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Problem 1

Suppose f ∶ R→ R is convex and a < b are in the domain.

(a) Show that for all x ∈ [a, b],
f(x) ⩽ b − x

b − a
f(a) + x − a

b − a
f(b).

(b) Show that for all x ∈ (a, b),

f(x) − f(a)
x − a

⩽ f(b) − f(a)
b − a

⩽ f(b) − f(x)
b − x

.

(c) Suppose f is differentiable. Use (b) to show that

f ′(a) ⩽ f(b) − f(a)
b − a

⩽ f ′(b).

(d) Suppose f is twice differentiable. Use (c) to show that f ′′(a) ⩾ 0 and f ′′(b) ⩾ 0.

Proof. (a) Since
b − x
b − a

+ x − a
b − a

= 1, and
(b − x)a
b − a

+ (x − a)b
b − a

= x, this follows directly from definition of

convexity.

(b) The first ⩽ is established by subtracting f(a) from both sides of (a):

f(x) − f(a) ⩽ a − x
b − a

f(a) + x − a
b − a

f(b) Ô⇒ f(x) − f(a)
a − b

⩽ f(b) − f(a)
b − a

.

The other ⩽ follows from subtracting f(b) from both sides of (a).

(c) Let h↘ 0. Taking the limits in (b), we have

f ′(a) = lim
h↘0

f(a + h) − f(a)
h

⩽ lim
h↘0

f(b) − f(a)
b − a

= f(b) − f(a)
b − a

⩽ lim
h↘0

f(b) − f(b − h)
h

= f ′(b).

(d) (c) implies (f ′(b) − f ′(a))/(b − a) ⩾ 0. Taking b→ a and a→ b respectively gives f ′′(a), f ′′(b) ⩾ 0.
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Problem 3: Inverse of an Increasing Convex Function

Suppose f ∶ R → R is increasing and convex on (a, b). Let g denote its inverse. What can you say about

convexity or conveys of g?

Solution. Claim: g is concave. Let u, v ∈ (f(a), f(b)) be given. Our goal is to show that for all λ ∈ (0,1),

f−1(λu + (1 − λ)v) ⩾ λf−1(u) + (1 − λ)f−1(v).

Since

f(λf−1(u) + (1 − λ)f−1(v)) ⩽ λf(f−1(u)) + (1 − λ)ff−1(v) (convexity of f)

= λu + (1 − λ)v (inverse)

= f(f−1(λu + (1 − λ)v) (inverse)

and f is monotone increasing, we must have that the arguments

λf−1(u) + (1 − λ)f−1(v) ⩽ f−1(λu + (1 − λ)v),

as claimed.

Problem 5: Runing Average

Suppose f ∶ R→ R is convex with domain containing [0,∞). Show that the running average F , defined by

F (x) ∶= 1

x
∫

x

0
f(t) dt,

is convex. You can assume that f is differentiable.

Proof. Let 0 < a < b <∞ and let λ ∈ (0,1). Using convexity of f and change of variables multiple times,

F (λa + (1 − λ)b) = 1

λa + (1 − λ)b ∫
λa+(1−λ)b

0
f(t) dt

= ∫
1

0
f(λat + (1 − λ)bt) dt

⩽ ∫
1

0
λf(at) + (1 − λ)f(bt) dt

= λ∫
1

0
f(at) dt + (1 − λ)∫

1

0
f(bt) dt

= λ

a
∫

a

0
f(t) dt + 1 − λ

b
∫

b

0
f(t) dt = λF (a) + (1 − λ)F (b).

Problem 8: Second-Order Condition for Convexity

Prove that a twice differentiable function f is convex if and only if its domain is convex and ∇2f(x) ⪰ 0 for

all x in the domain.
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Proof. For the case n = 1,⇒ is proven in problem 1(d). Conversely, assume f ′′(x) ⩾ 0 for all x. Let x < y be points

in the domain and λ ∈ (0,1). For convenience denote z ∶= λx+ (1−λ)y. Immediately we have λ = (y − z)/(y − x)
and 1 − λ = (z − x)/(y − x). By the intermediate value theorem (IVT), there exists ξ1 ∈ (x, z) and ξ2 ∈ (z, y) such

that
f(z) − f(x)

z − x
= f ′(ξ1) and

f(y) − f(z)
y − z

= f ′(ξ2).

