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Problem 1

Suppose [ : R — R is convex and a < b are in the domain.

(a) Show that for all x € [a, b],
b-x r—a

fla)+

f(x)gb—a b-a

f(b).

(b) Show that for all z € (a, b),

f(z) - fla)  f(0)~f(a) _ f(b) - f(z)

T—a S b-a S b-—x
(c) Suppose f is differentiable. Use (b) to show that
, b) - f(a
Py SO

a

< f(b).

(d) Suppose f is twice differentiable. Use (c) to show that f”/(a) > 0 and f(b) > 0.

=

IS

Proof. (a) Since b- -1, and (b-z)a N (z-a)b
b-a b-a b-—a b—a

= z, this follows directly from definition of
convexity.

(b) The first < is established by subtracting f(a) from both sides of (a):

0T gy B J@)=1(@) _ )~ S(a)
F@) - F(@) < 5= fay + T2 () = S JOITD),

The other < follows from subtracting f(b) from both sides of (a).
(c) Let h \ 0. Taking the limits in (b), we have

Har 1) 0) py JOSD O y JOTOD)_

f'(a) = lim

(d) (c) implies (f'(b) - f'(a))/(b-a) > 0. Taking b — a and a — b respectively gives " (a), f(b) > 0.
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Problem 3: Inverse of an Increasing Convex Function

Suppose f : R — R is increasing and convex on (a,b). Let g denote its inverse. What can you say about

convexity or conveys of g?

Solution. Claim: g is concave. Let u,v € (f(a), f(b)) be given. Our goal is to show that for all A € (0,1),

FrOu+ (1 =2)) 2 A Hu) + (1= ().

Since
FOF )+ (=N 0) <A ) + (=N 7 (v) (convexity of f)
=du+(1-Nv (inverse)
= f(f PO+ (1= \)w) (inverse)

and f is monotone increasing, we must have that the arguments
A7Hu) + (L= F7H0) < ST O+ (1= M),
as claimed.

Problem 5: Runing Average

Suppose f : R — R is convex with domain containing [0, o). Show that the running average F, defined by
F(z)=+ [ a,
x Jo

is convex. You can assume that f is differentiable.

Proof. Let0<a<b< oo and let A € (0,1). Using convexity of f and change of variables multiple times,

F(ha+(1-\)b) = m fom(m)b F(t) dt
:folf(/\am(l—/\)bt) dt
Sfol)\f(at)Jr(l—)\)f(bt) dt
:Afolf(at) dt+(1—/\)/:f(bt) dt

zgfoaf(t)dmI;Afobf(t)dt:AF(a)+(1_A)F(b)_ -

Problem 8: Second-Order Condition for Convexity

Prove that a twice differentiable function f is convex if and only if its domain is convex and V2 f(z) > 0 for

all z in the domain.
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Proof. For the case n = 1,= is proven in problem 1(d). Conversely, assume f”(z) > 0 for all z. Let « < y be points
in the domain and X € (0, 1). For convenience denote z := Az + (1 — \)y. Immediately we have A = (y - 2)/(y —x)
and 1 - A = (z—z)/(y — ). By the intermediate value theorem (IVT), there exists &; € (z,2) and &; € (2,y) such
that

= f'(&1) and

fel=Jtz) - /(6.

fy) - f(2)
Y-z
That f” > 0 implies f'(&) > f/(&1). Since

1) £ = FOLE oy JEOTE oy - o2+ (600> 6w -o)
we have
F:) = 1)+ £ - a) < fa) + O
S @ T =A@+ (1= (),

as claimed. To generalize the case n = 1, note that a function is convex if and only if it is convex in each

component. O

Problem 9: Second-Order Condition for Convexity on an Affine Set

Let F' e R™™, & ¢ R™. The restriction of f : R” — R to the affine set {Fz + % : z ¢ R™} is defined as functions
f:R™ - R with

f(z) = f(Fz+2), domain of f = {z: Fz + & e domain of f}.
(a) Show that f is convex if and only if for all z € domain of f s

FIV2f(Fz+&)F = 0.

