k(n+1)
E(n) k(n+1) k(n+1)  m  k(n) k(n+1) k(n)

As n > oo, k(n)/k(n+1) - 1/a and k(n + 1)/k(n) — «. Therefore if we show show convergence of the

subsequence Sj,(,,)/k(n) - u, then

=

oo Sm . S
— <liminf — <limsup — < ay,
« m— 00 m m—oo m

and since « is arbitrary, we are done.
Proof of SLLN. Step 1. We truncate as usual: let Y,, = X,,1;x <) and let T}, = i Y;. Then
=1

Y P(Xn#Yn)= Y P(X,>n)=)> P(X;>n)<oo

n>1 n>1 nx1
since EX; < oo. Therefore, by B-C, P(X,, # Y, i.0.) = 0. Since there are only finite number of different terms
between S,, and Ty, (S,/n) — (T,/n) — 0. Therefore it suffices to show T},/n — u almost surely.
Step 2. We apply B-C to T, /n. Using Chebyshey,

]P’( >6) < var(T) 1

T, - ET},
e 2 " Z var(Y;).
But var(Y;) may not — 0. and then the terms on the RHS is bounded from below by some constant divided by &,

k

not summable. Remedy:

Step 3. Apply step 2 to a subsequence k(n) = [a™] > a™/2. Then

© (T — BT
ZP(| k(n) — BT >|>6)<
n=1 k(n)

1 k(n) V.
2y & )

1

-2

e “var(Y;) —
k(%):zi k(n)?

4e 2 var(Y;) > o2

NgER Ms

N~
NgL:

i=1 k(n)>s
S 1 1
<Z4€ 2Var(Y})f2m

<
1]
[y

var(Y) 46_2 = EY?

5 2 )

]1]

=)

Since

oo J
IEYj2 = /; 2yP(Y; > y) dy < /; 2yP(X1 > y) dy,

the sum in (*) becomes

s

Z] f) Liy<jy2yP(X1 > y) dy

_[ ( Z J )Q?JHD(X1 >y) dy )
3>y m

Since Y j >~y ", it can be shown that (D2.4.4)

J>y

( Zj*2)2y<4 for all y.

J>y

17
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Hence (**) < 4EX; < co. Then (*) and B-C says

Toimy - BT
IP,(l k(n) ~ BTk ()|

o) > € 1.0.) =0 for all ¢,

)
T -ET, T
Zhn) Z27R®) L as. and M) and Sk(n)
k(n) k(n) k(n)

We have shown the a.s. convergence of a subsequence of Sj,(,,)/k(n). By a remark made earlier we are done. []

-y a.s.

Beginning of Oct. 3, 2022

Example: Renewal theory. Let X, X,... beii.d. with 0 < X; < co. Let T}, = X7 +... + X, and think of T,
as the time of n™ occurrence of some event. Let N, := sup{n : T,, < t}. Think of X; as the lifespans of light

bulbs and a person replaces a light bulb right when it burns out. Then N, is the number of light bulbs that
have burnt out by time ¢.

Theorem: D2.4.7
If EX; = u < oo and Xy, Xo,... are i.i.d. then

N¢ft - 1/p as.

Proof. Let T'(NN;) be the time of last renewal up to time ¢. Then T'(NV;) <t <T(N; + 1), so

T(Nt) < i < T(Nt + 1) _ T(Nt + 1) Nt +1
Nt = Nt Nt Nt+]— Nt '

Since T'(N;)/N; — p a.s. and (N; + 1)/N; — 1, we have t/N; - p a.s. O
SLLN when EX; = oco: we know

1 n
- Zmin(X,»,M) - Emin(X;, M) a.s.
"zl

Since Emin(X;, M) - EX; = o0 as M — oo, we also have

1 n
> X; > o0as.
nz1

Example: Empirical d.f’s, D2.4.8. Let X1, X5, ... be i.i.d. with distribution F. We let

2 Lixnss

m=1

Fo(x):=

S

Namely, F),(z) is the observed frequency of values that are < x. For fixed z, 1x,<,) are i.i.d. with mean
F(z), so SLLN says F,,(z) - F(«x). Simiilarly F,,(z—) - F(x-) a.s.

Theorem: Gilvenko-Cantelli, D2,4,9

We have “almost sure” uniform convergence:

sup|Fy, (z) - F(z)| - 0 a.s.
x

18
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Proof. Idea: if F, is close to F at two points a,b where F'(b) - F(a) is small, then F,, is close to F in all [a,b] by
monotonicity.
Fix k> 1. We let

Ij={x:1/k<F(z) < (k+1)/k},0<i< k.

This is either an empty set or an interval, so say I, = [a;,b;]. If I; + &, then F(a;), F'(b;-) are in [j/k, (j +1)/k].

For all j, there exists ng(j) such that n > ng(j) implies (almost surely)

[Fn(a;) - Faj)| < 1/k
|Fr(bj—) — F(bj-)| < 1/k.
That is, on the endpoints, we have convergence.
What about in-between? For « € I;, we have
1 -1 2
Fo(z) > Fn(aj) 2 Fn(aj) - % 2 7](: > F(x)- %
The other direction is similar:
1 7+2 2
Fu(@) < Fal(b=) < F(b=) + 7 < % <F(a)+ .

Therefore the supremum is bounded by 2/k — 0, and we are done! O

An alternate proof of SLLN uses k(n) = n?, where the goal is to bound

Sm -5 n
P k(n)
k(n)

To do so, we need the following theorem:

> e for some k(n) <m < k(n+ 1)) .

Theorem: D2.5.5, Kolmogorov’s maximal inequality

If Xi,...,X,, are independent (not requiring i.i.d.) with EX; = 0 and var(X;) < co. Then

var(Sy,)
x2

> 1)<
P(lrilli);|5k| >x) <

Note that Chebyshev gives P(|Sk| > z) < var(S,,)/x? so this is strictly stronger.

Proof. We decompose the events according to the k™ occurrence:
Ay, = {|Sk| > x but |5} < « for j < k}.

It is clear that the A;’s are disjoint. We show that var(S,,) = E(S,)? > 2?P(max > x). For this:

>” S? dP
z /.5

-3
k=1

[f 22 dIP+f1Ak25k(Sn—Sk)dIP’].
k=1L A4k Q@

ES?
. (SE+251(50 - 81) + (Su - 51)%) dP
k

The first > is because the A;’s are disjoint. We use x2 as a lower bound for S), over A, by definition, and we note

that (.S, — Sx)? > 0. Finally, we note that 14, 25, depends only on what happens on the first k sets and S,, — S
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depends on something else, so they are independent. Therefore
/Q 14,25,(Sy — sk ) dP

the product of expected values, is the expected value of products, and E(S,, - S;) = 0. Therefore ES? >

2% 3 P(Ag) = 2°P(max|Sk| > z). O
-1
Beginning of Oct. 5, 2022
[ Proposition: Ottaviani’s inequality
Let X, X5, ... be independent and « > 0. Then
]P’( 1ax]5, | > 2@) ‘min B[S, - Si| <a) <P(S| > a).
Jsn jsn
To apply this theorem, suppose we know min P(|Syn — Skl < a) <c¢, then
jsn
1
P(max|5j| > Qa) < Ip(S| > a).
Jjsn C
Proof. We define
A; ={]Si| <2aforall i <j and |S;| > 2a}.
Then
P(|Sn| > a) > > P(|S,|>a and Ay)
k=1
n
> > P(|Sn - Sk| <aand Ay)
k=1
= 2, P(ISn — Skl < a)P(Ay)
le=1
> minP(|S, - Sk| <a)-P ( U Ak)
k<n k<n
= I]zlgirlll]P)GSn - Sk <a)P (IilgaidSH > 2a) .
Example. If 2P(]X;| > ) - 0 but E|X;| = oo, and if X and —X have the same distribution (i.e., X is

symmetric), then by weak law, S,,/n — the truncated mean in probability, which is always 0. However, since

the mean is infinite, S,,/n will not converge to 0 almost surely.

