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Problem 1: Alhfors, p.123 p1

Compute

∫
∣z∣=1

ezz−n dz, ∫
∣z∣=2

zn(1 − z)m dz, ∫
∣z∣=ρ
∣z − a∣−4∣dz∣ (where ∣a∣ ≠ ρ)

where γ is the directed line segment from 0 to 1 + i.

Solution. We assume m,n ∈ N.

For the first integral, if n = 0 the integrand is e−nez, an analytic function. Therefore its integral on a closed curve

is 0. If n ⩾ 1, by Cauchy’s integral formula,

dn−1

dzn−1
ez∣

z=0
= (n − 1)!

2πi
∫
∣ζ∣=1

eζ/(ζ − 0)−n dζ

so

∫
∣ζ∣=1

eζζ−n dζ = 2πi

(n − 1)!
.

For the second one, if m,n ⩾ 0 then the integrand is analytic so the integral is 0.

For the third one,

Problem 2: Alhfors, p.123 p3

If f(z) is analytic and ∣f(z)∣ ⩽M for ∣z∣ ⩽ R, find an upper bound for ∣f (n)(z)∣ in ∣z∣ ⩽ ρ < R.

Solution. Using Cauchy’s integral formula,

∣f (n)(z)∣ = ∣ n!
2πi
∫
∂Dρ

f(ζ)
(ζ − z)n+1

dζ∣ = n!

2π
∣∫
∣ζ∣=ρ

f(ζ)
(ζ − z)n+1

dζ∣

⩽ n!

2π
∫
∣ζ∣=ρ

∣f(ζ)∣
∣(ζ − z)n+1∣

dζ ⩽ n!

2π
∫
∣ζ∣=ρ

M

∣ζ − z∣n+1
dζ

⩽ n!

2π
∫
∣ζ∣=ρ

M

(ρ − ∣z∣)n+1
dζ = Mn!ρ

(ρ − ∣z∣)n+1
.

Problem 3: AlhFors, p.123 p5

Show that successive derivatives of an analytic function can never satisfy f (n)(z) > n!nn. Formulate a shaper

theorem of the same kind.
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Proof. Let r be sufficiently small so that f is analytic on Dr(z). Then on the disk f is bounded by, say M , and

∣f (n)(z)∣ = n!

2π
∣∫
∣ζ−z∣=r

f(ζ)
(ζ − z)n+1

dζ∣ ⩽ n!

2π
∫
∣ζ−z∣=r

M

∣ζ − z∣n+1
dζ = Mn!r

rn+1
= Mn!

rn
.

Since

lim sup
n→∞

Mn!/rn

nnn!
= lim sup

n→∞

M

nnrn
= 0 Ô⇒ Mn!

rn
∈ O(nnn!)/Θ(nnn!).

we see that f (n)(z) must be dominated by n!nn for large n. For a shaper bound we can consider (n!)2 where the

limsup defined above still equals 0.

Problem 4: Alhfors p.129 p1

If f(z), g(z) have algebraic orders h and k at z = a, show that fg has order h+k, f/g has h−k, and f + g has

an order which does not exceed max{h, k}.

Proof. By definition of algebraic orders on page 128, if f, z have orders h, k at a, then

lim
z→a
∣z − a∣α∣f(z)∣ = 0 lim

z→a
∣z − a∣β ∣g(z)∣ = 0

if and only if α ⩾ h, β ⩾ k, respectively. Taking product gives

lim
z→a
∣z − a∣p∣f(z)g(z)∣ = 0 ⇐⇒ p ⩾ h + k,

which implies h + k is the order of fg.

For quotient,

lim
z→a
∣z − a∣p∣f(z)/g(z)∣ = lim

z→a
∣z − a∣p−(h−k)∣z − a∣h−k ∣f(z)/g(z)∣

for all p ⩾ h − k. If it has order < h − k, then (f/g)g has an order less than h − k + k = h, contradicting our

assumption.

Finally,

lim
z→a
∣z − a∣p∣f(z) + g(z)∣ ⩽ lim

z→a
∣z − a∣p∣f(z)∣ + lim

z→a
∣z − a∣p∣g(z)∣

so if p ⩾ max{h, k}, both terms on the RHS are guaranteed to have limit 0. This means that the order is at most

the max.

Problem 5: Alhfors, p.130 p2

Show that a function which is analytic in the whole plane and has a nonessential singularity at∞ reduces to

a polynomial.

Proof. Since f cannot have a removable singularity at∞, by assumption it must be a pole. Therefore f(1/z) has

a pole at the origin. By a theorem shown in class, there exists g analytic with g(0) ≠ 0 and some n ∈ N such that

f(1/z) = g(1/z)
zn

.

Since g(1/z) is analytic, it is locally bounded around the origin, so there exists r and M such that sup g(1/z) ⩽M
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on Dr(0), so

∣f(1/z)∣ ⩽ M

∣z∣n
for ∣z∣ ⩽ r.

Equivalently,

∣f(z)∣ ⩽ M

∣z∣n
for ∣z∣ ⩾ 1/r.

By a proposition shown in class (right after Cauchy estimate), this implies that f (n+1)(z) = 0, so f is a polynomial

of degree ⩽ n.

Problem 6: Alhfors, p.130 p4

Show that any function which is meromorphic in the extended plane is rational.

Proof. If f has a pole at ∞, it can only have finitely many poles for poles are isolated. Call these z1, ..., zn with

orders e1, ..., en. Then

g(z) ∶=
n

∏
i=1
(z − zi)eif(z)

only has a pole at∞. By the previous part g must be a polynomial. Dividing by
n

∏
i=1
(z − zi)ei and we are done.

If f does not have a pole at ∞, by assumption it cannot be an essential singularity, so it is again bounded and

we can apply Cauchy estimate to obtain the result.

Problem 7: Alhfors, p.130 p6

Show that an isolated singularity of f(z) cannot be a pole of exp f(z).

Proof. If f(z) has a removable singularity then by definition f is locally bounded. Therefore exp f is also locally

bounded, showing that exp f is removable and therefore not a pole.

If f(z) is an essential singularity then by theorem 9, for c ∈ C, for any neighborhood of z, there exists points that

gets arbitrarily close to c. Therefore z cannot be a pole.

Finally assume z is a pole of f . Suppose its order is n ∈ N so that f ′ has a pole at z with order n + 1. Suppose

exp f also has a pole at z with order m and its derivative, f ′ exp f has a pole at z with order m+ 1. But then this

implies m + 1 = n + 1 +m so n = 0, contradiction. Therefore exp f cannot share any pole with f .
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