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Chapter 1

Introductions

1.1 Power Series

Beginning of Jan.10, 2022

A power series around a ∈ C is an infinite series of the form
∞
∑
n=0

an(z − a)n.

Some examples of series:

(1) A boring one that diverges everywhere except at origin:
∞
∑
n=0

n!zn.

(2) The exponential, the sine, and the cosine functions:

ez =
∞
∑
n=0

zn

n!

sin z = z − z
3

3!
+ z

5

5!
−⋯

cos z = 1 − z
2

2!
+ z

4

4!
−⋯

All three converges for all z ∈ C.

(3) Complex logarithm:

log(1 + z) = z − z
2

2
+ z

3

3
−⋯

which converges for ∣z∣ < 1 (also for z = 1).

(4) 1 + z + z2 + ... = 1/(1 − z) converges for ∣z∣ < 1.

Recall a theorem from 425b:

Theorem 1.1.1

For a power series
∞
∑
n=0

an(z − a)n, we define the radius of convergence R ∈ [0,∞] by

R ∶= 1

lim supn→∞∣an∣1/n
.

Then:
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(1) If ∣z − a∣ < R then the series converges absolutely,

(2) If ∣z − a∣ > R, then the series diverge, and

(3) If r ∈ (0,R), then the series converges uniformly on the disk

Dr(a) ∶= {z ∈ C ∶ ∣z − a∣ < r}.

The claims can be easily proven using e.g. the root test.

Proposition 1.1.2

Assume that
∞
∑
n=0

anz
n and

∞
∑
n=0

bnz
n have radii of convergence ⩾ r. Then the power series

∞
∑
n=0

cnz
n, where

cn ∶=
n

∑
k=0

anbn−k the convolution product, has a radius of convergence ⩾ r as well.

Idea of proof. Assume that ∣z∣ ⩽ r0 < r where r0 is fixed. Then

∞
∑
n=0
∣cn∣∣z∣n ⩽ (

∞
∑
n=0
∣an∣rn0 )(

∞
∑
n=0
∣bn∣rn0 ) .

1.2 Analytic Functions

Let Ω ⊂ C be open. We say a function f ∶ Ω→ C is (complex) differentiable at z ∈ Ω if

f ′(z) = lim
h→0

f(z + h) − f(z)
h

exists and is finite. The value f ′(z) is called the (complex) derivative of f at z. We say w = limh→0 f(h) if for all

ϵ > 0, there exists δ such that

∣h∣ < δ and h ≠ 0 Ô⇒ ∣w − f(h)∣ < ϵ.

Note that everything resembles what was seen in real analysis, except here we are dealing with complex numbers.

Definition 1.2.1: Analytic Functions

A function f ∶ Ω→ C is analytic (or holomorphic) in Ω if it is differentiable at every z ∈ Ω.

Remark.

(1) In this course, we use the word “analytic” and “holomorphic” interchangeably.

(2) We don’t assume continuity of f ′. A beautiful fact about complex analysis is that if a function is complex

differentiable then it is infinitely many times differentiable, i.e., holomorphic.

Beginning of Jan.12, 2022
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Sums, Differences, and Products of Analytic Functions

Some basic properties of analytic functions:

(1) Sums, differences, and products of analytic functions are analytic.

(2) The quotients, where the denominators do not vanish, are also analytic.

Proposition 1.2.2: Composition of Analytic Functions, Chain Rule

Assume that f, g are analytic in Ω and G respectively, and assume f(Ω) ⊂ G. Then g ○ f is analytic on Ω and

(g ○ f)(z) = g′(f(z))f ′(z).

Proof. Ideally we would like to use the definition

(g ○ f)′(z) = lim
h→0

(g ○ f)(z + h) − (g ○ f)(z)
h

= lim
h→0

(g ○ f)(z + h) − (g ○ f)(z)
f(z + h) − f(z)

⋅ f(z + h) − f(z)
h

, (*)

but f(z + h) − f(z) could be zero.

Let z ∈ Ω. It suffices to show that every sequence {hn}→ 0 with hn ≠ 0 has a subsequence hnk
such that

(g(f(z + hnk
)) − g(f(z)))

hnk

→ g′(f(z))g′(z),

since showing a sequence converges is equivalent to showing that every sequence has a further subsequence.

We have two cases here:

(Case 1) f(z) ≠ f(z + hn) for all n. Then we simply apply (*) and obtain our desired result.

(Case 1.1) f(z) ≠ f(z + h0) for all but finitely many hn’s. We can still apply (*).

(Case 2) f(z) = f(z + hn) for infinitely many n. WLOG we may assume that this holds for all n. Then

g(f(z + hn)) − g(f(z))
hn

= 0 for all n

and g′(f(z))f ′(z) = 0. Then we have 0 = 0, which still holds.

Note that f(z + h) − f(z)→ 0 as h→ 0 because f is assumed to be continuous.

Definition 1.2.3

A function f analytic in all of C is called entire.

Now we provide some examples of analytic/entire functions:

(1) zn, with (zn)′ = nzn−1.

(2) ez ∶= ex+iy = ex(cos y + i sin y).
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Proof. Assuming we know ez1+z2 = ez1ez2 , we only have to check that

lim
z→0

ez − 1
z
= 1.

The proof is left as an exercise in the first problem set — use ϵ − δ since this is a complex limit!

(3) sin z = (eiz − e−iz)/2 and cos z = (eiz + e−iz)/2 are entire.

Facts about periodic functions:

(1) ez is periodic with period 2πi (since ex+2πi = exe2πi = ex(cos(2π) + i sin(2π)) = ex).

(2) sin z, cos z are periodic with periods 2π.

Theorem 1.2.4: Inverse Function Theorem

Let Ω,G ⊂ C be open. Assume that f ∶ Ω → C and g ∶ G → C are continuous. Also assume that f(Ω) ⊂ G and

g(f(z)) = z for all z ∈ Ω (so that g is the “inverse” of f). If g is differentiable at z ∈ C and g′(f(z)) ≠ 0, then

f is differentiable at z with

f ′(z) = 1

g′(f(z))
.

Note again that this is about complex variables which is different from the real-valued case.

Proof. Let h ≠ 0 be small. Note that

1 = h
h
= g(f(z + h)) − g(f(z))

h
= g(f(z + h)) − g(f(z))

f(z + h) − g(z)
⋅ f(z + h) − f(z)

h
.

Since f is injective (as we assumed g(f(z)) = z for all z which is impossible if f is not injective), we have

f(z + h) − f(z) ≠ 0. Also, by continuity

lim
h→0
(f(z + h) − f(z)) = 0,

so

lim
h→0

g(f(z + h)) − g(f(z))
f(z + h) − f(z)

= g′(f(z)),

and of course the second term has to converge to 1/g′(f(z)).

1.3 Complex Logarithm

The problem. ez is not bijective (recall it is periodic).

Beginning of Jan.14, 2022

Definition 1.3.1

Let f ∶ Ω→ C where Ω is open. Let f be continuous and such that

z = exp(f(z)) for z ∈ Ω.

Then f is called a branch of the logarithm.
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Since ez+2πi = ez for all z ∈ C, we have the following result:

Proposition 1.3.2

If f, g are two branches of the logarithm function on Ω ⊂ C, then

f(z) = g(z) + 2πki

where k ∈ Z is fixed.