Theorem: D2.5.8 Kolmogorov’s three-series theorem

Let X1, Xo, ... be independent. Let A > 0 and let Y; be X;1yx,<ay. Then Z X, converges almost surely if

n=1

and only if the following are all satisfied:
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* Y P(IXn|> A) < oo,
n=1

* Y EY, converges, and

n=1

[e0)
* Y var(Y;) converges.
n=1

Note that (i) A is chosen arbitrarily, so the three conditions cannot depend on A; (ii) if Z var(Y,) = oo, then

n=1

var( . Y,) - oo as n — oo, for all m, which implies the variate is staying big for the tail, and so we don’t expect

J=m

the tail of )  X; to converge to 0.

n=1

2.7 Large Deviations

Let X, Xo,... be iid. and let S, = X; +... + X,,, as usual. SLLN says if E|X;| < co then S,,/n — p a.s. How big is
P(S,/n) > a), for some a > p?
Main idea: consider the exponential moment: ¢(¢) = E(exp(¢X)) < oo for some ¢t. Then P(S,, > na) — 0 decays

exponentially.
Beginning of Oct. 7, 2022

For a sequence b,, - 0 converging to 0, we say b,, decays like e=*" if
1
—c =1lim —logb,,
n

or equivalently, for € > 0,

e—(c+e)n <by, < e—(c—e)n

for sufficiently large n.

Similarly, we want to show that P(S, /x> a) decays like e~/(*)" for some I(a) > 0. Question: what is
1
v(a) = lim —logP(S,/n>a)?
n—>00 n

We define 7, := P(S,/n > a). We claim that log m,, is superadditive: m,,,, > Ty, SO 10g Ty > log m, + log my,.

This is true because
P(Smin = (m+n)a) 2P(S, = na, Spym — Sn 2 ma) =P(S, 2 na, Sy, 2 ma) =P(S, > na)P(S,, > ma).
Lemma: D2.7.1

If ~,, is superadditive, then v/n — sup,,, Ym/m.

Proof. Call the supremum limit c. It suffices to show 0 < liminf < limsup < ¢.
lim sup < ¢ = sup is trivial by definition.

Conversely, we need to show lim inf 7,,/n > ,,,/m for all m. Induction says if n = ny+...+ny then v, = yn, +...4Yn, -
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In particular, if we fix m, then we can write n as n = km + £ with 0 < £ < m. Then,

Yoo g kymtye - kmoym e

n’ km+l km+lm  km+{l

As n — o0 50 k — oo, £ is bounded, so km/(km + £) - 1. So does ~¢/(km + £). Therefore,

lim infﬁ > h. O

Therefore, P(S,/n < a) < ¢¥(D™ in particular, since y(a) > n~'logP(S,/n > a) as shown above. That is, this
exponential decay rate is also an upper bound for P(S,,/n < a).
Suppose MGF () = Ee?X is finite in (-4, ). In this interval,

Xk€0X

_ k_—-eX
(v X X =0

as X — oo. In particular, if 6 € (-4, ), so does the new quantity when e is small, so E(X*eX) is finite, for all k. In

particular, for k =1,

(0+h)X _ 60X hX _
lim E (H) =limE (eexel) .
h—0 h h—0 h

Assuming h positive,

ehx_l‘ X if X <0
<

h Xe"X  if X >0

We have shown that Xe"X is integrable for small /, so indeed we can apply DCT and obtain ¢'(0) = E(Xe?X).

Similarly, if we differentiate twice, we obtain " () = E(X?2e¥), and so on. Also,

_(0) [ XX ap
Cp(0)  [etX AP

(log ¢)"(0)

Given g > 0, we can define a probability measure by

dP
v(a) <1294
[gdP
“P weighted by ¢”, and equivalently
[1lagdP
E 14 =
[gdP
Using standard measure theory argument, we obtain
P
E,f = [ fg P
[gdP
Therefore, (log »)'(#) can be thought of as E,, X, under the tilted distribution of vy.

Also,

(log 0)"/(0) = £O2"(O) =(0)* _ [ X? dP (f XX dP)2

v(0)? [ efX dP [ efX dP

namely var,, (X), which is nonnegative. Therefore, log ¢ is convex. Also note (log ) (0) = 0 with (log»)’(0) = EX.

What about MGF of sums S,, for i.i.d. random varaibles?
©s,, (0) _ ]Eee(X”‘”*X") _ (p(e)n
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Now we fix 8 > 0. Then
P(S,/n > a) = P(e?" > %),

so by Markov, this is bounded from above by

Ee”S" _ o(0)"

eOna eOna

P(S,/n>a) <

= exp(—(af —log p(0))n).
To show exponential decay, it suffices to show the above exponent is positive. In particular, if
I(a) :=sup(ad —logp(0)) >0
6>0
we are done. Indeed! a > EX, and log ¢ is convex, so if we start at the origin and draw a line a#, it is steeper than

log ¢ so it will go above the graph of log ¢, resulting in a positive supremum.

Beginning of Oct. 17, 2022

Large Deviations Regime

We define X; = +1, P(X =1) = P(X = -1) = 1/2, and consider the trajectory {S;, j < n}. We define a new probability

measure Q({S;,j <n}) as
P({Sjvj < n})eXp(ﬂNn)
Zn(B)

where N, is the number of times the trajectory touches the z-axis and Z,,(8) is the scaling constant to make @ a

Q({S;,j sn}) =

probability measure.
One can show that P(S; = 0) ~ C/\/j, so E(N,,) = > P(S5; =0) ~ cv/n.
j=1

We first assume that V,, ~ An. What X is optimal under such assumption? Note that {NV,, > An} is a large deviation

event since E7 = co, and N,, > An is asking for finite gap between returns. Then P(N,, > An) ~ ¢! Mn 5o
P(Nn > )\n)eﬂ)\n ~ e(,Bk—I(k))n.

The optimal )\ is therefore the quantity that maximizes the above expression.

Furthermore, for all 3 > 0, there is A for which the ma is positive. (For > 3 dimensions, need /3 > f3.. for some 3. > 0.)
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Chapter 3

Weak Convergence and CLT

Notation: we use ¢(X) to denote the standard deviation of X.
Let X1, Xo, ... be i.i.d. with 02 = var(X;) < co. Then o(S,,) = 0/n, so S,, - ES,, “grows like \/n.” What happens to
Sp —ES,
N4
as n — oo? This quantity always has zero mean and variance o, so in particular it does not converge in probability.
We will show that this quantity converges in distribution to a standard normal Z:

P ( Sn - ESn

J\/_n<\:]3) ->P(Z <x).

k’!l
For triangular arrays X,, (n > 1,k < k,,), the row sums S,, = Z X, connects to this quantity:
k=1

General principle: S, -~ Z if X,,,k’s are approximately independent and with high probability, no one X,, ;, con-

tributes much to S,,. We will expand on this more rigorously later.

Example: Coin toss. Let X; = +1 with probability 1/2 each. Let +1 be heads and -1 tails. Then S,, =

number of heads — number of tails. The DeMoivre-Laplace limit theorem states that
P(S,/v/n€a,b]) - P(Z € [a,b]).

