

Boyd, Convex Optimization, Chapter 3

Qilin Ye

February 18, 2022

Problem 1

Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex and $a < b$ are in the domain.

(a) Show that for all $x \in [a, b]$,

$$f(x) \leq \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$

(b) Show that for all $x \in (a, b)$,

$$\frac{f(x) - f(a)}{x-a} \leq \frac{f(b) - f(a)}{b-a} \leq \frac{f(b) - f(x)}{b-x}.$$

(c) Suppose f is differentiable. Use (b) to show that

$$f'(a) \leq \frac{f(b) - f(a)}{b-a} \leq f'(b).$$

(d) Suppose f is twice differentiable. Use (c) to show that $f''(a) \geq 0$ and $f''(b) \geq 0$.

Proof. (a) Since $\frac{b-x}{b-a} + \frac{x-a}{b-a} = 1$, and $\frac{(b-x)a}{b-a} + \frac{(x-a)b}{b-a} = x$, this follows directly from definition of convexity.

(b) The first \leq is established by subtracting $f(a)$ from both sides of (a):

$$f(x) - f(a) \leq \frac{a-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) \implies \frac{f(x) - f(a)}{a-b} \leq \frac{f(b) - f(a)}{b-a}.$$

The other \leq follows from subtracting $f(b)$ from both sides of (a).

(c) Let $h \searrow 0$. Taking the limits in (b), we have

$$f'(a) = \lim_{h \searrow 0} \frac{f(a+h) - f(a)}{h} \leq \lim_{h \searrow 0} \frac{f(b) - f(a)}{b-a} = \frac{f(b) - f(a)}{b-a} \leq \lim_{h \searrow 0} \frac{f(b) - f(b-h)}{h} = f'(b).$$

(d) (c) implies $(f'(b) - f'(a))/(b-a) \geq 0$. Taking $b \rightarrow a$ and $a \rightarrow b$ respectively gives $f''(a), f''(b) \geq 0$.

□

Problem 3: Inverse of an Increasing Convex Function

Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is increasing and convex on (a, b) . Let g denote its inverse. What can you say about convexity or concavity of g ?

Solution. Claim: g is concave. Let $u, v \in (f(a), f(b))$ be given. Our goal is to show that for all $\lambda \in (0, 1)$,

$$f^{-1}(\lambda u + (1 - \lambda)v) \geq \lambda f^{-1}(u) + (1 - \lambda)f^{-1}(v).$$

Since

$$\begin{aligned} f(\lambda f^{-1}(u) + (1 - \lambda)f^{-1}(v)) &\leq \lambda f(f^{-1}(u)) + (1 - \lambda)f(f^{-1}(v)) && \text{(convexity of } f\text{)} \\ &= \lambda u + (1 - \lambda)v && \text{(inverse)} \\ &= f(f^{-1}(\lambda u + (1 - \lambda)v)) && \text{(inverse)} \end{aligned}$$

and f is monotone increasing, we must have that the arguments

$$\lambda f^{-1}(u) + (1 - \lambda)f^{-1}(v) \leq f^{-1}(\lambda u + (1 - \lambda)v),$$

as claimed.

Problem 5: Running Average

Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex with domain containing $[0, \infty)$. Show that the *running average* F , defined by

$$F(x) := \frac{1}{x} \int_0^x f(t) dt,$$

is convex. You can assume that f is differentiable.

Proof. Let $0 < a < b < \infty$ and let $\lambda \in (0, 1)$. Using convexity of f and change of variables multiple times,

$$\begin{aligned} F(\lambda a + (1 - \lambda)b) &= \frac{1}{\lambda a + (1 - \lambda)b} \int_0^{\lambda a + (1 - \lambda)b} f(t) dt \\ &= \int_0^1 f(\lambda at + (1 - \lambda)bt) dt \\ &\leq \int_0^1 \lambda f(at) + (1 - \lambda)f(bt) dt \\ &= \lambda \int_0^1 f(at) dt + (1 - \lambda) \int_0^1 f(bt) dt \\ &= \frac{\lambda}{a} \int_0^a f(t) dt + \frac{1 - \lambda}{b} \int_0^b f(t) dt = \lambda F(a) + (1 - \lambda)F(b). \end{aligned}$$

□

Problem 8: Second-Order Condition for Convexity

Prove that a twice differentiable function f is convex if and only if its domain is convex and $\nabla^2 f(x) \succeq 0$ for all x in the domain.