(b) Suppose A € RP*™ is a matrix whose nullspace is equal to the range of F. Show that f is convex if and

only if for all z in the domain of f, there exists A € R such that

V2f(Fz+i)+ ATA>0.

Proof. (a) The quantity given is precisely the Hessian of f.

(b) By (a), if Az =0, then 27 AT Az = 0 and z is in the range of F, sox” V2 f(Fz + &)z > 0. Therefore their
sum > 0, which finishes the proof.

O

Problem 12

Suppose f : R"™ — R is convex, g : R — R is concave, both functions are defined on all of R”, and f < g. Show

that there exists an affine function h such that g(z) < h(z) < f(=x) for all z.
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Proof. By assumption, the interior of the epigraph of f and the hypograph of g do not intersect and are both
convex. Therefore there exists a hyperplane separating the two sets, and this hyperplane corresponds to the

graph of our function of interest. O

Problem 14: Convex-Concave Functions and Saddle-Points

We say a function f : R™ x R™ — R is convex-concave if f(z,z) is concave as a function of z and convex as a

function of z. We also require the domain to have product form A x B where A c R", B c R™ are convex.

(a) Give a second-order condition for a twice-differentiable function f : R” xR™ — R to be convex-concave

in terms of its Hessian V2 f(z, ).

(b) Suppose that f : R™ x R™ — R is convex-concave and differentiable, with vV f(Z, Z) = 0. Show that the

saddle-point property holds: for all x, z we have
f@2) < f(2,2) < f(2,2)
and that this implies the strong max-min property
Supigff(f,z) = igfsupf(:c,z) = f(%,2).
(c) Now suppose that f : R" xR™ — R is differentiable but not necessarily convex-concave, but the saddle-
point property holds at z, Z:
f(Z,2) < f(Z,2) < f(z,2) for all z, 2.

Show that v f(z, 2) = 0.

Proof. (@) f(+,2) for fixed 2 being convex implies V2, f(z,2z) > 0 and f(x,-) for fixed = being concave

implies V2, f(z,z) <0.

(b) Since Vf(Z,%2) = 0 but f(-, 2) is convex, we know f(Z, Z) must attain the global minimum of f(-, 2).

That is, f(Z,2) < f(x, 2) for all . The other inequality follows analogously.

Taking limits and using continuity gives the strong max-min property.

(c) If the saddle-point property holds then f(Z, Z) minimizes f(-, 2) and f(&, Z) also maximizes f(z,-). That
is, Vfz =Vf, =0at (Z,2). O

Problem 17

Suppose p < 1,p # 0. Show that

(3

n 1/p
f(x) = (Z x?) with domain R,

=

7=

is concave.
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Proof. We want to show that for any x and any v € R",
v V2 f(z)v <0.

We now compute the first-order partials:
n 1/p-1 n (1-p)/p 1-p
ng) =pa?. % (; xf) =2t (Z; xf) =2t ()P = (fif) ) . €))

The second-order mixed-partials (i.e., for 7 # j) are

f(z) _ 9 (f<>)
8xj

Bxiaxj x;
1-p
x (- (12)
_l-p (f@) 1o (f@?\
) f(x)" (331%) f(x) ( T, ) M

and the second-order unmixed partials (i.e., for i = j) are

1) () (f(x) ) [xxf(a:)/xi)l-f’ - f(m)]

- (1-p) (fff)) [f(i?_: ) fg(cazc)]
_ (A=) f@)*  (1-p)f(x)'”
xi—2+2p x;2+p
~ 1_p f(l') 2(1-p) B 1;]9 (f(w))l—P
- f(x) ( i ) z \ 2 : @)

Summing over all 7’s, we have
b

vvfcc) —Zzn: 0°f(z)

ViV
i=1j=1 Ox;0x;

n _ xl—p 2(1-p) n T
Ry p(f(l)p ) 2T >( (1)” ) 2t (f:(ci))

= " f(x) Z,; %]

L-p (& of(@)' P\ 1-p &2 f(a)*™
f() (Z z " f(x)izl x; "
_1-p ”vif<m>1-p)2 o, o2 f ()7

‘fx)((i_zl 7 D )

It remains to notice

f(x)p:ixf — Zn:f(xl =] = i(f(x ) =1,
i=1 =1

x)P =1\ i
wf@ (@ (@)
a7\ o RS 7

and
2

V(@) ( (f(x) )/)
2P ‘\ .