Proof sketch: consider even indices P(.S3,, = 2k) for some k. That is, we get n + k heads and n - k tails in 2n
tosses. This probability is

2n \,_ap 1 2,
P(S2n = 28) = (n+k‘)2 e \/7'(77,6 H

uniformly over k with (k/n)%n — 0, i.e., k < n?3. Then, for x = 2k/\/2n,

1 2 2 1
P(San/V2n=1)= ——e /2= — —
(Szn/v2n = ) S V2n /27

The last two terms reminds of standard Gaussian. Now note that

P(%:x):P(jzlne(x—l/\/%,x+l/M])

exp(-z2/2).
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since S,,, is discrete. On the other hand,

z+1/v/2n | 5 2 1
P(ze(x-1/V2n,z+1/V2n :f — et P At~ —— exp(-22/2).
Gelomthvene s N = ) m Vo Vo am P

Now sum over all « = 2k/v/2n in [a,b], and fill in all the e - § proof.

3.1 Weak Convergence

Beginning of Oct. 19, 2022

Given a sequence of distribution functions F;,, we say F,, — F' weakly if F,,(z) — F'(z) at all continuity points of F'.
Why continuity points only? Consider F},(x) = 1[1/5,), Which should converge to a point mass at 0, with F'(z) =
1{0,00)- However, F;,(0) = 0.

We say X,, — X in distribution if the distribution functions converge weakly. Our previous De Moivre-Laplace
theorem then states that S,,/\/n converges in distribution to N (0,1).

Note that this simply says P(X,, € (—oc0,2]) = P(X € (-o0, z]) for continuity points x, but does not require P(X,, €

A) > P(X € A) for all Borel A. We will discuss more on what A satisfies such limit equation.

Example: Geometric r.v.’s.  Let X, be such that P(X, =n) = (1 - p)"~'p. What happens when p - 0?
First note that EX,, = 1/p, so E(pX,) = 1. Natural question: does pX, has a limit in distribution?

For fixed z, z/p ~ |x/p| (meaning ratio — 1) as p -~ 0. What about P(pX, > z)?

First, P(X, >n) = (1 -p)" (i.e., first n all tails). Therefore,

P(pX, > z) =P(X, > z/p) =P(X, > |z/p]) = (1 - p)*/7L.
Taking log, we obtain
log(1 - p)*/7) = FJ log(1-p) ~ =(-p) = -
p p

Therefore P(pX,, > x) - e™*, an exponential with parameter 1.

Example: Density functions. If F,, > F weakly, it is not necessarily true that their derivatives f, — f
weakly.
Consider f,, =2 on (j—1/2",j/2"] for odd j and O for even j. Then F,, almost looks like diagonal and in fact

it converges to F'(x) = x. But clearly f,, » f = 1.

[ Proposition: Scheffe’s Theorem

If f,., f are densities of y,, and pu, and if f,, - f pointwise, then sup|u,(B) — x(B)| - 0.
BeB

Proof. Let B, == {z: fo(x) > f(x)}. Then

$up (i (B) = 1(B)) = pin(Ba) = w(Bo) = [ (fu= )" .
BeB
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Similarly,

Z‘ig(ﬂ(B) —pn(B)) = f(fn—f)’ da.

Since f, and f are densities, the two lines above are equal. It suffices to show f (fn=f) dz—>0asn —>oco. To
do so we use DCT: (f, — /)~ — 0 a.s. and is bounded by f, so by DCT, the integral converges to 0. O

Lemma
For all distribution function F, there exists a random variable Y on ([0, 1], B,P) with P uniform, such that

Y has distribution function F'.

Proof. If F is continuous and strictly increasing, let Y (w) = F~!(w). Then Y (w) <t iff w < F(¢) iff w € [0, F(t)],

soP(Y <t)=P(Y €[0,F(t)]) = F(t).
More generally, let Y (w) :=sup{y : F(y) <w}. Then Y (w) <t iff w < F(¢) iff w € [0, F(¢)], and we are done. [J

If X,, and Y,, have the same distribution, X and Y have the same distribution, and X,, - X a.s., is it true that

Y,, - Y a.s.? The answer is no.
Example. Let X ~ A(0,1), and let X,, = X for all n. Then X,, - X trivially. Let Y,, be i.i.d. standard
normals, and clearly Y,, » N (0,1) :=Y.
Beginning of Oct. 21, 2022
Theorem: Convergence in distribution vs a.s.

If F,, —» F in distribution, then there exist Y,,,Y with distribution functions F;,, F' such that Y;, - Y almost

surely.

Proof. The existence of Y,,,Y have been shown above. We need to only consider w € [0, 1] for which F~(w)

contains 0 or 1 point. Fix w and let ¢t = Y'(w). Then
F Y (w)=woor {t}.
Therefore, for such points, for all § > 0,
F({t-96)<F(t)<F(t+9).

Choose § such that ¢ + ¢ are continuity points of F'. Then, for large n, F,(t - 0) < F'(t) < F,,(t +0), sot - <

Y, (w) <t+0, and similarly t — § < Y (w) <t + 4. Since ¢ is arbitrary, Y,, - Y a.s., as there can only be countably

many exceptions (countable jumps). O

Theorem: D3.2.9, Characterization of Weak Convergence

X,, - X in distribution iff Eg(X,,) - Eg(X) for all bounded continuous g.
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Proof. Suppose X,, -~ X weakly. Take Y,, with the same distribution of X,, and Y similarly, with Y,, - Y almost
surely. Let g be bounded and continuous. Then ¢(Y,,) - ¢g(Y) a.s., so Eg(Y,,) - Eg(Y) by bounded convergence

theorem.

Conversely, suppose Eg(X,,) > Eg(X) for all bounded continuous functions. We want
El(—oo,m] (Xn) e El(—OO,I] (X)

for all continuity points z.
1(~0,z] isD’t continuous, but it can be approximated by 1 on (-oco,z —¢), 0 on (x, o), and linear in between. We

call this function g,_ , and define g, .. similarly. By assumption,
Ega:—e,w (Xn) - Ega:—e,w(X) 2 F(‘T - 6)

and

EgCE,I+E(XTL) - ]Eg(E,ZIJ‘FE (X) g F(x + 6)'

Then since F'(z —¢) < liminf F, (z) < limsup F,,(z) < F(z +¢), if z is a continuity point, we obtain the claim. O

n— oo

Remark. Note that we can weaken the assumption and only require g to be continuous a.e.: denote the
discontinuity set as Dy; if P(X € D,;) =0 and X,, - X in distribution, then Eg(X,,) - Eg(X).

Corollary

If X,, —» X in distribution and f is continuous, then f(X,) — f(X) in distribution too.

Proof. If g is bounded, then g o f is bounded, so Eg(f(X,)) - Eg(f(X)). Using the previous theorem once
more, f(X,) — f(X) in distribution. O

Corollary

If X,, » X almost surely, then X,, - X in distribution.

We have shown that there exists a metric w.r.t. convergence in probability: |X — Y|/(1 +|X - Y|). There also exists

metrics (one example is Lévy metric) for convergence in distribution.

[ Proposition: Convergence in probability = in distribution

Slick proof. It suffices to show that for all subsequence, there exists a further subsequence converging almost
surely (then such sub-subsequence converges in distribution). And this is true as shown previously. Finally,
since there is a metric for convergence in distribution, the full sequence indeed — X in distribution.