Proof. For the case $n = 1 \Rightarrow$ is proven in problem 1(d). Conversely, assume $f''(x) \geq 0$ for all x . Let $x < y$ be points in the domain and $\lambda \in (0, 1)$. For convenience denote $z := \lambda x + (1 - \lambda)y$. Immediately we have $\lambda = (y - z)/(y - x)$ and $1 - \lambda = (z - x)/(y - x)$. By the intermediate value theorem (IVT), there exists $\xi_1 \in (x, z)$ and $\xi_2 \in (z, y)$ such that

$$\frac{f(z) - f(x)}{z - x} = f'(\xi_1) \quad \text{and} \quad \frac{f(y) - f(z)}{y - z} = f'(\xi_2).$$

That $f'' \geq 0$ implies $f'(\xi_2) \geq f'(\xi_1)$. Since

$$f(y) - f(x) = \frac{f(y) - f(z)}{y - z}(y - z) + \frac{f(z) - f(x)}{z - x}(z - x) = f'(\xi_2)(y - z) + f'(\xi_1)(z - x) \geq f'(\xi_1)(y - x),$$

we have

$$\begin{aligned} f(z) &= f(x) + f'(\xi_1)(z - x) \leq f(x) + \frac{f(y) - f(x)}{y - x}(z - x) \\ &= \frac{y - z}{y - x}f(x) + \frac{z - x}{y - x}f(y) = \lambda f(x) + (1 - \lambda)f(y), \end{aligned}$$

as claimed. To generalize the case $n = 1$, note that a function is convex if and only if it is convex in each component. \square

Problem 9: Second-Order Condition for Convexity on an Affine Set

Let $F \in \mathbb{R}^{n \times m}$, $\hat{x} \in \mathbb{R}^n$. The restriction of $f : \mathbb{R}^n \rightarrow \mathbb{R}$ to the affine set $\{Fz + \hat{x} : z \in \mathbb{R}^m\}$ is defined as functions $\tilde{f} : \mathbb{R}^m \rightarrow \mathbb{R}$ with

$$\tilde{f}(z) = f(Fz + \hat{x}), \quad \text{domain of } \tilde{f} = \{z : Fz + \hat{x} \in \text{domain of } f\}.$$

(a) Show that \tilde{f} is convex if and only if for all $z \in \text{domain of } \tilde{f}$,

$$F^T \nabla^2 f(Fz + \hat{x}) F \succeq 0.$$

(b) Suppose $A \in \mathbb{R}^{p \times n}$ is a matrix whose nullspace is equal to the range of F . Show that \tilde{f} is convex if and only if for all z in the domain of \tilde{f} , there exists $\lambda \in \mathbb{R}$ such that

$$\nabla^2 f(Fz + \hat{x}) + \lambda A^T A \succeq 0.$$

Proof. (a) The quantity given is precisely the Hessian of \tilde{f} .

(b) By (a), if $Ax = 0$, then $x^T A^T A x = 0$ and x is in the range of F , so $x^T \nabla^2 f(Fz + \hat{x}) x \geq 0$. Therefore their sum ≥ 0 , which finishes the proof. \square

Problem 12

Suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex, $g : \mathbb{R} \rightarrow \mathbb{R}$ is concave, both functions are defined on all of \mathbb{R}^n , and $f \leq g$. Show that there exists an affine function h such that $g(x) \leq h(x) \leq f(x)$ for all x .

Proof. By assumption, the interior of the epigraph of f and the hypograph of g do not intersect and are both convex. Therefore there exists a hyperplane separating the two sets, and this hyperplane corresponds to the graph of our function of interest. \square

Problem 14: Convex-Concave Functions and Saddle-Points

We say a function $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ is *convex-concave* if $f(x, z)$ is concave as a function of z and convex as a function of x . We also require the domain to have product form $A \times B$ where $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ are convex.