Conversely, if f on Ω is a branch of log, then so is f(z) + 2πki where k ∈ Z.

From this definition, different Ω’s will give to different log’s.

We will use the following branch of the log called the principle branch of the logarithm:

Definition 1.3.3: Principle Branch

Let Ω ∶= C /(−∞,0], and we represent z ∈ Ω as

z = ∣z∣eiθ (polar representation)

where −π < θ < π. Note that θ is a continuous function of z ∈ C. We then let

f(reiθ) = log r + iθ for r > 0,−π < θ < π.

This is called the principle branch.

This indeed makes sense, as

exp(f(reiθ)) = exp(log r + iθ) = reiθ,

so indeed exp(f(z)) = z for all defined z.

Proposition 1.3.4

Every branch of the log is analytic in Ω and the derivative is 1/z.

7



Chapter 2

Cauchy-Riemann Equations

2.1 The Cauchy-Riemann Equations

A function of x, y can be considered as a function of z and z where

x = z + z
2

and y = z − z
2i

.

A function g(z, z) is analytic if
∂

∂z
g(z, z) = 0. In other words, analytic functions are the ones that only depend on z

but not z.

Assume that

f ′(z) = lim
h→0

f(z + h) − f(z)
h

exists. If we let u = Ref and v = Imf , then f = u + iv. We also let z = x + iy where x, y ∈ R. (We will use these

notations frequently.)

Consider h→ 0 along the real line. Then

lim
h→0
h∈R

f(z + h) − f(z)
h

= lim
h→0
h∈R

u(x + h, y) − u(x, y)
h

+ i lim
h→0
h∈R

v(x + h, y) − v(x, y)
h

= ∂u
∂x
(x, y) + i ∂v

∂x
(x, y).

Therefore, if f is analytic, ∂u/∂x and ∂v/∂x exist at z, with

f ′ = ∂u
∂x
+ i ∂v
∂x
, (1)

where we have implicitly assumed that y is held constant.

Now, we let h→ 0 along the imaginary values. That is, we switch h to ih:

lim
h→0
h∈R

f(z + ih) − f(z)
ih

= lim
h→0
h∈R

u(x, y + ih) − u(x, y)
ih

+ i lim
h→0
h∈R

v(x, y + ih) − v(x, y)
ih

= ∂v
∂y
(x, y) − i∂u

∂y
.

Therefore, assuming f ′ exists, we see ∂v/∂y and ∂v/∂y both exist at z = x + iy with

f ′ = ∂v
∂y
− i∂u
∂y
. (2)

8
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Comparing (1) with (2), we obtain the Cauchy-Riemann Equations:

∂u

∂x
= ∂v
∂y

and
∂u

∂y
= −∂v

∂x
. (CR)

The converse also holds. Now we put everything into a theorem:

Theorem 2.1.1: Analytic Functions & the Cauchy-Riemann Equation

Let u, v ∶ Ω→ R and let f = u + iv, a complex function Ω→ C.

As mentioned above, if f is analytic in Ω, then u, v satisfy (CR). Conversely, if u, v ∈ C1(Ω) satisfy (CR), then

f = u + iv is analytic in Ω.

Proof. It remains to show that (CR) ⇒ (f is analytic), so assume (CR) holds with u, v ∈ C1. Let h, k ∈ R, and

define

φ(h, k) ∶ = u(x + h, y + k) − u(x, y) − hux(x, y) − kuy(x, y)

= u(x + h, y + k) − u(x, y + k) − hux(x, y)

+ u(x, y + k) − u(x, y) − kuy(x, y).

(We perturb x slightly in the first three terms and perturb y slightly in the last three.) Using MVT (since u, v ∈ C1),

there exist h1 ∈ (0, h) and k1 ∈ (0, k) such that

φ(h, k) = hux(x + h1, y + k) − hux(x, y)

+ kuy(x, y + h1) − kuy(x, y).

Taking limits as h + ik → 0, we obtain that lim
h+ik→0

φ(h, k)/(h + ik) = 0: the first two terms when divided by h + ik
become

h

h + ik
(ux(x + h, y + k) − ux(x, y))

where ∣h/(h + ik)∣ ⩽ 1 and the second term → 0. Similar argument can be made for the last two terms.

To sum up,

u(x + h, v + k) − u(x, y) = ux(x, y)h + uy(x, y)k + φ(h, k)

and similarly

v(x + h, v + k) − v(x, y) = vx(x, y)h + vy(x, y)k + ψ(h, k)

where

lim
h+ik→0

φ(h, k)
h + ik

= lim
h+ik→0

ψ(h, k)
h + ik

= 0.

We know that u, v ∈ C1. Therefore,

lim
h+ik→0

f(z + h + ik) − f(z)
h + ik

= ux(z) + ivx(z) + lim
h+ik→0

φ(h, k) + iψ(h, k)
h + ik

(∆)

where we used (CR) and the identity

uxh − vxk + i(vxh + uxk) = (ux + ivx)(h + ik).

Since the last term in (∆)→ 0, f ′ exists and equals (ux + ivx)(z), as claimed.

9
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Beginning of Jan.19, 2021

2.2 Harmonic Functions

Now we suppose that f = u + iv be analytic in Ω and further assume that u, v ∈ C2(Ω). By (CR),

ux,x = (vy)x = (vx)y = (−uy)y = −uy,y.

From this we have
∂2u

∂x2
+ ∂

2u

∂y2
= 0. (H)

From this we say functions like u that satisfy (H) are harmonic.

If f is analytic, then −if = v − iu is analytic, so v is harmonic. We can also check this directly:

vx,x = −(uy)x = −(ux)y = −vy,y Ô⇒
∂v2

∂x2
+ ∂v

2

∂y2
= 0.

If u, v are harmonic in Ω and if f = u + iv is analytic in Ω, then we say v is conjugate harmonic to u. For example,

if v is conjugate harmonic to u, then −u is conjugate harmonic to v.

Example 2.2.1. esiny is conjugate harmonic to ex cos y because

ex cos y + iex sin y = ez.

Our next question of interest: given a harmonic function, does there exist a conjugate harmonic function? The

answer is no.

For example, let u = log
√
x2 + y2. We claim that there does not exist a harmonic conjugate in C /{0}, for if there

were, arg(x + iy) fails to be harmonic.

Theorem 2.2.2

Let Ω ∶=Dr(z0) (disk) where r > 0 and z0 ∈ C. Let u be harmonic in Ω. Then u has a harmonic conjugate.

In other words, harmonic conjugate to a given harmonic function always exists locally.

Proof. WLOF assume z0 is the origin so Ω = Dr ∶= Dr(0). Suppose first that v, a harmonic conjugate, exists. We

will derive an explicit formula for it and then prove that this actually works.

Since (CR) states vy = ux, we have

v(x, y) = ∫
y

0
ux(x, t) dt + φ(x) =∶ ∫

y

0
ux(x, t) dt + v(x,0) (*)

where φ(x) = v(x,0). We determine φ from the second (CR) vx = −uy. From (*) we get

−uy(x, y) = vx = ∫
y

0
ux,x(x, t) dt + φ′(x)

= −∫
y

0
uy,y(x, t) dt + φ′(x)

= −uy(x, y) + uy(x,0) + φ′(x).