More revealing proof. Let g be bounded continuous, with |g| < K. By uniform continuity on compact sets, given
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M and e, there exists ¢ satisfying the uniform continuity criterion on [-M, M]. Then
Eg(X,) ~Eg()] = [ lg(Xa) ~g()] dP

< X,) - g(X dIP+f d]P’+f .. dP
./|X\<M,|Xn—X\<5|g( )= 9(X)] \X|>M| | [X,-X[20

sf edIP’+/ 2KdIP>+f 2K dP
[X|<M,| X, -X]|<5 |X|>M X -X|20

<e+2KP(|X|> M) +2KP(|X,, - X| » ).

Hence,
limsup [Eg(X,) -Eg(X)| < e+ 2KP(|X|> M) for all M, e.
Since M, e are arbitrary, we see limsup |Eg(X,,) - Eg(X)| = 0, as claimed. O

Remark: Converse is false. Let X,,X be i.i.d. A(0,1). Then clearly X,, -» X in distribution, but not in
probability.

However, (shown in HW), if X, - ¢ for some constant ¢, then indeed X,, — ¢ in probability.

Beginning of Oct. 24, 2022

Let X be any random variable. Then for all € > 0 there exists M such that P(|X| > M) < e. We say {X,,} is
tight if given ¢, there exists M such that P(|X,,| > M) < e for all n. One easy example: if {y,} is bounded, and
Xy ~ N (pin, 1), then {X,,} are tight.

Remark. In general, if X,, - X,Y,, — Y in distribution, X,, +Y;, + X + Y in distribution. Example: let
X,, = X =Y =1if heads and 0 if tails, and let Y;, = 0 if heads and 1 if tails. Then clearly X,, +Y, is constantly

1 whereas X + Y is either 2 or 0.

Theorem: Slutsky’s Theorem

If X,, - X in distribution and Y,, — 0 in distribution, then X,, +Y,, — X in distribution.

Proof. Using the bounded function characterization of convergence in distribution, let g be bounded with |g| < K.
Given M, € > 0, there exists ¢ satisfying the uniform continuity criterion on [-M, M]. Then
oo

Elg(X, +Y,) - g(Ya)| < f ed]P’+f 2K dIP’+f 2K dP
|Xn|<M,|Yn|<6 X |>M Y, |26

just like in the proof of D3.2.9, characterization of weak convergence. O

[ Proposition: Tightness lemma

If X,, —» X in distribution then { X, } is tight.
Proof. Let F), be the d.f. of X,, and f that of X. Let € > 0. Clearly,
P(|Xn| > M) < Fu(-M) +1 - F, (M).
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We take M, such that + M, are continuity points of F', and
F(~Mp) +1- F(My) < %
Hence by assumption there exists ng such that if n > ny,
F.(-My)+1-F, (M) <e.

For each one in the first finitely many terms, there exists M; with F;(-M;) + 1 - F;(M;) < e. Take the maximum

among M;,i=1,2,...,n9 — 1, and My, we finish the proof. O

If X,, > X in distribution, for what A does P(X,, € A) - P(X € A)? Intuitively, for an open set, X,,’s distribution

may converge to the boundary, resulting in a loss of probability.

Theorem: D3.2.11

The following are equivalent:
(1) X, — X in distribution,

(2) For all open sets G, liminf P(X,, € G) > P(X € G),

n—o0

(3) For all closed sets K, limsupP(X,, € K) <P(X < k), and

n—oo

(4) For every Borel Awith P(X € 04)=0,P(X,, e A) > P(X € A).

Proof. (1) = (2). Let X,, and Y,, have the same distribution, and same for X,Y. Assume Y,, - Y a.s. Let G be

open. Then Y € G means Y,, € G “eventually.” That is,

1@(Y) = liminf 1(;(Yn).

1—>00

By Fatou, taking expectation gives

P(Y €G) < E(liminf 15(Y,)) < liminf P(Y,, € G).

(2) = (3). Take complements.

(2),(3) = (4). Suppose P(X € 0A = 0). We denote the interior as A° and closure A. Then P(X € A°) = P(X «
A) =P(X € A). We apply (2) to A° and (3) to A and obtain the claim.

(4) = (1). Let A take form (—oco,x]. If P(X = z) = 0 then the d.f. is continuous at z. Done. O

Example. Let X,, be uniform on [-n-1,-n]u[-1,1] U [n,n + 1]. For z > 1, the distribution function
F,(xz) - 3/4 = F(z). Note that F is a measure but not a probability measure anymore — mass escapes at
infinity!

In general: if F is right-continuous and nondecreasing, if F,,(x) — F(z) for every continuity point of F, we say

F,, - F vaguely.The above example shows that if F;, are distribution functions and F, — F vaguely, it is still not
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necessarily true that F' is a CDF.

Theorem: Helly selection theorem

Every sequence {F,} of distribution functions has a subsequence {F,,, } converging vaguely to F' for some

F, again, not necessarily a probability measure. “Almost compactness, but not quite.”

Beginning of Oct. 26, 2022

Proposition

Suppose {F,,} are distribution functions and F,,(¢) - G(q) for all ¢ € Q, Let F(x) = G(x«+). Then F,, > F

vaguely.

Proof. From analysis, F' is continuous. Also F' > G. If r > s, then G(r) > G(s+) = F(s).

Let x be a continuity point of F' and let € > 0. Take r1 < ry <z < s with r1,79,5 € Q, and
F(zx)-e<F(r1)<F(ry) < F(z) < F(s) < F(x) +e.

By definition/assumption F,,(r2) - G(r2) > F(r1) by the previous observation. Also, F,,(s) - G(s) < F(s).
Therefore F,,(x) is sandwiched between F'(z) — € and F(x) +e. O
Proof of Helly selection theorem. We use the diagonal method. Enumerate @ by {g¢;}.

There exists a subsequence .S; on which Fj,(¢q;) — some constant G(q; ) by compactness of [0, 1] (we are defining
the values of GG at rationals using compactness). We can pick a further subsequence S on which F,(¢1) - G(q1)
and F,,(¢2) - G(g2). So on and so forth. We now take the i element in S;, and the nearly formed sequence

n(k) satisfies I, (1)(q:) - G(qg;) for all ¢; € Q, and by the previous remark we are done. O
Theorem: D3.2.13

Let { F},} be a sequence of distribution functions. Then every subsequential limit is a d.f. iff {F},} is tight.

Proof. Let u,, be the probability measure corresponding to F,.
First suppose {F},} is tight. Let € > 0. By assumption there exists M such that p,([-M,M]) >1—-e€foralln. Ifa
subsequence p,,, — p vaguely, we want to show that x(R) = 1. Indeed, assuming F is a continuity point (which

we can always choose so),
w(R) 2 p([-M, M]) 2 limsup pin,, ([-M,M]) >1-e.

Conversely, suppose {F,} is not tight. That is, there exists ¢ > 0 such that for all M, there exists j,,(y;) with
pin(rry € 1 — €. WLOG assume n(1) < n(2) < .... Then there exists a further sbsequence n(M}) on which F,,(yy,)
converges vaguely to some p by Helly. Thnen for all continuity points a of i, u((~a,a]) = limg i, (as,)((~a,a]) <
liminfy, o, (ar,.) (=M, My ]) for large M. Then the quantity is bounded by 1 -¢, and so (R) < 1 -¢, and we are
done. O

Beginning of Oct. 28, 2022
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Theorem: D3.2.14, Sufficient condition for tightness

Suppose there exists ¢ : R — [0, o) with ¢ — oo as |z| - co and Ep(X,,) is (uniformly) bounded. Then {X,,}
is tight.
For example, if E|X,,| or Elog(1 + |X,,|) is bounded, then {X,,} is tight.