- (a) Give a second-order condition for a twice-differentiable function $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ to be convex-concave in terms of its Hessian $\nabla^2 f(x, z)$.
- (b) Suppose that $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ is convex-concave and differentiable, with $\nabla f(\tilde{x}, \tilde{z}) = 0$. Show that the *saddle-point property* holds: for all x, z we have

$$f(\tilde{x}, z) \leq f(\tilde{x}, \tilde{z}) \leq f(x, \tilde{z})$$

and that this implies the *strong max-min property*

$$\sup_z \inf_x f(x, z) = \inf_x \sup_z f(x, z) = f(\tilde{x}, \tilde{z}).$$

- (c) Now suppose that $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ is differentiable but not necessarily convex-concave, but the saddle-point property holds at \tilde{x}, \tilde{z} :

$$f(\tilde{x}, z) \leq f(\tilde{x}, \tilde{z}) \leq f(x, \tilde{z}) \quad \text{for all } x, z.$$

Show that $\nabla f(\tilde{x}, \tilde{z}) = 0$.

Proof. (a) $f(\cdot, z)$ for fixed z being convex implies $\nabla_{xx}^2 f(x, z) \succeq 0$ and $f(x, \cdot)$ for fixed x being concave implies $\nabla_{zz}^2 f(x, z) \preceq 0$.

(b) Since $\nabla f(\tilde{x}, \tilde{z}) = 0$ but $f(\cdot, \tilde{z})$ is convex, we know $f(\tilde{x}, \tilde{z})$ must attain the global minimum of $f(\cdot, \tilde{z})$. That is, $f(\tilde{x}, \tilde{z}) \leq f(x, \tilde{z})$ for all x . The other inequality follows analogously.

Taking limits and using continuity gives the strong max-min property.

(c) If the saddle-point property holds then $f(\tilde{x}, \tilde{z})$ minimizes $f(\cdot, \tilde{z})$ and $f(\tilde{x}, \tilde{z})$ also maximizes $f(\tilde{x}, \cdot)$. That is, $\nabla f_x = \nabla f_y = 0$ at (\tilde{x}, \tilde{z}) . \square

Problem 17

Suppose $p < 1, p \neq 0$. Show that

$$f(x) := \left(\sum_{i=1}^n x_i^p \right)^{1/p} \quad \text{with domain } \mathbb{R}_{++}^n$$

is concave.

Proof. We want to show that for any x and any $v \in \mathbb{R}^n$,

$$v^T \nabla^2 f(x)v \leq 0.$$

We now compute the first-order partials:

$$\frac{\partial f(x)}{\partial x_i} = px_i^{p-1} \cdot \frac{1}{p} \left(\sum_{i=1}^n x_i^p \right)^{1/p-1} = x_i^{p-1} \left(\sum_{i=1}^n x_i^p \right)^{(1-p)/p} = x_i^{p-1} f(x)^{1-p} = \left(\frac{f(x)}{x_i} \right)^{1-p}. \quad (1)$$

The second-order mixed-partials (i.e., for $i \neq j$) are

$$\begin{aligned} \frac{\partial^2 f(x)}{\partial x_i \partial x_j} &= \frac{\partial}{\partial x_j} \left(\frac{f(x)}{x_i} \right)^{1-p} \\ &= \frac{1}{x_i^{1-p}} \cdot (1-p) f(x)^{-p} \left(\frac{f(x)}{x_j} \right)^{1-p} \\ &= \frac{1-p}{f(x)^p} \left(\frac{f(x)}{x_i x_j} \right)^{1-p} = \frac{1-p}{f(x)} \left(\frac{f(x)^2}{x_i x_j} \right)^{1-p} \end{aligned} \quad (1)$$

