

MATH 520 Homework 10

Qilin Ye

April 8, 2022

Problem 1: Alhfors, page 154 p1

How many roots does the equation $z^7 - 2z^5 + 6z^3 - z + 1 = 0$ have in the disk $|z| < 1$?

Solution. Let $g(z) :=$ the polynomial described above and let $f(z) := 6z^3$. Let γ be the boundary of the unit disk. Then, on γ ,

$$|f(z) - g(z)| = |-z^7 + 2z^5 + z - 1| \leq |z^7| + 2|z^5| + |z| + 1 \leq 6 = |f(z)|.$$

Applying Rouché's theorem we see that g must have three roots in the disk since $6z^3$ (only) has a root of multiplicity of 3 at the origin.

Problem 2: Alhfors, page 154 p3

How many roots of the equation $z^4 + 8z^3 + 3z^2 + 8z + 3 = 0$ lie in the right half plane?

Solution. For points of form it , $t \in \mathbb{R}$ on the imaginary axis, we have

$$f(it) = z^4 - 8it^3 - 3t^2 + 8it + 3 = (z^4 - 3t^2 + 3) + i(-8t^3 + 8t).$$

It follows that $\Re f(it) > 0$ for all t so the imaginary axis is always mapped to the right half plane. As $t \rightarrow \infty$, $\Re f(it)$ dominates $\Im f(it)$, so the change in argument of $f(it)$ eventually $\rightarrow 0$ as $t \rightarrow \infty$. Now consider the right semicircle with radius R and center origin. The degree of f is 4, so on $\theta \in (-\pi/2, \pi/2)$, for large R , the argument of $f(Re^{i\theta})$ wraps around the origin twice. Therefore the polynomial has two roots in the right half plane.

Problem 3: Alhfors, page 161 p3a

Compute

$$\int_0^{\pi/2} \frac{1}{a + \sin^2 x} dx.$$

Solution. Using $\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ we have

$$\begin{aligned} \int_0^{\pi/2} \frac{1}{a + \sin^2 x} dx &= \int_0^{\pi/2} \frac{1}{a + (1 - \cos(2x))/2} dx \\ &= 2 \int_0^{\pi/2} \frac{1}{2a + 1 - \cos(2x)} dx \\ &= \int_0^{\pi} \frac{1}{(2a + 1) - \cos x} dx = \int_{-\pi}^0 \frac{1}{(2a + 1) + \cos x} dx = \int_0^{\pi} \frac{1}{(2a + 1) + \cos x} dx. \end{aligned}$$

Using example 1 on Alhfors page 155, we have

$$\int_0^{\pi} \frac{1}{(2a + 1) + \cos x} dx = \pi / \sqrt{4a^2 + 4a}.$$

Problem 4: Alhfors, page 161 p3b

Compute

$$\int_0^{\infty} \frac{x^2}{x^4 + 5x^2 + 6} dx.$$

Solution. Note that

$$z^4 + 5z^2 + 6 = (z^2 + 3)(z^2 + 2)(z + i\sqrt{3})(z - i\sqrt{3})(z + i\sqrt{2})(z - i\sqrt{2}).$$

We use upper semicircles as contours so that the poles contained are $i\sqrt{2}$ and $i\sqrt{3}$. Their residues are

$$\text{Res}(i\sqrt{2}) = \frac{(i\sqrt{2})^2}{(2i\sqrt{2})((i\sqrt{2})^2 + 3)} = \frac{-2}{i2\sqrt{2}} = \frac{i}{\sqrt{2}}$$

and

$$\text{Res}(i\sqrt{3}) = \frac{(i\sqrt{3})^2}{(2i\sqrt{3})((i\sqrt{3})^2 + 2)} = \frac{-3}{-i2\sqrt{3}} = \frac{-i\sqrt{3}}{2}.$$

Given R , the radius of the semicircle, the integral along the curve, which we denote as γ_0 , is bounded by

$$\left| \int_{\gamma_0} \frac{x^2}{x^4 + 5x^2 + 6} dx \right| \leq \pi R \cdot \frac{R^2}{|R^4 - 5R^2 - 6|}$$

whose limit is 0 as $R \rightarrow \infty$. Therefore the residue theorem gives

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 5x^2 + 6} dx = 2\pi i \sum \text{Res} = \pi(\sqrt{3} - \sqrt{2})$$

and since the function is even,

$$\int_0^{\infty} \frac{x^2}{x^4 + 5x^2 + 6} dx = \frac{\pi(\sqrt{3} - \sqrt{2})}{2}.$$

Problem 5: Alhfors, page 161 p3e

Compute

$$\int_0^{\infty} \frac{\cos x}{x^2 + a^2} dx.$$

Solution. Let γ be the curve connecting $(-r, 0), (0, r)$, and the upper semicircle from $(r, 0)$ to $(-r, 0)$, oriented counterclockwise. Assume $r > a$. Since $\exp(ix)/(x^2 + a^2)$ only has zero at $x = ia$, we see that it is included in the region enclosed by γ . Hence

$$\begin{aligned} \int_0^\infty \frac{\cos(x)}{x^2 + a^2} dx &= \frac{1}{2} \int_{-\infty}^\infty \frac{\cos(x)}{x^2 + a^2} dx \\ &= \frac{1}{2} \Re \int_{-\infty}^\infty \frac{\exp(ix)}{x^2 + a^2} dx \\ &= \frac{1}{2} \Re \int_\gamma \frac{\exp(ix)}{x^2 + a^2} dx \\ &= \frac{1}{2} \Re(2\pi i \text{Res}(ia)) = \frac{1}{2} \Re \left(2\pi i \lim_{z \rightarrow ia} (z - ia) \frac{\exp(iz)}{z^2 + a^2} \right) \\ &= \frac{1}{2} \Re \left(2\pi i \lim_{z \rightarrow ia} \frac{\exp(iz)}{z + ia} \right) = \frac{1}{2} \Re(2\pi i \exp(-a)/(2ia)) = \frac{\pi \exp(-a)}{2a}. \end{aligned}$$