Proof. Define ¢o(x) := inf{p(t) : |t| > |z|}. By assumption ¢ is symmetric/even and monotonically — oo on
[0,00). Also, po < p, so Epg(X,,) also has (uniformly) bounded expectation, say by some K. WLOG we can
further assume ¢, to be strictly increasing on [0, c0) by adding something strictly increasing and also bounded
bounded to it. Then
Epo(Xn) K

wo(M) (M)’

Given € > 0, choose M large with K/po(M) < €, and we are done. O

3.2 Characteristic Functions

Let X be a random varaible. We define the complex function ¢x () := Ee®™X = Ecos(tX) + iEsin(tX) to be its

characteristic function. Note immediately that

lox ()| <Ele™X]=1  with  ¢x(0)=1.

Example. Let X be uniform on [-1,1]. Then

_1sintm
T2 ¢

11
@X(t):/ i(costerisintx)dx
-1

Example 3.2.1. We will show later that if E|X| < co then ¢y (t) = % f e dP = f iXe'X dp.

For example if X is standard normal, then

o (t) = / iXe" f(z) d.

Note that f(x) = exp(-z?/2) satisfies f'(z) = —zf(x), so the cosine part is an odd function, and so

1
V2
O (t) =- f xsin(tz) f(x) dz = f sin(tz) f'(x) dz.

IBP and we obtain ¢y (t) = —t@x (¢) with initial condition ¢x (0) = 1. This gives ¢ x (t) = exp(-t?/2).

Proposition

For all X, ¢x (¢) is uniformly continuous. (We will drop the subscript X for convenience.)

Proof. Since
lp(t+h) = p(t)] = !X - X = Bl X 1],

le?"X —1| <2, and "X - 0 as h — 0, by DCT the limit is 0, uniform in ¢. O
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Remark. If X is symmetric, i.e., X and —-X have the same distribution, px (t) = px(t) so px(t) € R.

Question. Does px determine the distribution of X. Furthermore, can we calculate the distribution of y from ¢ x?

Relation to Fourier transform: given f, we define

f0)= = [~ @) da = —e(t),

If the density f € L? and ¢ € L' (i.e. integrable), then

F@)=Feay == [Temfwar= o [Tetranas o [Tt ar

Hence (since ¢ € L*, Fubini applies)

b 1 b o .
1((a,b)) = [ f(@)da = o [ [ ety dt do
» z 1 0o efita _ e—itb
o / [ Fip(t) da dt = o [oo et AU

Theorem: Inversion Formula

If 14 is a probability measure with ch.f. o, then

1 T e—ita _ e—itb
lim *[ e dt=p((a,0) + p({a})/2 + p({b})/2-

T

Beginning of Halloween, 2022

T ,—ita _ ,—itb T )
Proof. For convenience, define I := / %gp(t) dt = / / e p(dz) dt. By Fubini,
-7 Jr

-T i
T Jit(z—a) _ _it(z-b)
IT:[/ ¢ —° dt p(de).
R J-T it

dt. Then the inner integral above is R(x — a,T) — R(x - b,T). Note that R is real

T ,it _

Define R(0,T) := fT ¢

since R is odd, and so only the real part remains:
T gin(ft TI0] &
R(0,T) = [ sin(6t) dt = 2sgn(6) [ MY g,
-T t 0 U

Because of the sign function, R(z —a,T") — R(x — b, T') depends on the relative position of = to a and b.
2r  x € (a,b)
Since f MY g = 7/2, R(0,T) - g(x):={x  ze{a,b} Then, bybounded convergence,
0o u

0 otherwise.

1 1

ir= o [(RG@-a. )= R -0,T)) p(de) = - [ o) p(de) = u((a6)) + su({a}) + Sa({0}).
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Theorem: D3.3.14

If o € L', then 4 has a bounded continuous density

f(z) = % [: e "o(y) dy.

b 1 [} .
Proof. We want to show that for a < b, u((a,b)) = / Py [ e "™ (y) dy dz. Note that
a T J—-o00

b
f e " dy
a

e—zta _ e—ztb

1t

< |b_a|’

so (defining I as above), I — I.. Therefore

_ e—ztb

((a.0) + ulla))/2 s nCieD)f2= = [ oy ar

=) 1t
1 e b —itx
=— f f e " dx(t) dt
21 J-o0o Ja
b 1 o —itx
= f 7[ e "o(t) dt p(de).
a 27 J-

Call the last quantity h(a,b). We want to show that h(a,b) = u((a,b)). This is because as an integral, h is
continuous in (a,b). The absense of jumps imply that pu({a}),u({d}) = 0 for a,b. So h(a,b) = u((a,d)) for all
a,b. O

3.3 Weak Convergence

If X,, > X weakly, then ¢x, (¢t) = E(rcos(tX,) +isin(tX,)), a bounded continuous function, must also converge
to px (t) pointwise.
Conversely, if ¢, - ¢ pointwise, does the measures p,, associated with ¢, necessarily to some p weakly? The

answer is no.

Example. Let Uy,Us,... be i.i.d. over [-1,1], and let S,, = 3.1 U;. Then ¢y, (t) = sint/t, and ¢g, (t) =
oy, (£)". As n — oo, ¢ equals 0 only when ¢ = 1 and — 0 otherwise. However, .S,, is not converging in
distribution. Furthermore, the limit ¢ = 1, is not continuous, so it cannot be a ch.f. anyway. Therefore

{S,} does not converge weakly.
Theorem: Continuity theorem, D3.3.17

Let u,, be probability measures with ch.f. ¢,,. Let u be a probability measure with ch.f. .

(1) If p, — p weakly, then @, (t) — ¢(t) pointwise.

(2) Conversely, if p,, — ¢ pointwise, and  is continuous at 0, then u,, — u weakly, and p has ch.f. .
Remark: “General principle”. The behavior of ¢ near 0 is related (in various ways) to “the measure p

near oo,” e.g. moments, tail probabilities, etc.

Intuitively, for small ¢, e**X is close to 1 unless X is big, pushing the value away from 1 significantly.
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[ Proposition: Tightness from char functions

Let ¢ be the ch.f. of y. Then for all u > 0, u({z : |z| > 2/n}) <u™? /_:(1 - (t)) dt.

Proof. We plug in the definition of ¢(t).

ey ar=1 [1 [ - g a
:/R;/ (1- €™y dt p(dx)
2/( (Slnu;v)) J(de).

For |y| > 2, |siny/y| < 1/2, so integrating over {|z| > 2/u} gives an lower bound 2 1/2 p(dx). O

|z|>2/u

Beginning of Nov. 2, 2022

Proof of continuity theorem. (i) True. (ii) By the lemma, for u > 0,

pflel> 2/ = [ u(0)

By bounded convergence theorem, this converges to the integral with integrand ¢,, replaced by ¢, as n - oo.

Given € > 0, choose u such that last integral < e. Then beyond some Ny,

lf“(1—<pn(t))dt<e for all > Ny,
U J-u

SO pup, is tight, as there exists M > 2/u such that ., ({|z| > M}) < e for all n > N, and there are only finitely many
early terms, which we can bound individually.
Finally, we show that the full sequence converges. If u,, - 1 weakly then there exists a subsequence ¢,,, - (ch.f.

of 1), so ¢ must be the ch.f. of . Thus the full sequence p,, converges to p. O
Differentiation and Moments

When can we differentiate
o(t) = [ e p(dn)?

Note that "
@(l‘+h)—<ﬂ(w)_f itz € -1
Y = )€ - w(dx).