and the second-order unmixed partials (i.e., for $i = j$) are

$$\begin{aligned} \frac{\partial^2 f(x)}{\partial x_i^2} &= (1-p) \left(\frac{f(x)}{x_i} \right)^{-p} \left[\frac{x_i(f(x)/x_i)^{1-p} - f(x)}{x_i^2} \right] \\ &= (1-p) \left(\frac{f(x)}{x_i} \right)^{-p} \left[\frac{f(x)^{2-p}}{x_i^{-1-p}} - \frac{f(x)}{x_i^2} \right] \\ &= \frac{(1-p)f(x)^{2-2p}}{x_i^{-2+2p}} - \frac{(1-p)f(x)^{1-p}}{x_i^{-2+p}} \\ &= \frac{1-p}{f(x)} \left(\frac{f(x)}{x_i} \right)^{2(1-p)} - \frac{1-p}{x_i} \left(\frac{f(x)}{x_i} \right)^{1-p}. \end{aligned} \quad (2)$$

Summing over all i 's, we have

$$\begin{aligned} v^T \nabla^2 f(x)v &= \sum_{i=1}^n \sum_{j=1}^n v_i v_j \frac{\partial^2 f(x)}{\partial x_j \partial x_i} \\ &= \sum_{i=1}^n v_i^2 \frac{1-p}{f(x)} \left(\frac{f(x)^{1-p}}{x_i^{1-p}} \right)^2 + 2 \sum_{i \neq j} v_i v_j \frac{1-p}{f(x)} \left(\frac{f(x)^{2(1-p)}}{x_i^{1-p} x_j^{1-p}} \right) - \sum_{i=1}^n v_i^2 \frac{1-p}{x_i} \left(\frac{f(x)}{x_i} \right)^{1-p} \\ &= \frac{1-p}{f(x)} \left(\sum_{i=1}^n \frac{v_i f(x)^{1-p}}{x_i^{1-p}} \right)^2 - \frac{1-p}{f(x)} \sum_{i=1}^n \frac{v_i^2 f(x)^{2-p}}{x_i^{2-p}} \\ &= \frac{1-p}{f(x)} \left(\left(\sum_{i=1}^n \frac{v_i f(x)^{1-p}}{x_i^{1-p}} \right)^2 - \sum_{i=1}^n \frac{v_i^2 f(x)^{2-p}}{x_i^{2-p}} \right). \end{aligned}$$

It remains to notice

$$\begin{aligned} f(x)^p &= \sum_{i=1}^n x_i^p \implies \sum_{i=1}^n \frac{x_i^p}{f(x)^p} = 1 \implies \sum_{i=1}^n \left(\frac{f(x)}{x_i} \right)^{-p} = 1, \\ \frac{v_i f(x)^{1-p}}{x_i^{1-p}} &= \left(\frac{f(x)}{x_i} \right)^{-p/2} \cdot v_i \left(\frac{f(x)}{x_i} \right)^{1-p/2}, \end{aligned}$$

and

$$\frac{v_i^2 f(x)^{2-p}}{x_i^{2-p}} = \left(v_i \left(\frac{f(x)}{x_i} \right)^{1-p/2} \right)^2.$$

Then, using Cauchy-Schwarz on

$$a_i := \left(\frac{f(x)}{x_i} \right)^{-p/2} \quad \text{and} \quad b_i := v_i \left(\frac{f(x)}{x_i} \right)^{1-p/2}$$

with respect to the standard Euclidean norm, we obtain

$$\left(\sum_{i=1}^n \frac{v_i f(x)^{1-p}}{x_i^{1-p}} \right)^2 \leq 1 \cdot \sum_{i=1}^n \frac{v_i^2 f(x)^{2-p}}{x_i^{2-p}},$$

so $v^T \nabla^2 f(x) v \leq 0$, which concludes the proof. \square

Problem 21: Pointwise Maximum and Supremum

Show that the following functions $f: \mathbb{R}^n \rightarrow \mathbb{R}$ are convex.