(2
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Then, using Cauchy-Schwarz on

a; = (f(.]:))_p/Q and bz =5 (f(l‘))l_p/Q

X4 X

with respect to the standard Euclidean norm, we obtain

(ivf(fv)lp) L3 Qf(x)“’

i=1 331

so vTv?2 f(z)v < 0, which concludes the proof. O

Problem 21: Pointwise Maximum and Supremum

Show that the following functions f : R™ — R are convex.
(@ f(x)=max;.,p |ADz - b | where A® e R™" p() e R™, and | - | is a norm on R™.

(b)  f(z) =) |z|;) on R™, where |z|;;) denotes the i largest component of |z].

Proof. (a) Each |[A®z - ()| is a translation of a norm and is therefore convex. Taking the max preserves

convexity.
(b) For a given r, we have

f(x) = ;M[i] max ) 2 Z|$J|

jeIc{l,....,n
[1]=r

which is the maximum over a finite (in particular, n choose r) convex functions. It is therefore convex. [J

Problem 22: Composition Rules

Show that the following functions are convex.

@ f(z)=-log ( —log( Zn: exp(al z+ bz))) on domain {:c : i exp(al z+b;) < 1}. You may use the fact that
i=1 i=1
log ( > exp(yi)) is convex.
i=1

®  f(z,u,v) = —Vuv-2Tz on {(z,u,v) : wv > xx and u,v > 0}. Use the fact that 27z /u is convex for
u >0 and that —, /7175 is convex on R?,

(© f(z,u,v) = —log(uv — 72) on the same domain as in (b).

(d  flx,t)=-(t? - Hng)l/p where p > 1 and domain of f is {(z,t) : ¢ > |z|,}. You can use the fact that

||B/uP~" is convex for u > 0 (see problem 23) and that -z'/Py*~*/ is convex on R?.

(e) f(x,t) = —log(t* - =) with same assumptions as in (d). You may use the fact that |z|?/uP~" is

convex for u > 0 (see problem 23 again).
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Proof. (@) al'z+b; is affine so composing it with the log-sum-exp function gives a convex function. Flipping
the sign makes it concave, and composing it with —log again (convex and decreasing) makes the overall

function convex.

(b) Note that

~Vuw - 2Tz = —\/u(v - 2Tz /u)

so that v — #7x/u is concave and —/uw is convex and decreasing. Composing them gives the original

function and shows it is convex.

(c) Since uv - 2Tz = u(v-xTx/v) is concave and - log is convex and decreasing, the composition is convex

in each component and therefore convex.

(d) Per the hint, we have

1
) |x|z) v

- D p _ _4(p-1)/
oty === Jalpy e =100 (1 2

which is convex and deceasing with respect to either the argument ¢ | z|2/t*~" or just . Both are concave.

Therefore the composition is convex.
(e) Since
f(z,t) = ~log(t" - |z[}) = ~log(t"~" (¢ = |z [/t"™)) = ~(p~ 1) logt ~ log(t ~ [ 5/t"™")

where the first function is concave and so is the second (concave function composed with convex decreas-

ing function), we see f(z,t) is a sum of two convex functions and is therefore convex. O

Problem 25: Maximum Probability Distance between Distributions

Let p,q € R™ represent two distributions on {1,...,n} so that p,q > 0 and 17p = 17¢ = 1. We define the

maximum probability distamce
dmp (P, q) = max{|P(p,C) -P(q,C): C c{1,...,n}|}
where P(p,C) := ) p;. Simplify the expression for dmp(p, ¢) using | - |1 and show that it is convex.

eC

n n
Solution. By assumption » p; = Y ¢; =1, s0

=1 =1
Y i—a)+ Y (pi-q)=0 = ) (pi-@)=- ) (pi-a) ey
Pi>qi Pisqi Pi>qi Pisqi
On the other hand,
n
o pi-al+ Y pi-al=Ylpi—ail = |p-al-, 2)
Pi>q; Pisq; i=1
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and by using (1) and noticing that >  |pi—q|= Y. —-(pi-@)=- Y, (pi—a@)= >, (pi — @), we have

Pi<qi Pi<qi Pi<qi Pi>qi

Y (pi-q)= ”p_fJH1.

