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Problem 1: Alhfors, page 154 p1

How many roots does the equation z7 − 2z5 + 6z3 − z + 1 = 0 have in the disk ∣z∣ < 1?

Solution. Let g(z) ∶= the polynomial described above and let f(z) ∶= 6z3. Let γ be the boundary of the unit disk.

Then, on γ,

∣f(z) − g(z)∣ = ∣−z7 + 2z5 + z − 1∣ ⩽ ∣z7∣ + 2∣z5∣ + ∣z∣ + 1 ⩽ 6 = ∣f(z)∣.

Applying Rouche’s theorem we see that g must have three roots in the disk since 6z3 (only) has a root of

multiplicity of 3 at the origin.

Problem 2: Alhfors, page 154 p3

How many roots of the equation z4 + 8z3 + 3z2 + 8z + 3 = 0 lie in the right half plane?

Solution. For points of form it, t ∈ R on the imaginary axis, we have

f(it) = z4 − 8it3 − 3t2 + 8it + 3 = (z4 − 3t2 + 3) + i(−8t3 − 8t).

It follows that Ref(it) > 0 for all t so the imaginary axis is always mapped to the right half plane. As t → ∞,

Ref(it) dominates Imf(it), so the change in argument of f(it) eventually→ 0 as t→∞. Now consider the right

semicircle with radius R and center origin. The degree of f is 4, so on θ ∈ (−π/2, π/2), for large R, the argument

of f(Reiθ) wraps around the origin twice. Therefore the polynomial has two roots in the right half plane.

Problem 3: Alhfors, page 161 p3a

Compute

∫
π/2

0

1

a + sin2 x
dx.
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Solution. Using cos(2x) = cos2 x − sin2 x = 1 − 2 sin2 x we have

∫
π/2

0

1

a + sin2 x
dx = ∫

π/2

0

1

a + (1 − cos(2x))/2
dx

= 2∫
π/2

0

1

2a + 1 − cos(2x)
dx

= ∫
π

0

1

(2a + 1) − cosx
dx = ∫

0

−π

1

(2a + 1) + cosx
dx = ∫

π

0

1

(2a + 1) + cosx
dx.

Using example 1 on Alhfors page 155, we have

∫
π

0

1

(2a + 1) + cosx
dx = π/

√
4a2 + 4a.

Problem 4: Alhfors, page 161 p3b

Compute

∫
∞

0

x2

x4 + 5x2 + 6
dx.

Solution. Note that

z4 + 5z2 + 6 = (z2 + 3)(z2 + 2)(z + i
√
3)(z − i

√
3)(z + i

√
2)(z − i

√
2).

We use upper semicircles as contours so that the poles contained are i
√
2 and i

√
3. Their residues are

Res(i
√
2) = (i

√
2)2

(2i
√
2)((i

√
2)2 + 3)

= −2
i2
√
2
= i√

2

and

Res(i
√
3) = (i

√
3)2

(2i
√
3)((i

√
3)2 + 2)

= −3
−i2
√
3
= −i
√
3

2
.

Given R, the radius of the semicircle, the integral along the curve, which we denote as γ0, is bounded by

∣∫
γ0

x2

x4 + 5x2 + 6
dx∣ ⩽ πR ⋅ R2

∣R4 − 5R2 − 6∣

whose limit is 0 as R →∞. Therefore the residue theorem gives

∫
∞

−∞

x2

x4 + 5x2 + 6
dx = 2πi∑Res = π(

√
3 −
√
2)

and since the function is even,

∫
∞

0

x2

x4 + 5x2 + 6
dx = π(

√
3 −
√
2)

2
.