- (a) $f(x) = \max_{i=1, \dots, k} \|A^{(i)}x - b^{(i)}\|$ where $A^{(i)} \in \mathbb{R}^{m \times n}$, $b^{(i)} \in \mathbb{R}^m$, and $\|\cdot\|$ is a norm on \mathbb{R}^m .
- (b) $f(x) := \sum_{i=1}^r |x|_{[i]}$ on \mathbb{R}^n , where $|x|_{[i]}$ denotes the i^{th} largest component of $|x|$.

Proof. (a) Each $\|A^{(i)}x - b^{(i)}\|$ is a translation of a norm and is therefore convex. Taking the max preserves convexity.

(b) For a given r , we have

$$f(x) = \sum_{i=1}^r |x|_{[i]} = \max_{\substack{j \in I \subseteq \{1, \dots, n\} \\ |I|=r}} \sum_{j=1}^r |x_j|$$

which is the maximum over a finite (in particular, n choose r) convex functions. It is therefore convex. \square

Problem 22: Composition Rules

Show that the following functions are convex.

- (a) $f(x) = -\log \left(-\log \left(\sum_{i=1}^n \exp(a_i^T x + b_i) \right) \right)$ on domain $\left\{ x : \sum_{i=1}^m \exp(a_i^T x + b_i) < 1 \right\}$. You may use the fact that $\log \left(\sum_{i=1}^n \exp(y_i) \right)$ is convex.
- (b) $f(x, u, v) = -\sqrt{uv - x^T x}$ on $\{(x, u, v) : uv > x^T x \text{ and } u, v > 0\}$. Use the fact that $x^T x/u$ is convex for $u > 0$ and that $-\sqrt{x_1 x_2}$ is convex on \mathbb{R}_{++}^2 .
- (c) $f(x, u, v) = -\log(uv - x^T x)$ on the same domain as in (b).
- (d) $f(x, t) = -(t^p - \|x\|_p^p)^{1/p}$ where $p > 1$ and domain of f is $\{(x, t) : t \geq \|x\|_p\}$. You can use the fact that $\|x\|_p^p/u^{p-1}$ is convex for $u > 0$ (see problem 23) and that $-x^{1/p}y^{1-1/p}$ is convex on \mathbb{R}_+^2 .
- (e) $f(x, t) = -\log(t^p - \|x\|_p^p)$ with same assumptions as in (d). You may use the fact that $\|x\|_p^p/u^{p-1}$ is convex for $u > 0$ (see problem 23 again).

Proof. (a) $a_i^T x + b_i$ is affine so composing it with the log-sum-exp function gives a convex function. Flipping the sign makes it concave, and composing it with $-\log$ again (convex and decreasing) makes the overall function convex.

(b) Note that

$$-\sqrt{uv - x^T x} = -\sqrt{u(v - x^T x/u)}$$

so that $v - x^T x/u$ is concave and $-\sqrt{uv}$ is convex and decreasing. Composing them gives the original function and shows it is convex.

(c) Since $uv - x^T x = u(v - x^T x/u)$ is concave and $-\log$ is convex and decreasing, the composition is convex in each component and therefore convex.

(d) Per the hint, we have

$$f(x, t) = -(t^p - \|x\|_p^p)^{1/p} = -t^{(p-1)/p} \left(t - \frac{\|x\|_p^p}{t^{p-1}} \right)^{1/p}$$

which is convex and decreasing with respect to either the argument $t - \|x\|_p^p/t^{p-1}$ or just t . Both are concave. Therefore the composition is convex.

(e) Since

$$f(x, t) = -\log(t^p - \|x\|_p^p) = -\log(t^{p-1}(t - \|x\|_p^p/t^{p-1})) = -(p-1)\log t - \log(t - \|x\|_p^p/t^{p-1})$$

where the first function is concave and so is the second (concave function composed with convex decreasing function), we see $f(x, t)$ is a sum of two convex functions and is therefore convex. \square

Problem 25: Maximum Probability Distance between Distributions

Let $p, q \in \mathbb{R}^n$ represent two distributions on $\{1, \dots, n\}$ so that $p, q \geq 0$ and $1^T p = 1^T q = 1$. We define the *maximum probability distance*

$$d_{\text{mp}}(p, q) := \max\{|\mathbb{P}(p, C) - \mathbb{P}(q, C)| : C \subset \{1, \dots, n\}\}$$

where $\mathbb{P}(p, C) := \sum_{i \in C} p_i$. Simplify the expression for $d_{\text{mp}}(p, q)$ using $\|\cdot\|_1$ and show that it is convex.

