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Problem 1: Alhfors, p.17 problem, modified

Prove that az + bz + c = 0 determines a line if and only if ∣a∣ = ∣b∣ ≠ 0 and c/b = c/a.

Proof. For⇒, suppose az + bz + c = 0 determines a line, so in particular there are infinitely many solutions to this

equation. Taking conjugate, we also have az + bz + c = 0. Multiplying by a, b respectively gives

∣a∣2z + abz + ac = ∣b∣2z + abz + bc

and subtracting gives

z(∣a∣2 − ∣b∣2) = bc − ac.

We see that if one (or both) between ∣a∣ = ∣b∣ ≠ 0 and if c/b = c/a fails, then the above equation has only one

solution, so it cannot possibly represent a line. This proves⇒.

Conversely, suppose ∣a∣ − ∣b∣ = bc − ac = 0 and az + bz + c = 0. Normalizing the coefficients we have

z + (b/a)z + c/a = 0

with ∣b/a∣ = 1. Define k ∶= (b/a)1/2. Since (b/a)k = k2k = k, multiplying by k we have

kz + kz + ck/a = 0.

Since

ck/a = kc/a = kbc/(ab) = kac/(ab) = kc/b = k2kc/b = kbc/(ab) = kc/a,

we have C ∶= ck/a ∈ R. We can re-express the equation using real-valued constants A,B, such that

A ⋅Rez +B ⋅ Imz +C = 0.

This corresponds to a line in R2, and multiplying the second component, i.e., Imz by i, we recover the solution

set for az + bz + c = 0, which has to be a line.

Problem 2: Alhfors, p.96 problem 1

Map the common part of the disks ∣z∣ < 1 and ∣z − 1∣ < 1 on the inside of the unit circle. Choose the mapping

so that the two symmetries are preserved.
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Solution. Note that the intersection is a wedge with vertices eiπ/3 and e−iπ/3. The angle of both vertices is 2π/3.

We first construct a Möbius transformation mapping ∞ → 1, a → 0, and b → ∞: this by definition should be

T1 ∶ z ↦ (z − a)/(z − b). After this, the original wedge becomes an angular sector with the same angle (2π/3),

bounded by rays corresponding to −π/3 and π/3.

Next, we expand the angle from 2π/3 to π, namely, via T2 ∶ z ↦ z3/2, so that the angular sector becomes the right

half plane.

Finally, we use T3 ∶ z ↦ (z − 1)/(z + 1) to map the half plane onto the unit disk. Then T3 ○ T2 ○ T1 is the

transformation we seek.

Problem 3: Alhfors, p.96 problem 2

Map the region between ∣z∣ = 1 and ∣z − 1/2∣ = 1/2 onto the half plane.

Solution. We first consider a mapping T1 ∶ z ↦ 1/(1 − z). Under this mapping, we have f(1) = ∞, f(0) =
1, f(−1) = 0.5, so the real axis maps to the real axis with orientation preserved (since 1/(1 − z) is Möbius). That

is, the upper half plane remains as the upper half plane. We also have f(1) = ∞, f(i) = 0.5 + 0.5i, f(−1) = 0.5,

so the big circle maps to the line x = 0.5, and the big disk maps to the right side of x = 0.5. Finally, since

f(1) = ∞, f(0.5 + 0.5i) = 1 + i, f(0) = 0.5, the small circle maps to x = 1 and the small disk to the right side of

x = 1. Therefore, our original set maps to

{x + yi ∶ x ∈ [0.5,1], y ⩾ 0}.

Now we rotate the set by −π/2, shift everything upward by 3/4, and stretch by 2π. Namely, define T2 ∶ z ↦
2π(iz + 3/4). This way we obtain the image {x + yi ∶ x ⩾ 0, y ∈ [−π/2, π/2]}.
Then we define T3 using z ↦ ez so the set now becomes the right half plane excluding the right half of the unit

disk. In order to make this C/D, we define T4 ∶ z ↦ z2. Next, we define T5 ∶ z ↦ z−1 so the set is now simply D.

It remains to find a mapping from D to the upper half plane – one such construction is let f(−i) = 0, f(1) = 1,

and f(i) =∞. Using cross ratio we obtain T6 = (z,1,−i, i) = −i(z + i)/(z − i). Composing everything and we are

done.

Problem 4: Alhfors, p.97 problem 3

Map the complement of the arc ∣z∣ = 1, y ⩾ 0 on the outside of the unit circle so that the points at ∞
correspond to each other.

Solution. We first use T1 ∶ z ↦ z−1 to map our original set into the top half disk. Using T2 ∶ z ↦ z2 we obtain a

full disk. Using T3 ∶ z ↦ z−1 again we obtain our desired result. Note that T1(∞) = 0, T2(0) = 0, and T3(0) =∞,

so∞ is preserved.

Problem 6: Conway, p.55 problem 8

If Tz = az + b
cz + d

, show that TR∞ = R∞ if and only if we can choose a, b, c, d to be real numbers.

2



MATH 520 Homework 3 YQL

Proof. If a, b, c, d ∈ R∞, by closure of addition and multiplication we must have TR∞ = R∞.

Conversely, suppose TR∞ = R∞. In particular there exists z0 with Tz0 = 0, so az0 = −b and z0 = −b/a. Also, there

exists z∞ with Tz1∞ =∞, so cz∞ = −d and z∞ = −d/c. Also, there exists z1 with Tz1 = 1, so

az1 + b = cz1 + d Ô⇒ z1(a − c) = d − b = z0a − z∞c,

z1
c
− z1

a
= z0

c
− z∞

a
Ô⇒ z1 − z0

c
= z1 − z∞

a
Ô⇒ z1 − z0

z1 − z∞
= a

c
∈ R.

Since d/a = (d/c)(c/a), we see d/a ∈ R as well. It remains to notice that

Tz = az + b
cd + z

= z + b/a
(c/a)z + d/a

and from above, 1, b/a, c/a, d/a are all (extended) real numbers.

Problem 7: Conway, p.55 problem 9

If Tz = az + b
cz + d

, find necessary and sufficient conditions that T (Γ) = Γ where Γ is the unit circle.

Solution. T (Γ) = Γ means ∣z∣ = 1⇒ ∣T (z)∣ = 1 and ∣z∣ = 1⇒ ∣T −1(z)∣ = 1 (since T is assumed to be Möbius — the

only non-invertible case clearly fails). Since

T (z)T (z) = az + b
cz + d

az + b
cz + d

and

(az + b)(az + b) − (cz + d)(cz + d) = zzaa + zab + zabb + bb − zzcc − zcd − zcd − dd

= ∣z∣2(∣a∣2 − ∣c∣2) + z(ab − cd) + z(ab + cd) + ∣b∣2 − ∣d∣2,

one sufficient condition is if ab = cd, ∣a∣2 = ∣c∣2, and ∣b∣2 = ∣d∣2. This can be reformulated into ab = cd and

∣a∣2 + ∣b∣2 = ∣c∣2 + ∣d∣2.

Conversely, if we set a/d = c/b = k, then

∣a∣2 + ∣b∣2 = ∣λ∣−2∣c2∣ + ∣λ∣2∣d∣2

so equality holds only when ∣λ∣ = 1. Hence the sufficient and necessary condition is that ∣a∣ = ∣b∣ = ∣c∣ = ∣d∣.
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