That f ′′ ⩾ 0 implies f ′(ξ2) ⩾ f ′(ξ1). Since

f(y) − f(x) = f(y) − f(z)
y − z

(y − z) + f(z) − f(x)
z − x

(z − x) = f ′(ξ2)(y − z) + f ′(ξ1)(z − x) ⩾ f ′(ξ1)(y − x),

we have

f(z) = f(x) + f ′(ξ1)(z − x) ⩽ f(x) +
f(y) − f(x)

y − x
(z − x)

= y − z
y − x

f(x) + z − x
y − x

f(y) = λf(x) + (1 − λ)f(y),

as claimed. To generalize the case n = 1, note that a function is convex if and only if it is convex in each

component.

Problem 9: Second-Order Condition for Convexity on an Affine Set

Let F ∈ Rn×m, x̂ ∈ Rn. The restriction of f ∶ Rn → R to the affine set {Fz + x̂ ∶ z ∈ Rm} is defined as functions

f̃ ∶ Rm → R with

f̃(z) = f(Fz + x̂), domain of f̃ = {z ∶ Fz + x̂ ∈ domain of f}.

(a) Show that f̃ is convex if and only if for all z ∈ domain of f̃ ,

FT∇2f(Fz + x̂)F ⪰ 0.

(b) Suppose A ∈ Rp×n is a matrix whose nullspace is equal to the range of F . Show that f̃ is convex if and

only if for all z in the domain of f̃ , there exists λ ∈ R such that

∇2f(Fz + x̂) + λATA ⪰ 0.

Proof. (a) The quantity given is precisely the Hessian of f̃ .

(b) By (a), if Ax = 0, then xTATAx = 0 and x is in the range of F , soxT∇2f(Fz + x̂)x ⩾ 0. Therefore their

sum ⩾ 0, which finishes the proof.

Problem 12

Suppose f ∶ Rn → R is convex, g ∶ R→ R is concave, both functions are defined on all of Rn, and f ⩽ g. Show

that there exists an affine function h such that g(x) ⩽ h(x) ⩽ f(x) for all x.
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Proof. By assumption, the interior of the epigraph of f and the hypograph of g do not intersect and are both

convex. Therefore there exists a hyperplane separating the two sets, and this hyperplane corresponds to the

graph of our function of interest.

Problem 14: Convex-Concave Functions and Saddle-Points

We say a function f ∶ Rn ×Rm → R is convex-concave if f(x, z) is concave as a function of z and convex as a

function of x. We also require the domain to have product form A ×B where A ⊂ Rn,B ⊂ Rm are convex.

(a) Give a second-order condition for a twice-differentiable function f ∶ Rn×Rm → R to be convex-concave

in terms of its Hessian ∇2f(x, z).

(b) Suppose that f ∶ Rn ×Rm → R is convex-concave and differentiable, with ∇f(x̃, z̃) = 0. Show that the

saddle-point property holds: for all x, z we have

f(x̃, z) ⩽ f(x̃, z̃) ⩽ f(x, z̃)

and that this implies the strong max-min property

sup
z

inf
x
f(f, z) = inf

x
sup
z

f(x, z) = f(x̃, z̃).

(c) Now suppose that f ∶ Rn×Rm → R is differentiable but not necessarily convex-concave, but the saddle-

point property holds at x̃, z̃:

f(x̃, z) ⩽ f(x̃, z̃) ⩽ f(x, z̃) for all x, z.

Show that ∇f(x̃, z̃) = 0.

Proof. (a) f(⋅, z) for fixed z being convex implies ∇2
xxf(x, z) ⪰ 0 and f(x, ⋅) for fixed x being concave

implies ∇2
zzf(x, z) ⪯ 0.

(b) Since ∇f(x̃, z̃) = 0 but f(⋅, z̃) is convex, we know f(x̃, z̃) must attain the global minimum of f(⋅, z̃).
That is, f(x̃, z̃) ⩽ f(x, z̃) for all x. The other inequality follows analogously.

Taking limits and using continuity gives the strong max-min property.

(c) If the saddle-point property holds then f(x̃, z̃)minimizes f(⋅, z̃) and f(x̃, z̃) also maximizes f(x̃, ⋅). That

is, ∇fx = ∇fy = 0 at (x̃, z̃).