Solution. By assumption $\sum_{i=1}^n p_i = \sum_{i=1}^n q_i = 1$, so

$$\sum_{p_i > q_i} (p_i - q_i) + \sum_{p_i \leq q_i} (p_i - q_i) = 0 \implies \sum_{p_i > q_i} (p_i - q_i) = -\sum_{p_i \leq q_i} (p_i - q_i) \quad (1)$$

On the other hand,

$$\sum_{p_i > q_i} |p_i - q_i| + \sum_{p_i \leq q_i} |p_i - q_i| = \sum_{i=1}^n |p_i - q_i| = \|p - q\|_2, \quad (2)$$

and by using (1) and noticing that $\sum_{p_i \leq q_i} |p_i - q_i| = \sum_{p_i \leq q_i} -(p_i - q_i) = -\sum_{p_i \leq q_i} (p_i - q_i) = \sum_{p_i > q_i} (p_i - q_i)$, we have

$$\sum_{p_i > q_i} (p_i - q_i) = \frac{\|p - q\|_1}{2}.$$

From the definition of d_{mp} , it should be clear that this quantity is maximized if and only if $C := \{i : p_i > q_i\}$, and if so, we have

$$d_{\text{mp}}(p, q) = \sum_{p_i > q_i} (p_i - q_i) = \frac{\|p - q\|_1}{2},$$

clearly a convex function. \square

Problem 30: Convex Hull or Envelop of a Function

The *convex hull* or *convex envelope* of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is defined as

$$g(x) := \inf\{t : (x, t) \in \text{conv epi } f\}.$$

Show that g is the largest convex underestimator of f .

Proof. By construction the epigraph of g is the convex hull of the epigraph of f . It follows from definition that g has a convex epigraph and is therefore convex. It again follows from definition that the epigraph of g is the minimal convex shape containing the epigraph of f , so if h is a convex underestimator of f , its epigraph must be a superset of the epigraph of g , i.e., $h \leq g$. \square

Problem 31: Largest Homogeneous Underestimator

Let f be convex and define

$$g(x) := \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha}.$$

- (a) Show that g is homogeneous, i.e., $g(tx) = tg(x)$ for all $t \geq 0$.
- (b) Show that g is the largest homogeneous underestimator of f .
- (c) Show that g is convex.

Proof. (a) The claim is trivial for $t = 0$, and for $t > 0$,

$$g(tx) = \inf_{\alpha > 0} \frac{f(\alpha \cdot tx)}{\alpha} = t \inf_{\alpha > 0} \frac{f(\alpha \cdot tx)}{t\alpha} = tg(x).$$

(b) For any homogeneous underestimator h of f and any $\alpha > 0$,

$$h(x) = \frac{h(\alpha x)}{\alpha} \leq \frac{f(\alpha x)}{\alpha},$$

so taking the infimum gives $h(x) \leq \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha} = g(x)$.

(c) Since $g(x) = \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha} = \inf_{t^{-1} > 0} \frac{f(t^{-1}x)}{t^{-1}} = \inf_{t > 0} tf(x/t)$, we rewrote g as the infimum of a family of convex (perspective) functions, so it must be convex as well. \square

Problem 33: Direct Proof of the Perspective Theorem

Give a direct proof showing that $g(x, t) := tf(x/t)$ is convex if f is convex.

Proof. The domain of g is

$$\{(x, t) \in \mathbb{R}^n \times \mathbb{R}_+ : x/t \in \text{domain of } f\}.$$

Given f is convex, dilating its domain by a factor of t preserves convexity; then, the Cartesian product with $\mathbb{R}^n \times \mathbb{R}_+$, a convex set, again preserves convexity.