10
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Thus φ′(x) = −uy(x,0). Integrating gives

φ(x) = φ(0) + ∫
x

0
φ(t) dt = φ(0) − ∫

x

0
uy(t,0) dt.

Note that φ(0) can be any constant and harmonic conjugates are indeed constant indeterminant. Thus for

convenience we let

φ(x) ∶= −∫
x

0
uy(t,0) dt.

Therefore, v the harmonic conjugate, if it exists, must be given by

v = ∫
y

0
ux(x, t) dt − ∫

x

0
uy(t,0) dt.

It remains to check that this is indeed the harmonic conjugate:

vx = ∫
y

0
ux,x(x, t) dt − uy(x,0)

= −∫
y

0
uy,y(x, t) dt − uy(x,0)

= −uy(x, y) + uy(x,0) − uy(x0) = −uy,

and of course vy = ux.

Remark. In this remark, we had a “line integral” that only went horizontally and vertically. In more general

cases we will need to use actual line integrals.

One Application of Cauchy-Riemann

Theorem 2.2.3

Let f be analytic in Ω. If any of the following is true, then f must be constant:

(1) f ′ is constantly zero;

(2) f maps to a line; and

(3) f maps to a circle.

Proof.

(1) Assume f ′ = 0. Since f ′ = ux + ivx we must have ux = 0 and vx = 0. By (CR), uy = vy = 0. Thus f must be

constant.

(2) Multiplying everything by an appropriate constant eiθ and then translating by another constant, we can

assume that the line is iR. Therefore u =Ref = 0. but then f ′ = ux + ivx = ux − iuy by (CR). But ux = uy = 0.

By (a), f is constant.

(3) WLOG we can assume that the circle is centered at the origin with x2 + y2 = a. Then u2 + v2 = a, and taking

11
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derivative implies uux + vvx = 0 and uuy + vvy = 0. By (CR),

uux + vvx = 0 and − uvx + vux = 0

This implies ux = vx = 0 except at points where the determinant is zero, but the determinant is u2 + v2 = a,

so zero means u = v = 0 in Ω. Otherwise, ux = vx = 0 and we can again apply (a).

Beginning of Jan.21, 2022

2.3 Analytic Functions as Mappings

We’ll prove that analytic f preserves angles at points z0 where f ′(z0) ≠ 0. First, some definitions.

Definition 2.3.1: Path

A path in Ω ⊂ C is a continuous function γ ∶ [a, b] → Ω where −∞ < a < b < ∞. If γ′ exists for every

t ∈ [a, b] and γ′ is continuous, we call γ a C1 path. A path is piecewise C1 if there exists a partition

a = t0 < t1 < ... < tn = b such that γ is C1 on each [ti − 1, ti].

Definition 2.3.2: Angles

Let γ1, γ2 be two smooth curves such that γ1(t1) = γ2(t2) = z0. The angle between γ1 and γ2 at z0 is defined

to be as

arg γ′2(t2) − arg γ′1(t1) ∈ Z/2πZ.

If we assume that γ ∶ Ω→ C is smooth and f ∶ Ω→ C is analytic. Then

γ̃ ∶= f ○ γ

is smooth and

γ̃′(t) = f ′(γ(t))γ′(t). (*)

To prove this, either use differnerence quotients and chain rule or prove by decomposing γ = γ1 + iγ2, f = u + iv.

From (*), we get that

arg γ̃′(t) = arg f ′(γ(t)) + arg γ′(t) ∈ Z/2πZ.

At t = t0, the argument of γ̃(t0) equals arg γ′(t)+ a fixed number (arg f ′(γ(t0))).

Therefore, if γ1, γ2 are two curves with γ1(t0) = γ2(t0) = z0, if f ′(z0) ≠ 0, and γ′1(t0), γ′2(t0) ≠ 0, then

arg γ̃1 − arg γ̃2 = arg γ1 − arg γ2. (**)

In other words, the angle is indeed preserved by an analytic function.

12
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Theorem 2.3.3

Suppose f ∶ Ω→ C is analytic. Then f preserves the angles at every point z0 ∈ Ω where f ′ does not vanish.

Also, observe that for every γ and γ̃ = f ○ g,

∣γ̃′(f(z0))∣ = ∣f ′(z0)∣∣γ′(t0)∣,

so the analytic function also multiplies ∣γ′(t0)∣ by a fixed constant, in this case ∣f ′(z0)∣.

Definition 2.3.4: Conformal Mapping

A function f ∶ Ω→ C which preserves angles in the sense (**) and such that

lim
z→z0

∣f(z) − f(z0)∣
∣z − z0∣

exists for every z0 ∈ Ω is called conformal.

It follows from this definition that analytic functions are conformal at all points where the derivative does not

vanish.

Example 2.3.5: (Angle Preservation) ⇏ (Conformality). The function f(z) = z is not conformal even

though it preserves the size of the angles. Similarly, f(z), where f is analytic, preserves the size of the

angles of every point where f ′ is nonzero.

Example 2.3.6. f(z) = z2 doubles the angle at 0. Similarly, z ↦ zm, where m ∈ N, multiplies the angle by

m at origin.

We will show later that if f ′(z) = 0 and f ≢ constant then f multiplies the angle between curves by an integer given

by the multiplicity of the zero of f(z) − f(z0).

Now, for the converse (conformal) ⇒ (analytic), assume that f ∶ Ω → C (not assumed to be analytic) is C1, i.e.,

∂f/∂x, ∂f/∂y are continuous, and f preserves the angles (argument) between the curves. Let

γ̃(t) = f(γ(t))

and γ(t) = γ1(t) + iγ2(t) be the decomposition of γ. Then

γ̃′(t) = fxγ′1(t) + fyγ′2(t) = fx ⋅
γ′(t) + γ′(t)

2
+ fy

γ′(t) − γ′(t)
2i

Let z = γ′(t0). Then

γ̃′(t) = fx
z + z
2
+ fy

z − z
2i

,

so

γ̃′(t) = 1

2
(fx − ify)z +

1

2
(fx + ify)z. (*)

Assume that z(t0) ≠ 0. Since the angles are assumed to be preserved and

γ̃′(t) = f ′(γ(t))γ′(t),

13
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we have

arg(γ̃′/γ′)

is independent of arg γ′(t0). (*) implies that

1

2
(fx − ify) +

1

2
(fx + ify)

z

z
(**)

has a constant argument. In other words we need (**) to have a constant argument regardless of z ≠ 0. As z ∈ C/{0},
z/z is arbitrary with modulus 1, (**) will be a circle with center (fx − ify)/2 and radius (fx + ify)/2. Therefore the

modulus cannot be constant unless the radius is zero, i.e., if fx + ify = 0, which is exactly what (CR) says:

fx = −ify⇔ ux + ivx = −iuy + vy⇔ (CR).

Beginning of Jan.24, 2022

2.4 Linear Fractional Transformation

We work on C∞ ∶= C ∪ {∞}.

Definition 2.4.1: Linear Fractional Transformation

A mapping

Sz ∶= az + b
cz + d

a, b, c, d ∈ C, cd ≠ 0

is called a linear fractional transformation. If in addition ad− bc ≠ 0 then we call it a Möbius transforma-

tion. (If ad = bc it is just a constant mapping assuming it is well-defined.)