The term (¢** —1)/h is bounded by ||, so it is integrable as h — 0. Thus it is sufficient to require E|X| = f || pldx| <

oo. Then
o (t) = f ize™ p(dz).
R
More generally, to take the n™ derivative, it suffices to require E|X|" < oo, with (™) () = f (iz)"e"™ p(dx). Note
i

that the expression holds independent of ¢.

Theorem

(Conversely,) if ©?"(0) exists and is finite, then E|X|?" < co. (Does not necessarily work for odd powers.)
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Proof. We will prove the special k = 1 case: assume " (0) is finite. We write it out:

w(fv) 2¢(0) +p(=h)

//(0) 2
—24ethe

- ilzl—% R h? u(de)
- - cos(hx)

=2 }Ig% R h? p(de).

By Fatou’s lemma (and since limit exists),

0" (0) < -2 fR 2% p(dz) = ~EX?
so E| X |? is finite. For k > 2, we need to induct on k and apply the above argument to X?/EX?y(dz). O

Taylor-type Expansions

Expanding ¢ around 0 gives

i n(it)k
ti Z ( t) Z %Xk +O(|tX|n+1)
k=0 :

as [tX| — 0. Clearly we can take the expected value of the first finite sum, when E|X|" < co. But what about the

remainder? A lemma from Durrett —

[ Proposition: D3.3.19

(156)m

Z

|x|n+1 2|x|n
min , .
(n+ 1)’ nl

Proof sketch. Integrate by parts and iterate:

. n Zk z’n+1 x )
e =1viz+ y —ak+ / (z - s)"e" ds.
= k! n! Jo

This will give
|w|n+1

S ()l

n+1
/ (m )n is dsl|
n'

Now looking back at Taylor expansions:

(ti)m

’Ee” Z E <Emin([t X", 20t X ™).

Beginning of Nov. 4, 2022

Convex Combinations of r.v.’s

If p1, ..., in, are probability measures and Y1 ; A\, = 1, then the weighted sum Y* ; A;; is also a probability measure.

Similarly, if us is a probability measure for all s € I, and v is a measure on I, then (assuming measurability)

f[ s v(ds)

is also a probability measure, with ch.f. /1 ps(t) v(ds) where @, is the ch.f. of .
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Example. Let f(z) = (1 - cosx)/(wx?), which has ch.f. p1(t) = max(1 - [t],0). If s is any scalar then X /s
has ch.f. p.(tg = @1(t/s).

Then we can consider combinations of ¢;’s. For example, we note that f,/3 + 2f5/3 is a density with ch.f.
©1/3 + 2¢p5/3.

Theorem: Polya’s criterion, D3.3.22

Let ¢ > 0 with ¢(0) = 1, and ¢(t) = p(-t). Furthermore assume ¢ is decreasing and convex on (0, co) with

lim; g ¢(t) = 1 and lim;,c (t) = 0. Then ¢ is a ch.f.

Proof. Idea: express p(t) as f ps(t) v(ds) as defined in the example above for some v. If we can differentiate
0
inside this integral, then ¢ convex implies ¢’ exists a.e. and increasing, and ¢'(t) = f ¢(t) v(ds). But note that
0

©L(t) = 0if s <, so this equals — f 57t v(ds). So,as a measure, d¢'(t) = t"tv(dt), and v(dt) = tdy'(t) is our
t
candidate for v.

We may assume ¢(oo) = 0. Assume ¢’ is right-continuous (if not, replace it with F(t) = ¢(¢+). Define v by
t
v([0,4]) :f s d¢/(s). Then
0
dy'(t) =t v (dt)

as a measure. For t > 0,

P(e) -0 = [T age)= [ s uas).

s0
o'(t) = - / st v(ds) a.e.
(t,00)

Since ¢ is convex,
<p(0°)—s0(t)=f @' (u) du:—f f )s‘l v(ds) du
t t u,00
-1
=- s duv(ds
S S 09
:—f (1-t/s) v(ds)
(t,00)
- [ ey v(ds)
(t,00)

and we are done, following our previous observation. O

Back to Taylor series: if all moments E|X|* are finite, can we conclude

I SLE AT W e
! !
k=0 T k=0 T

The answer is still no in general.

All E(X*) finite implies all o(*) () exist for all ¢, with

o) () = E((iX)*e¥X) and ¥ (0) = i*EX*.
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If the full Taylor series

o) (9) ko 1 k_i0X .k
Z (1-0)"=> —(EGEX)"e"*)t
k=0 ko k!

has a positive radius of convergence r > 0 for some 0, then the values E((iX)*e?X) determine ¢ in an interval

around 6, (6 - r,0 + r). Further, r > 0 iff

1/k

1 .
lim sup EE((iX)kezaX) < o0,
k—oc0 .

By Stirling, k! > (k/e)¥, so this is true for all 6, if

k\1/k
limsup m < 00

k=00 k

That is, it suffices to require that “moments don’t grow too fast:”

E|X|* < (ck)" for some c.

Theorem: D3.3.25

1/k
If {yox} > 0 with limsup Hak oo, then there exists at most one distribution with moments EX* = i, for

k—oo

all k.

3.4 Central Limit Theorem

Beginning of Nov. 7, 2022
From Taylor’s theorem, [log(1 + z) - z| = O(|z?) as z - 0, so if ¢,, - ¢ in C, then (1 + ¢,,/n)"™ — €° as n — oo, and

Theorem: i.i.d. CLT

Let X1, Xo, ... be i.i.d., with EX; = p and var(X;) = 02 € (0, 00), then
Sn

R N(0,1)

1/2
in distribution.
Proof. We first assume z = 0 From D3.3.20 oy, (t) = Eexp(itX;) = 1 - 0%t?/2 + o(t?) as t — 0. Hence
P, J(oym) (1) = Eexp(itSy/(ov/n) = ¢s, (1/(0v/n)) = ox, (1/(o/n))".

For ¢ fixed, this quantity becomes (1 - t2/(2n) + o(1/5))"™ = (1 - (t* - nt,,)/(2n))™. The numerator is converging

to ¢, so by the previous observation, the entire quantity converges to exp(-t?/2), and we are done. O

Example. A business rounds all transformations to the nearest integer, so the error X in one transaction

is a uniform distribution (though unrealistic) on [-0.5,0.5). Let n = 100 be the number of transactions. Then
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EX; =0 and var(X;) = 1/12.

S, -0 N 20-0
VAN a2

P(|total error| > 20) = IP’( ) ~P(z>2.19) ~0.14.

How about triangular arrays? Suppose the varaibles on the n™ row are independent, S,, = Z Xn i, and EX,, ,, = 0.
k=1
When does S,, > N (0,0?) in distribution?

The basic condition is to require the triangular array to be uniformly asymptotically negligible (UAN):

k(n)
> P(|Xp,m| >€) > 0asn— oo.
k=1

Note that
k(n)
UAN <= [[ (1 -P(|Xnil>€) > 1
k=1
k(n)
= [[P(Xnxl<e)—>1
k=1

— P(|X,.m|=€foraln<k(n)) -1

k(n) k(n) 252 )
To get the result from CLT we want ¢g, (1) = [ ¢x,..(t) = [] (1 —k 4 some error) S et
k=1 k=1

Proposition

Let Ay, ., € C form a triangular array. If

k(n)
M D Ak = A

k=1

(2)  maxrow|An,m| = 0as n— oo, and

(3)  supy TE A k] < oo,

k(n)
then ] (1+ A\, x) > e
k=1
k(n) k(n)
Proof. We consider |log [T (1+Ank) = Y Al
k=1 k=1
LHS = Z |log(1 + )\n,k) - )\n,k|
k=1
E(n)
<K Z |>\n,k|2
k=1
k(n)
<K Sl:bp kz::l [An k| 7rr111§€>i|)\n7m| - 0.
Finally since Z An.k = A, we are done. O
k=1
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[ Proposition: D3.4.3

Let 21, ..., 2p, W1, ..., wy € C, all with modulus < K. Then

T1 2 - [ wm

n
<K™! Z |2m = Wi

m=1

Proof. Trivial for n = 1. If n > 1, we use triangle inequality to remove z; and w; to get

n n
[T 20~ I1

m=1 m=1

< +

n n
Z1 H Zm — 21 H Wm
m=2

m=2

n n
[Tz TTwnm
m=2 m=2

n n
2 [T wm —wi [T wm
m=2 m=2

<K + K"z — ). O

Theorem: D3.4.10, Lindeberg-Feller Theorem

Let X,, ., be a triangular array with independent random varaibles and zero mean. If

1 ¥ EX2, —02>0,and

(2) Yho E(XZ, Lx, jsep) ~ 0 forall ¢,

then the row sums S,, converges to A'(0,?) in distribution.