Now let (x_1, t_1) and (x_2, t_2) be chosen from g 's domain and let $\lambda \in (0, 1)$. Then

$$\begin{aligned} g(\lambda x_1 + (1 - \lambda)x_2, \lambda t_1 + (1 - \lambda)t_2) &= (\lambda t_1 + (1 - \lambda)t_2) \cdot f\left(\frac{\lambda x_1 + (1 - \lambda)x_2}{\lambda t_1 + (1 - \lambda)t_2}\right) \\ &= (\lambda t_1 + (1 - \lambda)t_2) f\left(\frac{\lambda t_1(x_1/t_1) + (1 - \lambda)t_2(x_2/t_2)}{\lambda t_1 + (1 - \lambda)t_2}\right) \\ &\leq (\lambda t_1 + (1 - \lambda)t_2) \left[\frac{\lambda t_1}{\lambda t_1 + (1 - \lambda)t_2} \cdot f(x_1/t_1) + \frac{(1 - \lambda)t_2}{\lambda t_1 + (1 - \lambda)t_2} \cdot f(x_2/t_2) \right] \\ &= \lambda t_1 f(x_1/t_1) + (1 - \lambda)t_2 f(x_2/t_2) = \lambda g(x_1, t_1) + (1 - \lambda)g(x_2, t_2), \end{aligned}$$

where we used the convexity of f in the \leq . □

Problem 34: The Minkowski Function

The *Minkowski function* on a convex set C is defined as

$$M_C(x) := \inf\{t > 0 : t^{-1}x \in C\}.$$

- (a) Give a geometric interpretation of how to find $M_C(x)$.
- (b) Show that M_C is homogeneous, i.e., $M_C(\alpha x) = \alpha M_C(x)$ for $\alpha \geq 0$.
- (c) What is its domain?
- (d) Show that M_C is convex.
- (e) Suppose C is closed¹ and symmetric with nonempty interior. Show that M_C induces a norm. What is the corresponding unit ball?

Solution. (a) Excluding the edge cases, we draw a line segment ℓ from the origin to x . Assuming the infimum exists (i.e., x is inside the domain), the line segment needs to intersect C . In the intersection $\ell \cap C$, there either exists a point p closest to x or there exists a sequence tending to a limit p , closer to x than anything in $\ell \cap C$. In either case, t^{-1} is ratio between $\|p\|$ and $\|x\|$. In other words, t is the reciprocal of the infimum of “scaling factors” transforming x into C .

(b) This directly follows from definition: for $\alpha > 0$,

$$M_C(\alpha x) = \inf\{t > 0 : t^{-1}\alpha x \in C\} = \alpha \inf\{t/\alpha > 0 : t^{-1}x \in C\} = \alpha M_C(x).$$

¹I don't think being closed is sufficient. Maybe compact? Otherwise take $C := \mathbb{R}^n$, which is closed and convex, and $M_C(x) = 0$ for any x .

For $\alpha = 0$, $M_C(\alpha x) = M_C(0)$. Since 0 is in the domain only if $0 \in C$ (see below), we implicitly assume so. In this case $M_C(0) = 0$. On the other hand $\alpha M_C(x) = 0$, so homogeneity still holds.

(c) Its domain is $\{x : t^{-1}x \in C \text{ for some } t > 0\}$.

(d) We define the indicator function $I_C : \mathbb{R}^n \rightarrow \overline{\mathbb{R}}$ by

$$I_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}.$$

Then

$$M_C(x) = \inf\{t > 0 : t^{-1}x \in C\} = \inf_t(t + I_C(x/t)).$$

For fixed t , x/t is linear and I_C convex since C is convex. Hence $t + I_C(x/t)$ is convex, and taking infimum preserves the convexity.

(e) (Here I assume in addition that C is bounded and so compact.) Nondegeneracy is clear as $M_C(x)$ is nonnegative. If $x = 0$ then $M_C(x) = 0$ as shown above. Conversely, if $M_C(x) = 0$ but $x \neq 0$, then $nx \in C$ for all $n \in \mathbb{C}$ which implies C is unbounded.