If S is Möbius (i.e., nonconstant), then S−1 is also a fractional transformation. See below.

We can represent z ↦ Sz = (az + b)/(cz + d) via the matrix
⎡⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎦
. To see this, if

S1z =
a1z + b1
c1z + d1

and S2z =
a2z + b2
c2z + d2

,

then (just like matrix multiplication)

S1S2z =
a1(a2z + b2)/(c2z + d2) + b1
c1(a2z + b2)/(c2z + d2) + b1

= (a1a2 + c2b1)z + (a1b2 + d2b1)
(c1a2 + c2d1)z + (c1b2 + d2d1)

∼
⎡⎢⎢⎢⎢⎣

a1 b1

c1 d1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

a2 b2

c2 d2

⎤⎥⎥⎥⎥⎦
z.

(We are not really saying that this is equivalent to matrix multiplication; we simply said that the composition

resembles a pattern observed in matrix multiplications.)

From this, we also see that if S is Möbius, then S−1 corresponds to the inverse of the matrix as well!

14
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Some Special Linear Transformations

(1) Translation is given by
⎡⎢⎢⎢⎢⎣

1 α

0 1

⎤⎥⎥⎥⎥⎦
is equivalent to z ↦ z + α.

(2) Dilation is given by
⎡⎢⎢⎢⎢⎣

k 0

0 1

⎤⎥⎥⎥⎥⎦
with positive real number k and rotation is the same matrix with complex k. In

both cases the transformation is z ↦ kz. (In the complex case it is also eikz.)

(3) Inversion corresponds to
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
, z ↦ 1/z.

If c ≠ 0, we can write

az + b
cz + d

= az + (c/a)d
cz + d

+ b − (c/a)d
cz + d

= a
c
= b − (c/da)d

cz + d
= a
c
= (b/c) − (1/a)d

z + (d/c)
.

Then this is a composition given by translation, inversion, notation, dilation, and finally translation.

If c = 0 then the mapping becomes

z ↦ az + b
d
= a
d
z + b

d
,

a composition of rotation, dilation, and translation.

2.5 Cross Ratio

Note that the linear transformation above has four parameters, but it only has degree of freedom 3, as we can

normalize the entire equation by setting and fixing any variable to 1. We say the linear transformation has complex

degrees of 3. Conversely —

Proposition 2.5.1

Given distinct z2, z3, z4 ∈ C∞, there exists a unique linear transformation S such that

Sz2 = 1, Sz3 = 0, and Sz4 =∞.

Proof of existence. If z2, z3, z4 are all finite, then the linear transformation is simply given by

Sz ∶= (z − z3
z − z4

)(z2 − z3
z2 − z4

)
−1
.

If z2 =∞, in the above equation, intuitively
z − z3
z − z4

→ 1 as z →∞, so we simply define Sz ∶= z − z3
z − z4

.

If z3 =∞, define Sz ∶= z2 − z4
z − z4

. If z4 =∞, define Sz ∶= z − z3
z2 − z3

.

We define the cross ratio to be

(z, z2, z3, z4) ∶=
z − z3
z − z4

/z2 − z3
z2 − z4

.

In fact, we can map different z2, z3, z4 to arbitrary distinct w2,w3,w4 by composing with the inverse of

Tz = (w −w3)(w2 −w4)
(w −w4)(w2 −w3)

.

15
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(The inverse maps 1↦ w2,0↦ w3, and∞↦ w4.)

Proof of uniqueness. Let T be another mapping also satisfy the conditions. Then ST −1(1) = 1, ST −1(0) = 0, and

ST −1(∞) =∞. Let ST −1z ∶= az + b
cz + d

(this is well-defined because we know S−1 is fractional and ST −1 is therefore

fractional). The three conditions imply

a + b = c + d b = 0 and c = 0,

so a = d and b = c, i.e., T = S.

Definition 2.5.2: Cross Ratio

The cross ratio (z1, z2, z3, z4), where {z2, z3, z4} are pairwise distinct, is the map of z, under S a linear

fractional transformation, defined by

z2 ↦ 1, z3 ↦ 0, and z4 ↦∞.

From the previous remark, such transformation is given by

(z1, z2, z3, z4) ∶=
z1 − z3
z1 − z4

/z2 − z3
z2 − z4

.

(If one of them is infinite, adjust correspondingly as we did before.)

Beginning of Jan.26, 2022

Proposition 2.5.3

If z1, z2, z3, z4 are distinct and if T is Möbius, then

(Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4),

i.e., linear mappings preserve cross ratios.

Proof. Let Sz = (z1, z2, z3, z4), i.e., the mapping satisfying z2 ↦ 1, z3 ↦ 0, z4 ↦∞. Then

ST −1 ∶ Tz2 ↦ 1, T z3 ↦ 0, T z4 ↦∞.

Therefore, (Tz1, T z2, T z3, T z4) = (ST −1)(Tz1) = Sz1 = (z1, z2, z3, z4).

Proposition 2.5.4

Let z1, z2, z3 be distinct and let w1,w2,w3 be distinct as well. Then we can map z1 ↦ w1, z2 ↦ w2, z3 ↦ w3

via (w,w1,w2,w3) = (z, z1, z2, z3).

Proof. Let T be Möbius so that (Tz, T z1, T z2, T z3) = (z, z1, z2, z3). Then (Tz,w1,w2,w3) = (z, z1, z2, z3) and we

are done.

16
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Theorem 2.5.5

Let z1, z2, z3, z4 be distinct. Then (z1, z2, z3, z4) ∈ R if and only if z1, z2, z3, z4 lie on a circle or a line.

When studying linear (fractional) transformations, we consider this as circle going through∞.

Proof. It is sufficient to prove that a linear transformation maps R to a circle on a line. Let Tz = (az+ b)/(cd+z).
Since Tz ∈ R, we have

az + b
cz + d

= az + b
cz + d

Ô⇒ (ac − ac)zz + (ad − bc)z + (bc − ad)z + bd − bd = 0.

If ac−ac = 0 then we get something like (ad− bc)z+(bc−ad)z+ bd− bd = 0. This either an empty set, a point, or a

line. Since it must be an infinite set (it is the image of R under the inverse) we exclude the possibility of a point.

If ac − ac ≠ 0, we show that z1, z2, z3, z4 lie on a circle. We divide everything by ac − ac and get

∣z∣2 + ad − cb
ac − ac

z + bc − ad
ac − ac

z + bd − bd
ac − ac

= 0.

Completing the square, we have

(z + ad − cb
ac − ac

)(z + ad − cb
ac − ac

) = bd − bd
ac − ac

− (ad − cb)(ad − cb)
(ac − ac)2

.

The RHS can be expanded:

RHS = (bd − bd)(ac − ac) − (ad − cb)(ad − cb)
(ac − ac)(ac − ac)2

= ... = ∣ad − bc
ac − ca

∣
2

.

Therefore,

∣z + ad − cb
ac − ac

∣
2

= ∣ad − bc
ac − ca

∣.

Taking square roots we see z must be some constant distance from some point, i.e., z must lie on a circle.

Corollary 2.5.6

A Möbius transformation maps circles to circles. (We showed that real axis can go to circles, so applying the

inverse once again gives our desired circle-to-circle mapping.)