(It is almost trivial that the upper semicircle has integral $\rightarrow 0$ as $R \rightarrow \infty$, since the integral is bounded by $\pi R \cdot 1/R^2 \rightarrow 0$.)

Problem 6: Alhfors, page 161 p3g

Compute

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} dx.$$

Solution. We use Alhfors's method in the text. Transforming the integral of form $\int_0^\infty x^\alpha R(x) dx$ into form $2 \int_0^\infty t^{2\alpha+1} R(t^2) dt$,

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} dx = 2 \int_0^\infty \frac{x^{5/3}}{1+x^4} dx$$

and

$$\int_{-\infty}^\infty \frac{x^{5/3}}{1+x^4} dx = \int_0^\infty \frac{z^{5/3} + (-z)^{5/3}}{1+z^4} dz = (1 - \exp(2\pi i/3)) \int_0^\infty \frac{z^{5/3}}{1+z^2} dz,$$

so

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} dx = \frac{2}{1 - e^{2\pi i/3}} \int_{-\infty}^\infty \frac{z^{5/3}}{1+z^4} dz.$$

Also consider the upper half of an $R - \epsilon$ annulus, along with two line segments of real axis, as shown in Alhfors's figure 4.13 (a large semicircle with an ϵ -semicircle removed). The function $z^{5/3}/(1+z^4)$ has two singularities in the upper plane, namely $e^{\pi i/4}$ and $e^{3\pi i/4}$.

Note that

$$z^4 + 1 = (z - e^{\pi i/4})(z - e^{3\pi i/4})(z - e^{5\pi i/4})(z - e^{7\pi i/4}),$$

so the residues are

$$\text{Res}(e^{\pi i/4}) = \frac{e^{5\pi i/12}}{(e^{\pi i/4} - e^{3\pi i/4})(e^{\pi i/4} - e^{5\pi i/4})(e^{\pi i/4} - e^{7\pi i/4})} = \frac{1}{4} e^{-\pi i/3}$$

and

$$\text{Res}(e^{3\pi i/4}) = \frac{e^{15\pi i/12}}{(e^{3\pi i/4} - e^{\pi i/4})(e^{3\pi i/4} - e^{5\pi i/4})(e^{3\pi i/4} - e^{7\pi i/4})} = -\frac{1}{4}.$$

It is clear that as $R \rightarrow \infty$ and $\epsilon \rightarrow 0$, both semicircles have integrals whose values tend to 0, since the corresponding integrals are of order $1 + 1/3 - 2 < 0$. Therefore, using residue theorem, we obtain

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} dx = \frac{2}{1-e^{2\pi i/3}} 2\pi i (\text{Res}(e^{\pi i/4}) + \text{Res}(e^{3\pi i/4})) = \frac{\pi}{\sqrt{3}}.$$

Problem 7: Alhfors, page 161 p3h

Compute

$$\int_0^\infty \frac{\log x}{1+x^2} dx.$$

Solution. We again use the $R - \epsilon$ annulus as contour. The function $\log x/(1+x^2)$ has one zero enclosed by such annulus at $z = i$. The residue at $z = i$ is

$$\text{Res}(i) = \frac{\log(i)}{i+i} = \frac{\log(e^0 e^{i\pi/2})}{2i} = \frac{i\pi/2}{2i} = \frac{\pi}{4}.$$

As $\epsilon \rightarrow 0$, the integral along the ϵ -semicircle is bounded by

$$\left| \int_{\gamma_\epsilon} \frac{\log x}{1+x^2} dx \right| \leq \pi \epsilon \sup_{\gamma_\epsilon} \frac{|\log z|}{|1+z^2|} \rightarrow 0$$

and clearly the other bound for R holds, as R^2 dominates $R \log R$. It remains to notice that

$$\begin{aligned} \int_{-\infty}^\infty \frac{\log x}{1+x^2} dx &= \int_{-\infty}^0 \frac{\log x}{1+x^2} dx + \int_0^\infty \frac{\log x}{1+x^2} dx \\ &= \int_0^\infty \frac{\log x}{1+x^2} dx + \int_{-\infty}^0 \frac{\log(-x) + \pi i}{1+(-x)^2} dx \\ &= 2 \int_0^\infty \frac{\log x}{1+x^2} dx + \pi i \int_{-\infty}^0 \frac{1}{1+x^2} dx \\ &= 2 \int_0^\infty \frac{\log x}{1+x^2} dx + \pi i (\pi/2). \end{aligned}$$

This, along with residue theorem which gives

$$\int_{-\infty}^\infty \frac{\log x}{1+x^2} dx = 2\pi i (\pi/4) = \frac{\pi^2 i}{2}$$

implies

$$\int_0^\infty \frac{\log x}{1+x^2} dx = 0.$$