Beginning of Nov. 9, 2022

Note that (ii) implies UAN by Chebyshev. Also, L-F CLT covers the i.i.d. case which we are already familiar with:
for X1, X, ... i.i.d., we simply let X, ,,, = X,,,/\/n.

Proof of L-F CLT. We let ¢y, ,, be the ch.f. of X,, ,, and similarly o7, ,, the variance = EX?, , = var(Xp m).
First observation:

max oy, . = max[E(X7 1 1x, 0ce) + E(X7 1, 0se)]
m<n msn

n
< 62 + Z E(Xg,kllxn,k‘>€)'
k=1

The sum — 0 by (ii), so max,,<, Gi,m - 0.
n

n
Next, we note that g, (t) = [] ¢x,.,.(t) and compare this to [] (1 - (tzafhm)/2). Note that |, .| < 1, and

m=1 m=1

1 - (t*07,,)/2| < 1 for n large and ¢ fixed by the observation above. Therefore, by D3.4.3 (the inequality just
shown above)

05, (1) = TT(1L=#07 1 /2)| < 2 |xn (8) =1+ 707 /2]
m=1 m=1
From D3.3.20 we can bound the error of expansions by |¢x, . (t)-1+t%07 ,, /2| < ?/6-Emin(|t|| X, m|*, 6] X, [*)-

For | X,, m| < € we consider |X,, ,,|*; otherwise we consider the latter. We thus obtain the following bound:

n,m

2

t
[0x, (8) =1 +t%07 /2] < gE(ItI|Xn,m|31|Xn,m|sa 61X nml?1)x,0 jse)-
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Bounding [t[| X, ;| by te|X,,,m|* and using assumption (ii) yield

n t3 n
lim sup Z lox, .. () =1+ ﬁZUZ’m/2| < —e Z JTQLM +0.

n—oo =1 6 m=1
Convergence of . o7 . imply in particular that they are bounded in n, regardless of e. Thus the upper limit is 0.

It remains to notice that [] (1-t%07, ,/2) - exp(~t°0?/2), the ch.f. of N'(0,0?). O

m=1

Example: Normal approximation to binomial. Let S,, be the number of success in n independent trials,
each with success probability p. If A; is the event of success on trial ¢, then S, =37, 14,. We have El14, = p
and var(1a,) = p(1-p), so (S, —np)/\/np(1l -p) - N(0,1) in distribution. For integer valued distributions,

we often apply continuity corrections to obtain better approximation results.

3.5 Poisson Convergence & Poisson Processes

Beginning of Nov. 14, 2022

Theorem: D3.6.1

b row. Assume it is row-independent (within each row). Let

Let {A, ,} be a triangular array with n on n'
Sn=Yme11a, - X0 P(Apm) = A as n — oo, and if max,,<, P(Ay,m) — 0 as n — oo, then S,, - Poisson

with parameter A as n — co.

Proof. Note that

n

ps, (1) = TT (1 +P(Anm)(e" 1))

m=1
Let Ay = P(Anm) (e = 1). By assumption, Y7 _; Ay = A€ = 1), and 37 _1[Aum| < 250 i P(Apm) = 2)
and is in particular bounded. Finally, max,,<,|An,m| = 0 as n — co. By a previous proposition,
H (1 +)\n,m) = e)\(eitfl)v

m=1

the ch.f. of a parameter \ Poisson. O
Theorem: D3.7.1

Let {X,, »} be a row-independent triangular array with m <n, n > 1. Assume X are integer valued random
variables. Let pym = P(Xnm = 1), €nm = P(Xnm 2 2), and Sy, = 01 Xnom- I X0 1 Pnm = A € (0, 00),
MaXm<n Pnom — 0, and Y5 4 €y — 0, then S,, — Poisson(\). Namely, if P(X,, ,, > 2) is sufficiently small,

the result still holds.

Proof. Let X}, ,, = lyx, ,.-1; and S}, the row sum of X .. By D3.6.1 S| — Poisson()\). It remains to apply

Slutsky’s theorem to obtain convergence in distribution of S,, as well. This is indeed true:

P(S, #50)< Y €nm = 0. O
m=1
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Example: Birthdays.... Consider n friends, and let N be the umber of days (out of 365) with no birthdays
among these friends. Then P(no one on a fixed day) = (1 - 1/365)" ~ ¢ ™/3%%, so EN = 365¢~"/3%, Taking
n = 3651log(365/\) gives EN ~ .

This, however, does not take into dependency into account. If no one has birthday on Jan 1, then the
probability of no one having birthday on Jan 2 is slightly smaller with this prior information. We can show

that if we replace 365 with r,, and N with r,,, and if r,,/n -log(r,/\) = 1, then N,, - Poisson(\).

Poisson Processes

We now consider an arrival problem. Let A be the arrival rate. Let N(s,t) be the Z-valued number of arrivals in

(s,t].

Suppose the following:

(1) disjoint time intervals are independent,

(2) distribution of N(s,t) depend only on ¢t — s (once A is fixed),
(3) P(N(0,h)=1)=Ah+o0(h)as h—0,and

@ P(N(0,R) >2) = o(h).

Theorem: D3.7.2

If N(.,-) satisfies the above assumptions, then N(s,t) is poisson distributed with parameter A(¢ - s), for all

s <t.

Proof. WLOG assume s = 0. We divide [0, \¢t]into n equal subintervals and let X, ,,, = N((m —1)/n-At,m/n-At).
The row sums are just
Sp=3 Xpm=N(0,At).
m=1

Observe that P(X,, ,, =1) = At/n+o(1/n) as n - oo, keeping A, ¢ fixed. Also, P(X,, ., > 2) = o(1/n).
Applying D3.7.1, we see S,, - Poisson(\t). This holds for all n, so N (0, \t) ~ Poisson(\t). O

If T} is the time of the first arrival, then P(T} > t) = P(N(0,t) = 0)pP(Poisson(\t) = 0) = ™, so T} ~ exponential(\).

We will later show that the gaps between different arrivals are also i.i.d. exponential(\).

Multivariate Normal

Beginning of Nov. 18, 2022
Let X = (X, ..., X;) be a random vector with var(X;) < co and covariance matrix %, ; = cov(X;, X;). Then for any

vector 6,

4
var(f - X) =var(}. 6;X;) = > 0,0 cov(X;, X;) =020 e R.

i=1 i,
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This shows ¥ is PSD and symmetric. If T is a linear transformation of X, then
cov((TX)i, (TX);) = cov(Y. TikXp + > Tj e Xe) = (TETT); ;.
k e

From linear algebra, since Y is PSD, there exists an unitary U (U™' = U* and orthonormal) such that UTXU is
diagonal. From our remark above, viewing U” as a linear transformation, the resulting random vector U X has

uncorrelated components.