Definition 2.5.7

z and z∗ are symmetric with respect to the circle through z1, z2, z3 if

(z∗, z1, z2, z3) = (z, z1, z2, z3).

Remark. Right now the definition depends on the choice of z1, z2, z3, but in fact it is independent, as we

will prove later.

Beginning of Jan.28, 2022
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Remark. Note that the operation defined in symmetry is also symmetric:

(z∗, z1, z2, z3) = (z, z1, z2, z3) ⇐⇒ (z∗, z1, z2, z3) = (z, z1, z2, z3).

Since linear transformations preserve the cross-ratio, we can reduce the case to where C = R, since we can map a

circle to the real axis.

Then z1, z2, z3 ∈ R, and the symmetry means

z∗−z2
z∗−z3
z1−z2
z1−z3

=
z−z2
z−z3
z1−z2
z1−z3

Ô⇒ z∗ − z2
z∗ − z3

= z − z2
z − z3

.

Since Möboius transformations (check it is Möbius) are injective, we must have z∗ = z.
This shows that z∗ is uniquely determined by z and it does not depend on the choice of z1, z2, z3.

Also, recall that dilation and rotation are Möbius. Therefore if z1, z2, z3 lie on any other line, z∗ is the mirror image

across that line.

How about symmetry with respect to circles?

WLOG assume the circle is centered at origin and has radius 1, denoted D ∶=D1(0) = B1(0). By rotation, we further

assume z ∈ (0,1). We define a mapping T ∶ H→ D (where H denotes the upper half plane, i.e., z with Imz > 0) by

z ↦ z − i
z + i

and z ↦ i
1 + z
1 − z

.

This is a conformal (bijective and analytic) mapping from H to D. For convenience we call the inverse S.

Then

a∗ = S−1 (−i(1 + a
1 − a

)) = −i(1 + a)/(1 − a) − i
−i(1 + a)/(1 − a) + i

= 1

a
,

i.e., the symmetric point for a is 1/a. The same claim holds after rotation and dilation, except we rotate the way

from R+ to the one that originates at the center and passes through z. Note that we have ∣z∗∣∣z∣ = r2. As z → the

center, z∗ → infinity, and as ∣z∣→ r we have ∣z∣→ r as well.

Two Important Conformal Mappings

The first one is T ∶ H→ D as defined above: z ↦ z − i
z + i

.

The other one: z ↦ z − 1
z + 1

, which maps {Rez > 0}→ D.

To understand the Möbius mappings, consider

Tz = k z − a
z − b

.

Then the line segment connecting a to b becomes a ray starting from 0. The circle arcs connecting a to b become

rays oriented in other directions (since b ↦ ∞ and circles go to circles, they must be mapped to lines!). In other

words, arcs go to rays.

On the other hand, what’s the preimage of circles? If ∣k∣∣z − a
z − b

∣ = r then

∣z − a∣
∣z − b∣

= r

∣k∣
,

i.e., the ratio of distance between z → a and z → b are kept constant. These are circles centered somewhere on the

line passing through a and b. These are called Apollonius circles.

18
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Complex Integration
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Assume that γ ∶ [a, b]→ Ω (where Ω ⊂ C is open) is piecewise smooth. Then, for f ∶ Ω→ C, we define

∫
γ
f(z) dz = ∫

b

a
f(γ(t))γ′(t) dt

We immediately have some nice properties:

(1) Invariance under change of parameter: if t = t(τ) where τ ∶ [α,β] → [a, b] is piecewise smooth and γ smooth,

then

∫
b

a
f(γ(t))γ′(t) dt = ∫

β

α
f(γ(t(τ)))γ′(t(τ))t′(τ) dτ.

(2) We can have directed integrals, which can be proved via reparametrization:

∫
−γ
f(z) dz = −∫

γ
f(z) dz.

(3) Partition: if γ can be partitioned into γ1, γ2, ..., γn, then

∫
γ
f(z) dz =

n

∑
i=1
∫
γi

f(z) dz.

(4) Integral w.r.t. conjugate:

∫
γ
f(z) dz = ∫

γ
f(z) dz.

(5) Decomposition:

∫
γ
f(z) dx = ∫

γ
Ref(x) dx + i∫

γ
Imf(x) dx.

Similar things for dy. Alternatively,

∫
γ
f dx = 1

2
∫
γ
f dz + 1

2
∫
γ
f dz

and

∫
γ
f dy = 1

2i
∫
γ
f dz − 1

2i
∫
γ
f dz.
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Definition 3.0.1: Arc Length

Let γ ∶ [a, b]→ Ω be piecewise smooth. Then we define

∫
γ
f ∣dz∣ ∶= ∫

γ
f(z(t))∣z′(t)∣ dt

is called the arc length integral.

Theorem 3.0.2

Let p, q be continuous on Ω where Ω ⊂ C is open and connected. Then

∫
γ
(p dx + q dy)

depends only on the endpoints of γ if and only if there exists U ∈ C1(Ω) such that

∂U

∂x
= p and

∂U

∂y
= q.

Proof. (The proof is identical to its calculus counterpart.) Assume that there exists such U and let γ be

parametrized by some (x(t), y(t)), t ∈ [a, b]. By definition,

∫
γ
(p dx + q dy) = ∫

γ
(∂U
∂x

dx + ∂U
∂y

dy)

= ∫
b

a
(∂U
∂x

x′(t) + ∂U
∂y

y′(t)) dt

= ∫
b

a

d

dt
(U(x(t), y(t))) dt

= U(x(b), y(b)) −U(x(a), y(a)).

Conversely, we assume that the integral depends only on the endpoints. Fix (x0, y0) and define

U(x, y) ∶= ∫
γ
(p dx + q dy)

where γ is any curve starting at (x0, y0) and ends at (x, y).Consider the polygonal curve with segments parallel

to the x, y axis and ending with the horizontal part. (This is possible since U is open and connected.) Denote

the last segment by (x1, y) and (x, y). Then we have

U(x, y) = U(x1, y) + ∫
x

x1

p(s, y) ds.

Then,
∂U

∂x
= p(x, y).

Similarly, we can use a polygonal curve with an vertical ending piece to show that
∂U

∂y
= q(x, y).
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Definition 3.0.3

Let Ω ⊂ C be open. We call

p dx + q dy

an exact differential if there exists U ∈ C1(Ω) such that ∂U/∂x = p and ∂U/∂y = q.

Now let f(z) be continuous and complex valued. Assume that f(z) dz is an exact differential, where

f(z)dz = f(z)dx + if(z)dy.

Then, there exists F ∈ C1(Ω,C) such that ∂F /∂x = f(z) and ∂F /∂y = if(z). Observe that

∂F

∂x
= −i∂F

∂y
,

which is the Cauchy-Riemann equation in complex form.

Check: if F = U + iV then Fx = Ux + iVx and Fy = Uy + iVy. Tthus

∂F

∂x
= −i∂F

∂y
⇐⇒ Ux + iVx = −iVy + Vy ⇐⇒ Ux = Vy and Vx = −Uy..

That is, if fdz is an exact differential, then it is the derivative of an analytic function.

Beginning of Feb.2, 2022

Theorem 3.0.4

Let f be a complex-valued continuous function on Ω. Then ∫
γ
f(z) dz depends only on endpoints of γ if

and only if there exists F analytic on Ω such that F ′ = f .