Problem 17

Suppose p < 1, p ≠ 0. Show that

f(x) ∶= (
n

∑
i=1

xp
i )

1/p

with domain Rn
++

is concave.
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Proof. We want to show that for any x and any v ∈ Rn,

vT∇2f(x)v ⩽ 0.

We now compute the first-order partials:

∂f(x)
∂xi

= pxp−1
i ⋅ 1

p
(

n

∑
i=1

xp
i )

1/p−1

= xp−1
i (

n

∑
i=1

xp
i )
(1−p)/p

= xp−1
i f(x)1−p = (f(x)

xi
)
1−p

. (1)

The second-order mixed-partials (i.e., for i ≠ j) are

∂2f(x)
∂xi∂xj

= ∂

∂xj
(f(x)

xi
)
1−p

= 1

x1−p
i

⋅ (1 − p)f(x)−p (f(x)
xj
)
1−p

= 1 − p
f(x)p

(f(x)
xixj

)
1−p

= 1 − p
f(x)

(f(x)
2

xixj
)
1−p

(1)

and the second-order unmixed partials (i.e., for i = j) are

∂2f(x)
∂x2

i

= (1 − p)(f(x)
xi
)
−p

[xi(f(x)/xi)1−p − f(x)
x2
i

]

= (1 − p)(f(x)
xi
)
−p

[f(x)
2−p

x−1−pi

− f(x)
x2
i

]

= (1 − p)f(x)
2−2p

x−2+2pi

− (1 − p)f(x)
1−p

x−2+pi

= 1 − p
f(x)

(f(x)
xi
)
2(1−p)

− 1 − p
xi
(f(x)

xi
)
1−p

. (2)

Summing over all i’s, we have

vT∇2f(x)v =
n

∑
i=1

n

∑
j=1

vivj
∂2f(x)
∂xj∂xj

=
n

∑
i=1

v2i
1 − p
f(x)

(f(x)
1−p

x1−p
i

)
2

+ 2∑
i≠j

vivj
1 − p
f(x)

⎛
⎝
f(x)2(1−p)

x1−p
i x1−p

j

⎞
⎠
−

n

∑
i=1

v2i
1 − p
xi
(f(x)

xi
)
1−p

= 1 − p
f(x)

(
n

∑
i=1

vif(x)1−p

x1−p
i

)
2

− 1 − p
f(x)

n

∑
i=1

v2i f(x)2−p

x2−p
i

= 1 − p
f(x)

⎛
⎝
(

n

∑
i=1

vif(x)1−p

x1−p
i

)
2

−
n

∑
i=1

v2i f(x)2−p

x2−p
i

⎞
⎠
.

It remains to notice

f(x)p =
n

∑
i=1

xp
i Ô⇒

n

∑
i=1

xp
i

f(x)p
= 1 Ô⇒

n

∑
i=1
(f(x)

xi
)
−p

= 1,

vif(x)1−p

x1−p
i

= (f(x)
xi
)
−p/2

⋅ vi (
f(x)
xi
)
1−p/2

,

and
v2i f(x)2−p

x2−p
i

=
⎛
⎝
vi (

f(x)
xi
)
1−p/2⎞

⎠

2

.
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Then, using Cauchy-Schwarz on

ai ∶= (
f(x)
xi
)
−p/2

and bi ∶= vi (
f(x)
xi
)
1−p/2

with respect to the standard Euclidean norm, we obtain

(
n

∑
i=1

vif(x)1−p

x1−p
i

)
2

⩽ 1 ⋅
n

∑
i=1

v2i f(x)2−p

x2−p
i

,

so vT∇2f(x)v ⩽ 0, which concludes the proof.

Problem 21: Pointwise Maximum and Supremum

Show that the following functions f ∶ Rn → R are convex.

(a) f(x) =maxi=1,...,k ∥A(i)x − b(i)∥ where A(i) ∈ Rm×n, b(i) ∈ Rm, and ∥ ⋅ ∥ is a norm on Rm.

(b) f(x) ∶=
r

∑
i=1
∣x∣[i] on Rn, where ∣x∣[i] denotes the ith largest component of ∣x∣.

