MATH 520 Homework 10

Qilin Ye

April 8, 2022

Problem 1: Alhfors, page 154 p1

How many roots does the equation 27 — 225 + 623 — z + 1 = 0 have in the disk |z| < 1?

Solution. Let g(z) := the polynomial described above and let f(z) := 62°. Let v be the boundary of the unit disk.
Then, on ~,
1f(2) = g(2)| = |-2" +22° + 2 = 1| < |27| + 22°| + |2| + 1 < 6 = | £ (2)].

Applying Rouche’s theorem we see that g must have three roots in the disk since 6z* (only) has a root of

multiplicity of 3 at the origin.
Problem 2: Alhfors, page 154 p3

How many roots of the equation z* + 823 + 322 + 8z + 3 = 0 lie in the right half plane?

Solution. For points of form it, ¢t € R on the imaginary axis, we have
fit) = 2% = 8it® = 3t% + 8it + 3 = (2* - 3t> + 3) +i(-8t> - 8¢t).

It follows that PRef(it) > O for all ¢ so the imaginary axis is always mapped to the right half plane. As ¢ - oo,
Ref(it) dominates Jmf(it), so the change in argument of f(it) eventually — 0 as ¢ - co. Now consider the right
semicircle with radius R and center origin. The degree of f is 4, so on 0 € (-7/2,7/2), for large R, the argument

of f(Re') wraps around the origin twice. Therefore the polynomial has two roots in the right half plane.
Problem 3: Alhfors, page 161 p3a

Compute

/2 1
/ 7.2 dx.
0 a+sm-x
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Solution. Using cos(2x) = cos? z —sin® z = 1 — 2sin” 2 we have

/2 1 /2 1
[ e W
0 a+sin‘z 0 a+(1-cos(22))/2
/2 1
S A
0 2a+1-cos(2z)

a 1 0 1 Q 1
e [ o= [ dn
0 (2a+1)-cosx -7 (2a+1) +cosx 0 (2a+1)+cosx

Using example 1 on Alhfors page 155, we have

4 1
f ————— da = 7/V4a® + 4a.
0 (2a+1)+cosz

Problem 4: Alhfors, page 161 p3b

Compute
2

et x
fo 24 +522+6 dz.
Solution. Note that
24522 +6= (22 +3) (22 +2) (2 +iV3) (2 - iV3) (2 +iV2) (2 - iV2).

We use upper semicircles as contours so that the poles contained are iv/2 and iv/3. Their residues are

(iv2)? -2

Res(V2) = B (WD) Ve VB
and . , .
Res(iv/3) = (iv3) -3 _Z\/g.

2iV3)((iV3)2+2) —-i2v3 2
Given R, the radius of the semicircle, the integral along the curve, which we denote as ~y, is bounded by
2
X
—d
[yg 4+ 522 +6 .

whose limit is 0 as R — oo. Therefore the residue theorem gives

R2

<R —
"R _5R2 6|

2

/_mwidm:QWiZRes:w(\/g—\/i)

o 24 +522+6

and since the function is even,

[Oo z” dx—w(\/g_\/i).
0

zt + 522 +6 N 2

Problem 5: Alhfors, page 161 p3e

Compute

®© cosx
f 3 dz.
0 x°+a
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Solution. Let v be the curve connecting (-r,0), (0,7), and the upper semicircle from (r,0) to (-r,0), oriented
counterclockwise. Assume r > a. Since exp(iz)/(2? + a?) only has zero at = = ia, we see that it is included in the

region enclosed by ~. Hence

f°° cos(sc) f‘x’ cos(m)
0o x2+ a2 2 oo X2+ a2
29‘{ f°° exp(z:c)

oo 1'2"1‘042

;9% f exp(zx)

1‘2+a2

1 _ L . . exp(iz)
= Eme(QmRes(za)) = 59% (271'Z zh—g};(z —ia) 242 )

= %%e (27”' lim exp(zz)) = %%e(?wiexp(—a)/(%a)) = w(—a).

z=ia 2 +1a 2a

(It is almost trivial that the upper semicircle has integral — 0 as R — oo, since the integral is bounded by
TR-1/R?> - 0.)

Problem 6: Alhfors, page 161 p3g

Compute
1/3

f de.
0o 1+22

Solution. We use Alhfors’s method in the text. Transforming the integral of form f z*R(z) dz into form
0
2/ 2 R(#%) dt,
0
1/3

0o o .5/3
f x dxz?f de
0o 1+2a2 0o 1+a4
5/3

f‘” x dxzfomwdz—(l eXp(Qm/?’))f

oo 1+ 24 1+ 24

o 1/3 2 oo 5/3
f x dx = . f = dz.
0 1l+a? 1-e2mi/3 Jooo 14 2%

Also consider the upper half of an R - ¢ annulus, along with two line segments of real axis, as shown in Alhfors’s

and

dz
T+22

SO

figure 4.13 (a large semicircle with an e-semicircle removed). The function 2/3/(1 + z*) has two singularities in

wif4 and 6371'1'/4'

the upper plane, namely e
Note that

24 +1= (Z_eﬂ'i/4)(z_637r72/4)(z_6571'2'/4)(2_677”'/4)’

so the residues are

oBmi/12 1

mifdy _ _ = ,mi/3
Res(e™") (il — e3[4 (emifd — gomifd) (emild — oTrilt) 1€

and 4
e157”/12 1

3mifdy _ J—
Res(e )= (e3mil4 — emi[4)(e3i/4 — e5mi/4)(e3mil4 _ Tmi/4) T4

3
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It is clear that as R — oo and € — 0, both semicircles have integrals whose values tend to 0, since the correspond-

ing integrals are of order 1 + 1/3 — 2 < 0. Therefore, using residue theorem, we obtain

1/3

T = 2 ' mif4 3mifdyy _
/o 1522 dz = {23 2mi(Res(e™*) + Res(e )) =

S

Problem 7: Alhfors, page 161 p3h

Compute

oo ]
[ 8T 4z
0o 1+22

Solution. We again use the R — ¢ annulus as contour. The function logz/(1 + %) has one zero enclosed by such
annulus at z = i. The residue at z =i is

log(i) log(e®e™?) im/2 z
iti 2 S22 4

Res(i) =

As e — 0, the integral along the e-semicircle is bounded by

log x

N flog2l

< su
ST 2]

Ye 1+x2

and clearly the other bound for R holds, as R? dominates Rlog R. It remains to notice that
o ] 0 oo
/‘ 08T 4. _ /’ log x da + [ log x da
—oo 1+ 22 —o0 1+ 22 0 1+a?

oo 0 —_ )

_ f logz do 4 f log(-x) + mi da

0 1+a? oo 1+ (-x)2
o 0

:2f logz dz+7rif ;dx

0o 1+a? —oo 1+ 22

:2f logz dz + mi(7/2).
0

1422

This, along with residue theorem which gives
2

< logz ) T4
S T o =it =

|
[ 08 dz =0.
0o 1+a2

implies