This criterion is equivalent to ∫
γ
f(z) dz = 0 for every closed, piecewise smooth γ.

(At this point we don’t conclude if f is analytic – we will later show that it is though.)

Corollary 3.0.5

∫γ(z − a)
n dz = 0 for all a ∈ C and for any closed piecewise smooth γ in C since (z − a)n is the derivative of

(z − a)n+1/(n + 1).

Proposition 3.0.6

Let C be a (positive oriented) circle C around a ∈ C with radius ρ > 0. Then

∫
C

1

z − a
dz = 2πi

and

∫
C

1

(z − a)n
dz = 0 for n ⩾ 2.
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Proof. We use z(t) = a + ρeiz, 0 ⩽ θ ⩽ 2π as the parametrization for C. Then by definition

∫
C

1

z − a
dz = ∫

2π

0

ρieiθ

ρeiθ
dθ − ∫

π

0
i dθ = 2πi.

Theorem 3.0.7: Cauchy’s Theorem for Rectangles

Let R = [a, b] × [c, d] be a rectangle with boundary ∂R given by (a, c) → (b, c) → (b, d) → (a, d) where

a, b, c, d <∞, a < b, and c < d. If f is analytic in (a neighborhood of) R, then

∫
∂R
f(z) dz = 0.

Proof. For any rectangle S, denote η(S) ∶= ∫
∂S
f(z) dz. We divide R into 4 congruent rectangles by two

perpendicular bisectors. Among these four, choose the rectangle with the biggest η. Call this R1 (so in particular

∣η(R1)∣ ⩾ ∣η(R)∣/4). We further divide R1 into four congruent rectangles and choose R2 with ∣η(R2)∣ ⩾ ∣η(R2)∣/4.

Continuing by induction, we obtain a sequence {Rn} with ∣η(Rn+1)∣ ⩾ ∣η(Rn)∣/4. Also, the perimeters satisfy

∣∂Rn+1∣ = ∣∂Rn∣/2. Furthermore, there exists z∗ ∈ C with
∞
⋂
n=1

Rn = {z∗}.

Let ϵ > 0. Then b assumption there exists δ > 0 such that

∣z − z∗∣ < δ Ô⇒ ∣f(z) − f(z
∗)

z − z∗
− f ′(z∗)∣ < ϵ.

That is,

∣f(z) − f(z∗) − (z − z∗)f ′(z∗)∣ ⩽ ϵ∣z − z∗∣.

We choose n0 ∈ N such that Rn ⊂ B(z∗, δ) for all n ⩾ n0. Then

η(Rn) = ∫
∂Rn

f(z) dz

= ∫
∂Rn

f(z) − f(z∗) − (z − z∗)f ′(z∗) dz

(since integrating a constant f(z∗) over a closed curve is zero.) Thus

∣η(Rn)∣ ⩽ ∫
∂Rn

ϵ∣z − z∗∣ ∣dz∣ ⩽ ϵ∣∂Rn∣∣∂Rn∣.

Then, ∣η(R)∣ ⩽ 4n∣η(Rn)∣ ⩽ 4nϵ∣∂Rn∣2 = ϵ∣η(R)∣2. Therefore ∣η(R)∣ must be zero!

Theorem 3.0.8

Let R be a rectangle and let z1, ..., zn be distinct in the interior of R. Assume f is analytic in R′ ∶=
R/{z1, ..., zn} and assume that lim

z→zi
(z − zi)f(z) = 0.

Then

∫
∂R
f(z) dz = 0.

In particular, we can define/change of values of f at these points to make f analytic on R.
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Beginning of Feb.4, 2022

In fact, a sufficient condition for lim
z→zi
(z − zi)f(z) = 0 is that f is bounded in R′.

Proof. WLOG assume n = 1 (for otherwise we can subdivide the rectangles). Let ϵ > 0. Then there exists δ > 0
such that

∣z − z1∣ < δ Ô⇒ ∣f(z)∣ ⩽
ϵ

∣z − z1∣
.

Then we find a square R0 centered at z1 contained in Bδ(z1). Then

∣∫
∂R0

f dz∣ ⩽ ϵ∫
∂R0

∣dz∣
∣z − z1∣

⩽ ϵ

min
z∈∂R0

∣z − z1∣
∣∂R0∣ ⩽ Cϵ.

Now, subdividing R into nine rectangles, with the middle one being R0, we see

∫
∂R0

f dz = ∫
∂R
f dz.

Since ϵ is arbitrary (even though R0 depends on it), we are done.

Theorem 3.0.9

Assume that f(z) is analytic in D and γ is a closed piecewise smooth curve in D. Then

∫
γ
f(z) dz = 0.

Later, we will generalize this from D to any simply connected domain.

Proof. We will use a previous theorem saying that if f = F ′ for some analytic F then the claim holds.

We define

F (z) ∶= ∫
σ1

f(z) dz

where σ1 is the piecewise linear curve from 0 → Rez → z (i.e., first horizontal then vertical). Then using

F (z) = ∫
σ1

f dx + i∫
σ1

f dy we have

∂F

∂y
= if.

Now consider the path σ2 given by 0→ Imz → z (i.e., first vertical then horizontal). Then

F (z) = ∫
σ2

f dz

since σ1 → (−σ2) forms a rectangle and by the Cauchy’s theorem, ∫
−σ2

f dz = −F (z). Therefore,

∂F

∂x
= f.

Therefore
∂F

∂x
= −i∂F

∂y

and (C-R) in complex form implies F is analytic.
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Theorem 3.0.10

Let z1, z2, ..., zn ⊂ D, assume f is analytic on Ω ∶= D/{z1, ..., zn}, with

lim
z→zj
(z − zj)f(z) = 0 for j = 1, ..., n.

Then

∫
γ
f(z) dz = 0 for all closed, piecewise smooth γ ⊂ Ω.

Proof. We pick z0 ∈ Ω such that the vertical and horizontal lines through z0 contain no exceptional point

(z1, ..., zn). Then we use two paths along with the “rectangle-with-dot” theorem to prove this claim.

For z ∈ Ω, we pick z̃ close to z and let σ1, σ2 be the corresponding “zigzag” paths from z0 to z̃ and then to z,

while both σ1, σ2 begin by z0 → z0 +Re(z̃ − z0)→ z̃ such that this sub-path contains no singularity. Again define

F (z) ∶= ∫
σ1

f dz = ∫
σ2

f dz.

By a same reasoning we will see that F is analytic which concludes the proof.

Beginning of Feb.7, 2021

Proof. Let A ∶ {z ∈ D ∶ Imz ≠ Imzi,Rez ≠Rezi}, i.e., the collection of “good” points whose corresponding vertical

and horizontal lines contain no singular points. We choose z0 ∈ A. For z ∈ Ω, choose any vertical-horizontal-

vertical path σ1 avoiding z1, ..., zn.

Note that the definition F (z) ∶= ∫
σ1

f(z) dz is well-defined and independent of choice of the horizontal part

of σ1. This is because of the “generalized” Cauchy’s rectangle theorem which states that the integral around a

rectangle, even if there are bad points inside, is 0.

Because of this, the y-derivative of F depends only on the last vertical segment, that is,

∂F

∂y
= if.

Similarly, we define σ2 to be a horizontal-vertical-horizontal path, also avoiding z1, ..., zn, and by the same token

∂F

∂x
= f.