Proof. (a) Each ∥A(i)x − b(i)∥ is a translation of a norm and is therefore convex. Taking the max preserves

convexity.

(b) For a given r, we have

f(x) =
r

∑
i=1
∣x∣[i] = max

j∈I⊂{1,...,n}
∣I ∣=r

r

∑
j=1
∣xj ∣

which is the maximum over a finite (in particular, n choose r) convex functions. It is therefore convex.

Problem 22: Composition Rules

Show that the following functions are convex.

(a) f(x) = − log (− log (
n

∑
i=1

exp(aTi x+ bi))) on domain {x ∶
m

∑
i=1

exp(aTi x+ bi) < 1}. You may use the fact that

log (
n

∑
i=1

exp(yi)) is convex.

(b) f(x,u, v) = −
√
uv − xTx on {(x,u, v) ∶ uv > xTx and u, v > 0}. Use the fact that xTx/u is convex for

u > 0 and that −√x1x2 is convex on R2
++.

(c) f(x,u, v) = − log(uv − xTx) on the same domain as in (b).

(d) f(x, t) = −(tp − ∥x∥pp)1/p where p > 1 and domain of f is {(x, t) ∶ t ⩾ ∥x∥p}. You can use the fact that

∥x∥pp/up−1 is convex for u > 0 (see problem 23) and that −x1/py1−1/p is convex on R2
+.

(e) f(x, t) = − log(tp − ∥x∥pp) with same assumptions as in (d). You may use the fact that ∥x∥pp/up−1 is

convex for u > 0 (see problem 23 again).
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Proof. (a) aTi x+bi is affine so composing it with the log-sum-exp function gives a convex function. Flipping

the sign makes it concave, and composing it with − log again (convex and decreasing) makes the overall

function convex.

(b) Note that

−
√
uv − xTx = −

√
u(v − xTx/u)

so that v − xTx/u is concave and −
√
uw is convex and decreasing. Composing them gives the original

function and shows it is convex.

(c) Since uv −xTx = u(v −xTx/v) is concave and − log is convex and decreasing, the composition is convex

in each component and therefore convex.

(d) Per the hint, we have

f(x, t) = −(tp − ∥x∥pp)1/p = −t(p−1)/p (t −
∥x∥pp
tp−1
)
1/p

which is convex and deceasing with respect to either the argument t−∥x∥pp/tp−1 or just t. Both are concave.

Therefore the composition is convex.

(e) Since

f(x, t) = − log(tp − ∥x∥pp) = − log(tp−1(t − ∥x∥pp/tp−1)) = −(p − 1) log t − log(t − ∥x∥pp/tp−1)

where the first function is concave and so is the second (concave function composed with convex decreas-

ing function), we see f(x, t) is a sum of two convex functions and is therefore convex.

Problem 25: Maximum Probability Distance between Distributions

Let p, q ∈ Rn represent two distributions on {1, ..., n} so that p, q ≥ 0 and 1T p = 1T q = 1. We define the

maximum probability distamce

dmp(p, q) ∶=max{∣P(p,C) − P(q,C) ∶ C ⊂ {1, ..., n}∣}

where P(p,C) ∶= ∑
i∈C

pi. Simplify the expression for dmp(p, q) using ∥ ⋅ ∥1 and show that it is convex.

Solution. By assumption
n

∑
i=1

pi =
n

∑
i=1

qi = 1, so

∑
pi>qi
(pi − qi) + ∑

pi⩽qi
(pi − qi) = 0 Ô⇒ ∑

pi>qi
(pi − qi) = − ∑

pi⩽qi
(pi − qi) (1)

On the other hand,

∑
pi>qi
∣pi − qi∣ + ∑

pi⩽qi
∣pi − qi∣ =

n

∑
i=1
∣pi − qi∣ = ∥p − q∥2, (2)
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and by using (1) and noticing that ∑
pi⩽qi
∣pi − qi∣ = ∑

pi⩽qi
−(pi − qi) = − ∑

pi⩽qi
(pi − qi) = ∑

pi>qi
(pi − qi), we have

∑
pi>qi
(pi − qi) =

∥p − q∥1
2

.

From the definition of dmp, it should be clear that this quantity is maximized if and only if C ∶= {i ∶ pi > qi}, and

if so, we have

dmp(p, q) = ∑
pi>qi
(pi − qi) =

∥p − q∥1
2

,

clearly a convex function.