Problem 5: Alhfors, page 161 p3e

Compute

∫
∞

0

cosx

x2 + a2
dx.
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Solution. Let γ be the curve connecting (−r,0), (0, r), and the upper semicircle from (r,0) to (−r,0), oriented

counterclockwise. Assume r > a. Since exp(ix)/(x2 + a2) only has zero at x = ia, we see that it is included in the

region enclosed by γ. Hence

∫
∞

0

cos(x)
x2 + a2

dx = 1

2
∫
∞

−∞

cos(x)
x2 + a2

dx

= 1

2
Re∫

∞

−∞

exp(ix)
x2 + a2

dx

= 1

2
Re∫

γ

exp(ix)
x2 + a2

dx

= 1

2
Re(2πiRes(ia)) = 1

2
Re(2πi lim

z→ia
(z − ia)exp(iz)

z2 + a2
)

= 1

2
Re(2πi lim

z→ia

exp(iz)
z + ia

) = 1

2
Re(2πi exp(−a)/(2ia)) = π exp(−a)

2a
.

(It is almost trivial that the upper semicircle has integral → 0 as R → ∞, since the integral is bounded by

πR ⋅ 1/R2 → 0.)

Problem 6: Alhfors, page 161 p3g

Compute

∫
∞

0

x1/3

1 + x2
dx.

Solution. We use Alhfors’s method in the text. Transforming the integral of form ∫
∞

0
xαR(x) dx into form

2∫
∞

0
t2α+1R(t2) dt,

∫
∞

0

x1/3

1 + x2
dx = 2∫

∞

0

x5/3

1 + x4
dx

and

∫
∞

−∞

x5/3

1 + x4
dx = ∫

∞

0

z5/3 + (−z)5/3

1 + z4
dz = (1 − exp(2πi/3))∫

∞

0

z5/3

1 + z2
dz,

so

∫
∞

0

x1/3

1 + x2
dx = 2

1 − e2πi/3 ∫
∞

−∞

z5/3

1 + z4
dz.

Also consider the upper half of an R− ϵ annulus, along with two line segments of real axis, as shown in Alhfors’s

figure 4.13 (a large semicircle with an ϵ-semicircle removed). The function z5/3/(1 + z4) has two singularities in

the upper plane, namely eπi/4 and e3πi/4.

Note that

z4 + 1 = (z − eπi/4)(z − e3πi/4)(z − e5πi/4)(z − e7πi/4),

so the residues are

Res(eπi/4) = e5πi/12

(eπi/4 − e3πi/4)(eπi/4 − e5πi/4)(eπi/4 − e7πi/4)
= 1

4
e−πi/3

and

Res(e3πi/4) = e15πi/12

(e3πi/4 − eπi/4)(e3πi/4 − e5πi/4)(e3πi/4 − e7πi/4)
= −1

4
.
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It is clear that as R →∞ and ϵ→ 0, both semicircles have integrals whose values tend to 0, since the correspond-

ing integrals are of order 1 + 1/3 − 2 < 0. Therefore, using residue theorem, we obtain

∫
∞

0

x1/3

1 + x2
dx = 2

1 − e2πi/3
2πi(Res(eπi/4) + Res(e3πi/4)) = π√

3
.

Problem 7: Alhfors, page 161 p3h

Compute

∫
∞

0

logx

1 + x2
dx.

Solution. We again use the R − ϵ annulus as contour. The function logx/(1 + x2) has one zero enclosed by such

annulus at z = i. The residue at z = i is

Res(i) = log(i)
i + i

= log(e0eiπ/2)
2i

= iπ/2
2i
= π

4
.

As ϵ→ 0, the integral along the ϵ-semicircle is bounded by

∣∫
γϵ

logx

1 + x2
dx∣ ⩽ πϵ sup

γϵ

∣log z∣
∣1 + z2∣

→ 0

and clearly the other bound for R holds, as R2 dominates R logR. It remains to notice that

∫
∞

−∞

logx

1 + x2
dx = ∫

0

−∞

logx

1 + x2
dx + ∫

∞

0

logx

1 + x2
dx

= ∫
∞

0

logx

1 + x2
dx + ∫

0

−∞

log(−x) + πi
1 + (−x)2

dx

= 2∫
∞

0

logx

1 + x2
dx + πi∫

0

−∞

1

1 + x2
dx

= 2∫
∞

0

logx

1 + x2
dx + πi(π/2).

This, along with residue theorem which gives

∫
∞

−∞

logx

1 + x2
dx = 2πi(π/4) = π2i

2

implies

∫
∞

0

logx

1 + x2
dx = 0.
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