(We can easily check that with the same endpoinds, integral over σ1 and σ2 are indeed the same by using the

rectangle theorem twice, so the resulting capital function is indeed F ). Then we have

∂F

∂x
= −i∂F

∂y

so F is analytic. It remains to notice that

F ′ = ∂ReF

∂x
+ i∂ImF

∂x
= ∂ReF

∂x
− i∂ReF

∂y
=Ref − i(−Imf) =Ref + iImf = f.

Upshot. If F is analytic and
∂F

∂x
= f, ∂F

∂y
= if , then F ′(z) = f(z).
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3.1 Index / Winding Number

To define the index of a curve around a point, we need the next lemma:

Lemma 3.1.1

Let a ∈ C and let γ be a piecewise smooth closed curve that does not pass through a. Then

1

2πi
∫
γ

1

z − a
dz ∈ Z.

Recall that γ is oriented; that is, reversing the orientation flips the sign of the number above and therefore the

index. We assume γ is piecewise smooth.

Definition 3.1.2: Index

For a ∈ C not on the curve {γ} (the image of γ ∶ [α,β] → C), we define the index / winding number of γ

with respect to a as

n(γ, a) ∶= 1

2πi
∫
γ

1

z − a
dz.

Motivation for winding number.

If log exists on some γ (not necessarily closed), then

1

2πi
∫
γ

1

z − a
dz = 1

2πi
(log(z2 − a) − log(z1 − a)) =

1

2πi
log
∣z2 − a∣
∣z1 − a∣

+ 1

2π
(arg z2 − arg z1).

As γ approaches a closed curve, arg z2 − arg z1 approaches ±2π, and the first quotient → 0. That is,

Beginning of Feb.9,2022

Proof of Lemma. Let z(t), t ∈ [α,β], be a parametrization of γ. Let

h(t) ∶= ∫
t

α

z′(s)
z(t) − a

ds,

which is well-defined since z(t) ≠ a for all t.

Idea: we expect h(t) = log(z(t) − a) but we have some technical difficulties. Thus we consider the exponential. Then

the fundamental theorem of calculus should imply that e−h(t)(z(t) − a) is the constant 1 so derivative of everything

is 0.

We have, by FTC, that

h′(t) = z′(t)
z(t) − a

(for piecewise smooth curve, partition the interval if needed). Then

(e−h(t)(z(t) − a))′ = −h′(t)e−h(t)(z(t) − a) + e−h(t)z′(t)

= − z′(t)
z(t) − a

e−h(t)(z(t) − a) + e−h(t)z′(t) = 0.

This implies e−h(t)(z(t) − a) is constant on each partitioned interval. But e−h(t)(z(t) − a) itself is continuous, so

it must be constant everywhere on [α,β]. Hence substituting t by α gives

e−h(t)(z(t) − α) = e−h(t)(z(α) − a) = e−h(α)(z(α) − a) = e−h(β)(z(β) − a)

25



YQL - MATH 520 Notes 3.1 - Index / Winding Number Current file: 2-11.tex

so

e−h(t) = eh(α) z(α) − a
z(t) − a

and e−h(β) = z(α) − a
z(β) − a

.

(Note that h(α) = 0.) Since z(α) = z(β) (the curve is closed) we see e−h(β) = 1, so −h(β) ∈ 2πiZ.

Proposition 3.1.3

Assume that γ is inside Br(a). Then n(γ, z0) = 0 for all z0 ∉ Br(a).

Proof. Since 1/(z − z0) is analytic in Br(a). Then this along with γ being closed implies the integral being 0.

If γ is closed, then C/{γ} is open, so it is the union of open connected sets. These are the regions determined by γ.

Proposition 3.1.4

The index n(γ, a) is constant in each of the regions determined by γ and is 0 in the unbounded region.

Proof. The index is a continuous function in z0 for z in the region determined by γ (a short ϵ − δ proof on the

definition suffices) but the index can only take integer values. For the unbounded region, use the previous result

— continuously transform a to a sufficiently far a′ so that γ can be entirely contained in some disk not including

a′.

Lemma 3.1.5

Let γ be closed. Let z1, z2 ∈ {γ} and assume 0 ∉ {γ}. Let γ1 be the part of γ going from z1 to z2 and let γ2 be

the part from z2 to z1. Suppose

Imz2 > 0 > Imz1

and assume

γ1 ∩ (−∞,0) = r2 ∩ (0,∞) = ∅.

Then n(γ,0) = 1.
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Proof. Let C be a “small” circle around 0 not touching γ (in fact this is redundant). Consider the rays originating

from origin and passing though z1 and z2. They intersect C at two points. Let the one corresponding to z1 → z2

be C1 and the other by C2. Let the ray originating from z1 to the starting of C1 be δ1 and the other δ2. Consider

σ1 ∶= γ1 + γ2 − c1 − δ1 and σ2 = γ2 + σ2 − c2 − δ2.

Then

γ = γ1 + γ2

= (σ1 − δ2 + c1 + δ1) + (σ2 − δ1 + c2 + δ2).

Though γ1, γ2 are not closed, we can define their “non-integer index” as the integral

n(γj ,0) =
1

2πi
∫
γj

1

z
dz.
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Using cancellations,

n(γ,0) = n(C,0) + n(σ1,0) + n(σ2,0)

Note that the origin is in the unbounded component of σ1 so n(σ1,0) = 0. Likewise n(σ2,0) = 0. Since n(C,0) = 1,

we have n(γ,0) = 1.

Alhfor’s proof (HW): a piecewise piecewise smooth Jordan curve (closed path without self-intersections) splits a

plane into at least two components, an unbounded one and at least one bounded one with index ±1.

3.2 Cauchy Integral Formula

Theorem 3.2.1: Local Cauchy Integral Formula

Assume f is analytic in a disk D =Dr(a). Let γ be a closed curve (smooth, by convention) in D. Then

n(γ, z)f(z) = 1

2πi
∫
γ

f(ζ)
ζ − z

dζ for z ∈D/{γ}.

In particular, if n(γ, z) = 1 for some z, then

f(z) = 1

2πi
∫
γ

f(ζ)
ζ − z

dζ.

We frequently apply this theorem to γ as circles.

Proof. Consider

F (ζ) ∶= f(ζ) − f(z)
ζ − z

for ζ ∈D/{γ}.

The F is analytic in D/{z}. At z, we have

lim
ζ→z
(ζ − z)F (ζ) = lim

ζ→z
f(ζ) − f(z) = 0

by continuity of f . Applying the “general form” of Cauchy’s rectangle/disk theroem, we have

∫
γ
F (ζ) dζ = ∫

γ

f(ζ) − f(z)
ζ − z

dζ = 0 for z ∉ {γ}.

Therefore, for z ∉ {γ},
f(z)∫

γ

1

ζ − z
dζ = ∫

γ

f(ζ)
ζ − z

dζ.

The LHS is f(z)n(γ, z) and we are done.

Theorem 3.2.2

Assume that f is analytic in Ω. Let D ∶= Dr(a) be such that D ⊂ Ω. Then f ‘ is infinitely differentiable in D

and for all z ∈D,

f (n)(z) = dnf(z)
dzn

= n!

2πi
∫
∂D

f(ζ)
(ζ − z)n+1

dζ.

