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Problem 1: Alhfors, p.123 p1

Compute
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where 7 is the directed line segment from 0 to 1 +i.

Solution. We assume m,n € N.
For the first integral, if n = 0 the integrand is e "¢*, an analytic function. Therefore its integral on a closed curve

is 0. If n > 1, by Cauchy’s integral formula,
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For the second one, if m,n > 0 then the integrand is analytic so the integral is 0.

For the third one,

Problem 2: Alhfors, p.123 p3

If f(z) is analytic and |f(z)| < M for |z| < R, find an upper bound for |f(™ (z)|in |z| < p < R.

Solution. Using Cauchy’s integral formula,
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Problem 3: AlhFors, p.123 p5

Show that successive derivatives of an analytic function can never satisfy f(")(z) > n!n™. Formulate a shaper

theorem of the same kind.
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Proof. Let r be sufficiently small so that f is analytic on D,.(z). Then on the disk f is bounded by, say M, and
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we see that f(")(z) must be dominated by n!n™ for large n. For a shaper bound we can consider (n!)? where the

limsup defined above still equals 0. O

Problem 4: Alhfors p.129 p1

If f(2),g(z) have algebraic orders h and k at z = a, show that fg has order h+k, f/g has h -k, and f + g has

an order which does not exceed max{h, k}.

Proof. By definition of algebraic orders on page 128, if f, 2z have orders h, k at a, then
limfz ~a|f(2)] =0 lim|z~a]lg(2)] =0
if and only if a > h, 8 > k, respectively. Taking product gives
lim|z ~ af’|f(2)g(2)| =0 = p>h+k,

which implies h + k is the order of fg.

For quotient,
lim|z —af’|f(2)/g(2)] = lim|z — afP~ "Bz — a]" [ £(2) /g(2)
for all p > h — k. If it has order < h - k, then (f/g)g has an order less than h — k + k = h, contradicting our
assumption.
Finally,
lim|z —af’|f(z) + g(2)| < lim[z — af’| f(2)[ + lim |2 - af’g(2)]
z—a z—a z—a
so if p > max{h, k}, both terms on the RHS are guaranteed to have limit 0. This means that the order is at most

the max. O
Problem 5: Alhfors, p.130 p2

Show that a function which is analytic in the whole plane and has a nonessential singularity at co reduces to

a polynomial.

Proof. Since f cannot have a removable singularity at oo, by assumption it must be a pole. Therefore f(1/z) has
a pole at the origin. By a theorem shown in class, there exists g analytic with g(0) # 0 and some n € N such that

9(1/z)

z

f(/z) =

Since g(1/z) is analytic, it is locally bounded around the origin, so there exists » and M such that sup g(1/z) < M

2
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on D,(0), so
M
|f(1/2)|<W for |z] < 7.
z n
Equivalently,
|f(z)|<]\f for |z| > 1/r.
z n

By a proposition shown in class (right after Cauchy estimate), this implies that f("*1)(z) = 0, so f is a polynomial

of degree < n. O

Problem 6: Alhfors, p.130 p4

Show that any function which is meromorphic in the extended plane is rational.

Proof. If f has a pole at oo, it can only have finitely many poles for poles are isolated. Call these z1, ..., z, with

orders ey, ..., e,. Then

o(z) = H( ) ()

only has a pole at co. By the previous part g must be a polynomial. Dividing by [ [(z - z;)®* and we are done.
i=1
If f does not have a pole at oo, by assumption it cannot be an essential singularity, so it is again bounded and

we can apply Cauchy estimate to obtain the result. O

Problem 7: Alhfors, p.130 p6

Show that an isolated singularity of f(z) cannot be a pole of exp f(z).

Proof. If f(z) has a removable singularity then by definition f is locally bounded. Therefore exp f is also locally
bounded, showing that exp f is removable and therefore not a pole.

If f(z) is an essential singularity then by theorem 9, for ¢ € C, for any neighborhood of z, there exists points that
gets arbitrarily close to c. Therefore z cannot be a pole.

Finally assume = is a pole of f. Suppose its order is n € N so that f’ has a pole at z with order n + 1. Suppose
exp f also has a pole at z with order m and its derivative, f’exp f has a pole at z with order m + 1. But then this

implies m + 1 =n+ 1+ m so n = 0, contradiction. Therefore exp f cannot share any pole with f. O