Pi>qi 2

From the definition of dpp, it should be clear that this quantity is maximized if and only if C := {i : p; > ¢;}, and

if so, we have

Ip - gl
dmp(paQ) = Z (pi—aqi) = B )
Pi>qi

clearly a convex function. O

Problem 30: Convex Hull or Envelop of a Function

The convex hull or convex envelope of a function f : R™ — R is defined as
g(x) :==inf{t: (x,t) € conv epi f}.

Show that g is the largest convex underestimator of f.

Proof. By construction the epigraph of ¢ is the convex hull of the epigraph of f. It follows from definition that
g has a convex epigraph and is therefore convex. It again follows from definition that the epigraph of g is the
minimal convex shape containing the epigraph of f, so if & is an convex underestimator of f, its epigraph must

be a superset of the epigraph of g, i.e., h < g. O

Problem 31: Largest Homogeneous Underestimator

Let f be convex and define

_ oS (o)
o(a) = ng 102

(a) Show that g is homogeneous, i.e., g(tz) = tg(x) for all ¢ > 0.
(b) Show that g is the largest homogeneous underestimator of f.

(c) Show that g is convex.

Proof. (a) The claim is trivial for ¢ = 0, and for ¢ > 0,

fla-tx) tinf fla-tx)
ta

= Inf =tg(z).

g(tx) = inf
a>0
(b) For any homogeneous underestimator h of f and any « > 0,

h(z) = haz)  flax)

<
f(ax)
o

)

« «

= g(x).

so taking the infimum gives h(z) < ing
a>

. o flax) L f(tT) L .
(c) Since g(z) = inf ———= = inf ——= =inf¢f(z/t), we rewrote g as the infimum of a family of convex
a0 t-150 t~1 t>0
(perspective) functions, so it must be convex as well.

O
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Problem 33: Direct Proof of the Perspective Theorem

Give a direct proof showing that g(x,t) := ¢ f(x/t) is convex if f is convex.

Proof. The domain of g is
{(z,t) cR" xR, : x/t ¢ domain of f}.

Given f is convex, dilating its domain by a factor of ¢ preserves convexity; then, the Cartesian product with
R™ x R,, a convex set, again preserves convexity.

Now let (x1,t1) and (z2,t2) be chosen from ¢’s domain and let A € (0,1). Then

gzt + (1= Nza, M1+ (1= Ata) = M+ (1= A)ta) - f (m)

M1 (/) + (1= N)ta(wo/ts)
M1+ (1= M\t )
A (1= Nt
i+ (1= Nty M1+ (1= M\t

=Mty f(zi/te) + (1= Ntaf(z2/t2) = Ag(z1,t1) + (1 = ) g(z2,t2),

= (M +(1- )\)t2)f(

< (M1 + (1= \)t2) [ Feft)+ F(aafta)

where we used the convexity of f in the <. O
Problem 34: The Minkowski Function

The Minkowski function on a convex set C is defined as

Mg(z) =inf{t>0:t"zeC}.

(a) Give a geometric interpretation of how to find M (x).

(b) Show that M is homogeneous, i.e., Mo (ax) = aMc(zx) for a > 0.

(¢) What is its domain?

(d) Show that M is convex.

(e) Suppose C is closed"and symmetric with nonempty interior. Show that M induces a norm. What is

the corresponding unit ball?

Solution. (a) Excluding the edge cases, we draw a line segment ¢ from the origin to z. Assuming the
infimum exists (i.e., x is inside the domain), the line segment needs to intersect C'. In the intersection
¢n C, there either exists a point p closest to x or there exists a sequence tending to a limit p, closer to z
than anything in ¢ n C. In either case, ™! is ratio between |p| and |z||. In other words, ¢ is the reciprocal

of the infimum of “scaling factors” transforming x into C.
(b) This directly follows from definition: for a > 0,

Mg(azx) =inf{t>0:t " areC} = ainf{t/a>0:t"ar e C} = aMc(z).