If X has density fx and T a multivaraible linear transformation, then 7T X has density
1

-1

frx(z) =

Finally, we are ready to talk about multivariate normal distribution.

Of course, the standard multivariate normal has each coordinate as an independent A/(0,1). The density

d
F(X) = 2r) Pexp(- . a?/2) = (2n) 2 exp(~2" Tx/2) = N(0,1).

i=1
If T is invertible then
frx (@) = (2n) 2| detT[ " exp(-2zT T-TT 1 2/2) = (2m)"¥?|detT| ! exp(-z(TT*) 2 /2).
This gives rise to a more general multivariable normal A/ (u, X), whose density is
fla) = m) P exp(~(z - ) "= (@ - 1) [2)
where 1 € R* and ¥ PSD.

Beginning of Nov. 21, 2022

For a degenerate mnultivariate normal, consider ;1 = 0 and r < d (rank). We take X1,..., X, ~ A'(0,S) where S is
invertible. we put X = (X1, ..., X,,0,...,0) corresponding to block diagonal S,0. Then 7'X has covariance matrix
TSTT. Given ¥, we want to choose S, T so that 7ST” = X.

We know there exists a unitary matrix 7 with YT = diagonal (A, ..., A2,0,...). Let D = diagonal (A2, ..., \?) and let
X ~N(0,D), X =(X,0,...,0). Then TX has covariance matrix TDT7 since T7 = 7.

Proposition

If X ~ N (p,Y) with ¥ nonsingular, then the marginals X; are normal.

Proof. WLOG p =0 and we are looking at the first coordinate, X.
The claim is easy if ¥ has first row (07,0, ...,0)” and column (07,0, ...,0). In this case,
Ts-1 ag
fx(x)=Cexp(-z" X 2/2) = Cexp(—ﬁ —g(xa,...,x4q))-
1

Therefore

fx,(z)= [ Ix(x1,...yzq) dza...q

22
= Const exp(—Q—l2 ).
g1
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Since fx, integrates to 1 the constant must match up, so X;N'(0,0%).

For the general case, we need to find T so that T'X’s covariance has the special form with (T'X); = X;.

We take unitary U such that the 1% row of U is perpendicular to the j® column of X7/2 j > 2. Take T' = UX"1/2.
Then T X has covariance matrix

7T = Uy 1Py 2yT - yuT = 1.

[To be fixed] O

Example.  Multivariate normal implies normal marginals, but not the converse. For example let X =
N(0,1) and & = +1 with probably 0.5 each, independent of X.
Let Y = (X,£X), so it’s on either diagonal with probability 0.5. Clearly Y is not a bivariate normal, even if

its covariance matrix is /.

If X, Xo, ..., X4 are independent N (p;, 07), then X = (X1, ..., Xq) ~ N (1, ¥) with ¥ = diagonal (0%, ...,02). Since

d d
(@) =10 = [T 5 e(nf (202) = (s oxp(a"57'2/2),

we obtain the following result:

Proposition

While not necessarily true for other distributions, for (X1, ..., X,,) multivariate normal, X;’s are uncorrelated

iff X,’s are independent.
(The previous example we have shows that if (X;, X5) is not multivariate normal, even if it has normal

marginals, then (uncorrelated but dependent) can happen.)

If X ~N(0,%), and T is invertible, then TX has density

1
(2m) ||| 2]1 /2

|;| fx(T7) =
1

- (2m) 2| TSTT |12

frx(x) = exp(zT T TS 77 1 /2)

exp(—2(TSTT) " 2/2) ~ N(0,TETT).

Therefore the marginals are normal, in particular (7X);. Since T is arbitrary, 6 - X is normal for all # € R%, with
var(6-X) =07%0.

More generally, if X ~ N (u, %) and T is invertible then TX ~ N (T, TSTT).

Characteristic functions of ' (i, X)

ox (0) = Ee'"X = pg.x (1) = exp(—var(f - X)/2) = exp(-67%6/2).
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CLT in R¢

Theorem

Let X1, X5, ... be i.i.d. in R? with finite mean EX; = x and finite covaraince matrix . Let S,, = X; + ... + X,.
Then (S,, — nu)/\/n converges in distribution to N (0, X).

Proof. By Cramer-Wold it suffices to show

Sn—np
vn

Note var(f- X) = 67%0 so 0 - X ~ N'(0,07%0). This is a one-dimensional distribution, so

0- - 6+ X in distribution for all 6 € R?.

Sp—np Y, Xi-0-nb-p
= —

= 7

N(0,var(X;-0)) = N(0,67%6).

3.6 Conditional Probabilities

It can be shown that given n coin tosses, X = (number of heads)? has mean (n +n?)/2. Viewing n as a variable we

therefore obtain

2 N N2
z +4n or more geneerally E(X | N) = +4 .

Now consider the integral over an event in o(N), say { NV < 2}. Average of X on {N =n} is

E(X|N=n)=

1

—_— X dP
]P)(N = TL) {N=n}

SO

2

f XdIP:Zf Xd]P’:f Lv2 e vy ap
{N<2} a0 J{N=n} {N<2} 4

and more generally, for any {N € A} € o(N),

2
[ X dP = f N+N" b,
{NeA} {NeA} 4

Another example: consider Q = [0,1] = A; U A5 U A; disjoint, and let X be arv. and Y = 0(A1, A, A3). Let Y be

constant on each A; with value ﬁ fA X dP. Then Y is (the only r.v.) measurable w.r.t. )V and that
J J
f Yd}P’:fXdIP forall Be Y.
B B

General case

Let X be a r.v. with E|X| < oo on (X, Fy, P)

Suppose we have partial information to
F = {all events known to occur or not}.

F is a o-algebra. We want to formalize E(X | F):
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Let (92, 7o, P) be a probability space and let F c F; be a o-algebra. Let X be a r.v. with E|X| < co. We define
E(X | F) to be any r.v. Y with

(1) Y eF, and

2) /AYd]P’:[AXdIP’,forallAe}'.

Lemma

If Y,Y"’ satisfy (1) and (2) above, then Y =Y’ a.s.

Proof. Fix e >0. Consider A={Y -Y' > ¢}. By (2)
0= fA(y _Y') dP > €P(A)
so P(A) =0.
Lemma

Y satisfying (1) and (2) exists.

Proof. Consider measures on F only:
15:}P’|f and V(A):fAXd]P’, for Ae F.

Clearly if P(A) = 0 we have v(A) =0, so v < P (absolute continuity). By Radon-Nikodym there exists a density
d—li, JF-measurable, such that for all A € F,

4P
[XdIE”:u(A):[ v dP:fd—’fdP.
A AdP AdP

That is, setting Y to the Radon-Nikodym derivative ;17 works. O

Properties of conditional probabilities:
(1) P(A|F)=E(la|F) (definition),
(2) P(A|F)eF,and

3) fBIP’(AU-')dIP:fBlAdIP’z]P’(AmB)forallBe}'.

45



	Contents
	Laws of Large Numbers
	Independence
	Weak Laws of Large Numbers
	Triangular Arrays
	Borel-Cantelli Lemmas
	Kolmogorov 0-1 Law
	Strong Law of Large Numbers
	Large Deviations

	Weak Convergence and CLT
	Weak Convergence
	Characteristic Functions
	Weak Convergence
	Central Limit Theorem
	Poisson Convergence & Poisson Processes
	Conditional Probabilities