Absolute homogeneity follows from homogeneity and symmetry of C (so that $M_C(-x) = M_C(x)$).

Finally, for subadditivity, we have

$$M_C(x+y) = 2M_C((x+y)/2) \leq M_C(x) + M_C(y)$$

where the $=$ is by homogeneity and the \leq by convexity.

Problem 35: Support Function Calculus

Recall that the *support function* of a set $C \subset \mathbb{R}^n$ is defined as $S_C(y) := \sup\{y^T x : x \in C\}$. We showed that S_C is convex.

- (a) Show that $S_B = S_{\text{conv}B}$.
- (b) Show that $S_{A+B} = S_A + S_B$.
- (c) Show that $S_{A \cup B} = \max\{S_A, S_B\}$.
- (d) Let B be closed and convex. Show that $A \subset B$ if and only if $S_A(y) \leq S_B(y)$ for all y .

Proof. (a) It is clear that $B \subset \text{conv}B$ implies $S_B \leq S_{\text{conv}B}$, so it remains to show that $<$ cannot happen. Suppose for contradiction that $S_B(y) < S_{\text{conv}B}(y)$ for some y . Then there exist some $v \in \text{conv}B$ such that $y^T v > S_B(y)$. That is,

$$y^T v > y^T u \text{ for all } u \in B. \quad (*)$$

By definition of convex hull, v is some convex combination of elements of B , i.e.,

$$v = \sum_{i=1}^k c_i u_i \quad \text{where } u_i \in B, c_i \geq 0, \text{ and } \sum_{i=1}^k c_i = 1.$$

But then

$$y^T v = \sum_{i=1}^k c_i y^T u_i \stackrel{(*)}{<} \sum_{i=1}^k c_i y^T v = y^T v,$$

contradiction.

$$(b) \quad S_{A+B}(y) = \sup\{y^T(u+v) : u \in A, v \in B\} = \sup\{y^T u + y^T v\} = \sup\{y^T u\} + \sup\{y^T v\} = S_A(y) + S_B(y).$$

$$(c) \quad S_{A \cup B} = \sup\{y^T u : u \in A \cup B\} = \max\{\sup\{y^T u\}, \sup\{y^T v\}\} = \max\{S_A, S_B\}.$$

(d) If $A \subset B$ then clearly $S_A \leq S_B$; it remains to show the converse.

If $A \not\subset B$ then there exists $x \in A$ but $x \notin B$. Since B is closed, $d(x, B) := \inf_{b \in B} d(x, b) > 0$. Hence there exists a separating hyperplane with $y^T x > y^T b$ for all $b \in B$. Then $S_A(y) > S_B(y)$, a contradiction. \square

Problem 36: Conjugate Functions

Derive the conjugates of the following functions.

$$(a) \quad \text{Max: } f(x) := \max_{1 \leq i \leq n} x_i \text{ on } \mathbb{R}^n.$$

$$(b) \quad \text{Sum of largest elements: } f(x) := \sum_{i=1}^r x_{[i]} \text{ on } \mathbb{R}^n.$$

$$(c) \quad \text{Piecewise linear: } f(x) := \max_{1 \leq i \leq n} (a_i x + b_i) \text{ on } \mathbb{R}, \text{ assuming } a_1 \leq \dots \leq a_m \text{ and none of the functions } a_i x + b \text{ is redundant.}$$

$$(d) \quad \text{Power: } f(x) := x^p \text{ with } p > 1. \text{ Repeat for } p < 0.$$

$$(e) \quad \text{Geometric mean: } f(x) := -\left(\prod_{i=1}^n x_i\right)^{1/n} \text{ on } \mathbb{R}_{++}^n.$$

$$(f) \quad \text{Negative generalized logarithm for second-order cone: } f(x, t) := -\log(t^2 - x^T x) \text{ on } \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : \|x\|_2 < t\}.$$

Solution. For convenience I first write the definition of a conjugate:

$$f^*(y) := \sup_{x \in \text{dom } f} (y^T x - f(x)).$$