Problem 30: Convex Hull or Envelop of a Function

The convex hull or convex envelope of a function f ∶ Rn → R is defined as

g(x) ∶= inf{t ∶ (x, t) ∈ conv epi f}.

Show that g is the largest convex underestimator of f .

Proof. By construction the epigraph of g is the convex hull of the epigraph of f . It follows from definition that

g has a convex epigraph and is therefore convex. It again follows from definition that the epigraph of g is the

minimal convex shape containing the epigraph of f , so if h is an convex underestimator of f , its epigraph must

be a superset of the epigraph of g, i.e., h ⩽ g.

Problem 31: Largest Homogeneous Underestimator

Let f be convex and define

g(x) ∶= inf
α>0

f(αx)
α

.

(a) Show that g is homogeneous, i.e., g(tx) = tg(x) for all t ⩾ 0.

(b) Show that g is the largest homogeneous underestimator of f .

(c) Show that g is convex.

Proof. (a) The claim is trivial for t = 0, and for t > 0,

g(tx) = inf
α>0

f(α ⋅ tx)
α

= t inf
α>0

f(α ⋅ tx)
tα

= tg(x).

(b) For any homogeneous underestimator h of f and any α > 0,

h(x) = h(αx)
α

⩽ f(αx)
α

,

so taking the infimum gives h(x) ⩽ inf
α>0

f(αx)
α

= g(x).

(c) Since g(x) = inf
α>0

f(αx)
α

= inf
t−1>0

f(t−1x)
t−1

= inf
t>0

tf(x/t), we rewrote g as the infimum of a family of convex

(perspective) functions, so it must be convex as well.
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Problem 33: Direct Proof of the Perspective Theorem

Give a direct proof showing that g(x, t) ∶= tf(x/t) is convex if f is convex.

Proof. The domain of g is

{(x, t) ⊂ Rn ×R+ ∶ x/t ∈ domain of f}.

Given f is convex, dilating its domain by a factor of t preserves convexity; then, the Cartesian product with

Rn ×R+, a convex set, again preserves convexity.

Now let (x1, t1) and (x2, t2) be chosen from g’s domain and let λ ∈ (0,1). Then

g(λx1 + (1 − λ)x2, λt1 + (1 − λ)t2) = (λt1 + (1 − λ)t2) ⋅ f (
λx1 + (1 − λ)x2

λt1 + (1 − λ)t2
)

= (λt1 + (1 − λ)t2)f (
λt1(x1/t1) + (1 − λ)t2(x2/t2)

λt1 + (1 − λ)t2
)

⩽ (λt1 + (1 − λ)t2) [
λt1

λt1 + (1 − λ)t2
⋅ f(x1/t1) +

(1 − λ)t2
λt1 + (1 − λ)t2

⋅ f(x2/t2)]

= λt1f(x1/t1) + (1 − λ)t2f(x2/t2) = λg(x1, t1) + (1 − λ)g(x2, t2),

where we used the convexity of f in the ⩽.

Problem 34: The Minkowski Function

The Minkowski function on a convex set C is defined as

MC(x) ∶= inf{t > 0 ∶ t−1x ∈ C}.

(a) Give a geometric interpretation of how to find MC(x).

(b) Show that MC is homogeneous, i.e., MC(αx) = αMC(x) for α ⩾ 0.

(c) What is its domain?

(d) Show that MC is convex.

(e) Suppose C is closed1and symmetric with nonempty interior. Show that MC induces a norm. What is

the corresponding unit ball?

Solution. (a) Excluding the edge cases, we draw a line segment ℓ from the origin to x. Assuming the

infimum exists (i.e., x is inside the domain), the line segment needs to intersect C. In the intersection

ℓ ∩ C, there either exists a point p closest to x or there exists a sequence tending to a limit p, closer to x

than anything in ℓ ∩C. In either case, t−1 is ratio between ∥p∥ and ∥x∥. In other words, t is the reciprocal

of the infimum of “scaling factors” transforming x into C.