11 don’t think being closed is sufficient. Maybe compact? Otherwise take C := R™, which is closed and convex, and M (z) = 0 for any .

9
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For a = 0, Mc(ax) = Mc(0). Since 0 is in the domain only if 0 € C' (see below), we implicitly assume so.

In this case M¢(0) = 0. On the other hand aM¢(x) = 0, so homogeneity still holds.
(c) Its domain is {z : t "'z € C for some ¢ > 0}.

(d) We define the indicator function I : R” — R by

0 ifzeC
Ic(l‘) = .
oo otherwise

Then
Mc(z) =inf{t>0:txeC) = irtlf(t +Ic(z/t)).

For fixed ¢, x/t is linear and I convex since C is convex. Hence ¢ + Ic(x/t) is convex, and taking infimum

preserves the convexity.

(e) (Here I assume in addition that C' is bounded and so compact.) Nondegeneracy is clear as Mo (x) is
nonnegative. If x = 0 then M¢(x) = 0 as shown above. Conversely, if Mc(x) =0 but z # 0, then nz € C for

all n e C which implies C is unbounded.

Absolute homogeneity follows from homogeneity and symmetry of C' (so that M¢(-x) = Mc(x)).

Finally, for subadditivity, we have

Mc(x +y) =2Mc((x+y)/2) < Mc(x) + Mc(y)

where the = is by homogeneity and the < by convexity.

Problem 35: Support Function Calculus

Recall that the support function of a set C' c R" is defined as Sc(y) := sup{y 'z : x € C'}. We showed that S¢
is convex.

(a) Show that Sg = SconvB-

(b) Show that Sq.p =54+ SB.

(c) Show that S4,p = max{Sa,Sg}.

(d) Let B be closed and convex. Show that A c B if and only if S4(y) < Sp(y) for all y.

Proof. (a) It is clear that B c convB implies Sg < Sconvp, SO it remains to show that < cannot happen.
Suppose for contradiction that Sg(y) < Sconvi(y) for some y. Then there exist some v € conv B such that
yTv > Sp(y). That is,

yTv>yTuforall ue B. )

By definition of convex hull, v is some convex combination of elements of B, i.e.,

k k
’U:ZCZ"LLi where u; € B,¢; >0, and Zcizl.
i=1 i=1

10



490 Convex Chapter 3 YQL

But then

k k
(*)
yv=Y ey u < Y eyv=y"o,
=1 i=1

contradiction.
(b) Saip(y)=sup{yf(u+v):ue A veB}=sup{ylu+yv}=sup{yTu} +sup{yTv} = Sa(y) + Sp(y).
(©) Saup =sup{yTu:ue Au B} = max{sup{yTu},sup{yTv}} = max{Sa,Sp}.

(d) If A c B then clearly S < Sp; it remains to show the converse.

If A ¢ B then there exists z € A but « ¢ B. Since B is closed, d(z, B) := },né d(z,b) > 0. Hence there exists a
separating hyperplane with y”x >y for all b € B. Then Sa(y) > Sz(y), a contradiction. O

Problem 36: Conjugate Functions

Derive the conjugates of the following functions.

(@) Max: f(x):= max ; on R™.

(b) Sum of largest elements: f(z) := Z w[; on R™,
i=1

(c) Piecewise linear: f(x):= max(a;x +b;) on R, assuming a; < ... < a,, and none of the functions a;z + b
1<isn

is redundant.

(d) Power: f(x):= 2P with p > 1. Repeat for p < 0.

1/

(e) Geometric mean: f(x):= —( ﬁxl) ! on R7,.

i=1
(D Negative generalized logarithm for second-order cone: f(z,t) := —log(t* - 27x) on {(z,t) e R" xR :

l2l2 <t}
Solution. For convenience I first write the deifnition of a conjugate:

)= sup (y"z- f(z)).

rzedom f

11