(b) This directly follows from definition: for α > 0,

MC(αx) = inf{t > 0 ∶ t−1αx ∈ C} = α inf{t/α > 0 ∶ t−1αx ∈ C} = αMC(x).
1I don’t think being closed is sufficient. Maybe compact? Otherwise take C ∶= Rn, which is closed and convex, and MC(x) = 0 for any x.
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For α = 0, MC(αx) =MC(0). Since 0 is in the domain only if 0 ∈ C (see below), we implicitly assume so.

In this case MC(0) = 0. On the other hand αMC(x) = 0, so homogeneity still holds.

(c) Its domain is {x ∶ t−1x ∈ C for some t > 0}.

(d) We define the indicator function IC ∶ Rn → R by

IC(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ∈ C

∞ otherwise
.

Then

MC(x) = inf{t > 0 ∶ t−1x ∈ C} = inf
t
(t + IC(x/t)).

For fixed t, x/t is linear and IC convex since C is convex. Hence t+ IC(x/t) is convex, and taking infimum

preserves the convexity.

(e) (Here I assume in addition that C is bounded and so compact.) Nondegeneracy is clear as MC(x) is

nonnegative. If x = 0 then MC(x) = 0 as shown above. Conversely, if MC(x) = 0 but x ≠ 0, then nx ∈ C for

all n ∈ C which implies C is unbounded.

Absolute homogeneity follows from homogeneity and symmetry of C (so that MC(−x) =MC(x)).

Finally, for subadditivity, we have

MC(x + y) = 2MC((x + y)/2) ⩽MC(x) +MC(y)

where the = is by homogeneity and the ⩽ by convexity.

Problem 35: Support Function Calculus

Recall that the support function of a set C ⊂ Rn is defined as SC(y) ∶= sup{yTx ∶ x ∈ C}. We showed that SC

is convex.

(a) Show that SB = SconvB .

(b) Show that SA+B = SA + SB .

(c) Show that SA∪B =max{SA, SB}.

(d) Let B be closed and convex. Show that A ⊂ B if and only if SA(y) ⩽ SB(y) for all y.

Proof. (a) It is clear that B ⊂ convB implies SB ⩽ SconvB , so it remains to show that < cannot happen.

Suppose for contradiction that SB(y) < SconvB(y) for some y. Then there exist some v ∈ convB such that

yT v > SB(y). That is,

yT v > yTu for all u ∈ B. (*)

By definition of convex hull, v is some convex combination of elements of B, i.e.,

v =
k

∑
i=1

ciui where ui ∈ B, ci ⩾ 0, and
k

∑
i=1

ci = 1.

10
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But then

yT v =
k

∑
i=1

ciy
Tui

(∗)
<

k

∑
i=1

ciy
T v = yT v,

contradiction.

(b) SA+B(y) = sup{yT (u + v) ∶ u ∈ A,v ∈ B} = sup{yTu + yT v} = sup{yTu} + sup{yT v} = SA(y) + SB(y).

(c) SA∪B = sup{yTu ∶ u ∈ A ∪B} =max{sup{yTu}, sup{yT v}} =max{SA, SB}.

(d) If A ⊂ B then clearly SA ⩽ SB; it remains to show the converse.

If A ⊄ B then there exists x ∈ A but x ∉ B. Since B is closed, d(x,B) ∶= inf
b∈B

d(x, b) > 0. Hence there exists a

separating hyperplane with yTx > yT b for all b ∈ B. Then SA(y) > SB(y), a contradiction.

Problem 36: Conjugate Functions

Derive the conjugates of the following functions.

(a) Max: f(x) ∶= max
1⩽i⩽n

xi on Rn.

(b) Sum of largest elements: f(x) ∶=
r

∑
i=1

x[i] on Rn.

(c) Piecewise linear: f(x) ∶= max
1⩽i⩽n

(aix + bi) on R, assuming a1 ⩽ ... ⩽ am and none of the functions aix + b
is redundant.

(d) Power: f(x) ∶= xp with p > 1. Repeat for p < 0.

(e) Geometric mean: f(x) ∶= −(
n

∏
i=1

xi)
1/n

on Rn
++.

(f) Negative generalized logarithm for second-order cone: f(x, t) ∶= − log(t2 − xTx) on {(x, t) ∈ Rn × R ∶
∥x∥2 < t}.

Solution. For convenience I first write the deifnition of a conjugate:

f∗(y) ∶= sup
x∈domf

(yTx − f(x)).
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