Beginning of Feb.14, 2022
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Proof. One can use Lebesgue differentiation theorem to show this proof, but we will adopt a more elementary

one. Let γ ∶ ∂D → C be continuous and let

Fn(z) = ∫
∂D

γ(ξ)
(ξ − z)n

dξ

where n ∈ N. We claim that Fn is (continuous and) differentiable. For this, we note that for z ∈D,

F (z) − F (z0) = ∫
∂D

γ(ξ)( 1

(ξ − z)n
− 1

(ξ − z0)n
) dξ.

Since 1/(ξ − z)n is uniformly continuous inside D and z ∈ D, we can adopt an ϵ − δ argument showing that

lim
z→z0
(F (z) − F (z0)) = 0. (Because we also have ∂D is compact so sup∣φ∣ <∞). To compute the derivative, note

that (a − b)n = (a − b)(an−1 + an−2b + ... + bn−1).

1/(ζ − z)n − 1/(ζ − z0)n

z − z0
= 1/(ζ − z) − 1/(ζ − z0)

z − z0
( 1

(ζ − z)n−1
+ ... + 1

(ζ − z0)n−1
) .

Note that as z → z0, every term in the second parenthesis goes to 1/(ζ − z)n−1. In the first term we have

1/((ζ − z)(ζ − z0)). Therefore the difference quotient converges uniformly to

1

(ζ − z0)2
⋅ n

(ζ − z0)n−1

Applying ϵ − δ, we have

lim
z→z0

Fn(z) − Fn(z0)
z − z0

= ∫
∂D

γ(ζ) n

(ζ − z0)n+1
dξ.

Theorem 3.2.3: Morera’s Theorem

If f ∶ Ω→ C is continuous and if ∫
γ
f dz = 0 for every closed γ in Ω, then f is analytic in Ω.

Proof. We have proven that under these assumptions there exists F analytic with F ′(z) = f(z), i.e., f has an

analytic primitive. Therefore, by the previous theorem, f = F ′ is also analytic.

Theorem 3.2.4: Cauchy Estimate

If ∣f(ξ)∣ ⩽m on Dr(a), then ∣f (n)(a)∣ ⩽Mn!/rn.

From this, f can be developed into an infinite Taylor series with radius at least r.

Proof. Choose any 0 < ρ < r. Then

f (n)(z)
n!

= 1

2πi
∫
∂Dρ(a)

f(ζ)
(ζ − z)n+1

dζ.

Thus
∣f (n)(a)∣

n!
⩽ 1

2π
2πρ

M

ρn+1
= M
ρn
.

For other points, we consider smaller disks centered at z so that they are still contained in Dr(a). In particular
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we set the radius to be r − ∣z∣. Then

∣f (n)(z)∣ ⩽ Mn!

(r − ∣z∣)n
.

(We will later see that f (n)(z)/n! ⋅ (z − a)n are the Taylor coefficients.)

Theorem 3.2.5: Liouville’s Theorem

Let f be entire and bounded. Then f must be constant.

Proof. By the Cauchy estimate, ∣f ′(z)∣ ⩽ sup∣f ∣/r for all r > 0. Let r →∞, Done.

Beginning of Feb.16, 2022

Proposition 3.2.6

If f is entire and ∣f(z)∣ ⩽ C ∣z∣n + 1 for some C > 0 and n ∈ N, then f is a polynomial of degree ⩽ n.

Proof. By differentiating and using Cauchy estimate, we have f (n+1)(z) = 0.

3.3 Fundamental Theorem of Algebra & Taylor Series

Theorem 3.3.1: Fundamental Theorem of Algebra

A (complex) polynomial P such that degP ⩾ 1 has at least one root. (So we can have factorization.)

Proof. Assume P has no zero. Then since lim
z→∞
∣P (z)∣ =∞, we obtain that 1/P (z) is well-defined, bounded, and

entire. Therefore P must be constant by Liouville’s theorem.

Definition 3.3.2: Removable Singularity

Let Ω be open. Let a ∈ Ω and f ∶ Ω/{a} → C be analytic/holomorphic. Then f has a removal singularity at

a if f can be extended to an analytic function F ∶ Ω→ C.

Theorem 3.3.3

Let Ω be open and a ∈ Ω. Let f ∶ Ω/{a} → C be analytic. Then f has a removable singularity at a if and only

if lim
z→a
(z − a)f(z) = 0. An (seemingly weaker but still) equivalent version holds, requiring that f is bounded

in a neighborhood of a (excluding a).

(If a is removable, then f must be bounded to ensure F is analytic; conversely if f is bounded then the limit

is 0.)

Proof. If a is removable, then

lim
z→a

f(z)(z − a) − lim
z→a

F (z)(z − a) = 0

Since F is bounded, we must have the second term = 0 and so the first term = 0.

Conversely, let r > 0 be such that Dr(a) ⊂ Ω. Using the more general version of Cauchy’s integral theorem for a
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disk, we have

∫
∂Dr(a)

f(z) − f(ζ)
z − ζ

dζ = 0.

(Nontrivial claim!) This is because the integrand is analytic in Dr(a) with a singularity satisfying the “nice”

condition. There are two singularities: z and a. Define the integrated to be G(ζ). Then

lim
ζ→a
(ζ − a)G(ζ) = lim

ζ→a
(ζ − a)f(z) − f(ζ)

z − ζ
= 0

since lim
ζ→a
(ζ − a)f(ζ) = 0 by assumption, and for fixed z we have lim

ζ→a
(ζ − a)f(z) = 0 as well. Similarly, lim

ζ→a
(ζ −

a)G(ζ) = 0. Therefore the nontrivial claim follows from the generalized Cauchy’s Theorem for circles.

This implies that f(z) = (2πi)−1 ∫
∂Dr(a)

f(ζ)
z − ζ

dζ for all z ∈Dr(a)/{a}. Now we define

F (z) ∶= (2πi)−1 ∫
∂Dr(a)

f(ζ)
z − ζ

dζ.

Then this is the analytic extension we seek.
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Theorem 3.3.4: Taylor’s Theorem with Analytic Remainder

Let Ω ⊂ C and assume that P is analytic on Ω. Then, for all n ∈ N, there exists fn analytic on Ω such that

f(z) =
n−1
∑
j=0

f (j)(a)
j!

(z − a)j + fn(z)(z − a)n, z ∈ Ω (*)

if some Dr(a) ⊂ Ω (here a ∈ Ω is fixed). Moreover, for z ∈Dr(a),

fn(z) =
1

2πi
∫
∂Dr(a)

f(ζ)
(ζ − a)n(ζ − z)

dζ (**)

and (*) can be used to obtain an upper bound for the error term.

Proof. We prove by induction. For n = 1, we have

f(z) = f(a) + f1(z)(z − a).

Consider F (z) ∶= (f(z) − f(a))/(z − a). Since F is bounded, a is a removable singularity of F , so we can extend

F to a and call the new function f1.

To prove the inductive step, assume

f(z) =
n−1
∑
j=1

f (j)(a)
j!

(z − a)j + fn(z)(z − a)n.

and consider

F (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(fn(z) − fn(a))/(z − a) z ≠ a

f ′n(x) z = a.

Then F ′ is analytic in Ω in Ω (bounded assumption plus removable singularity). Then, we have

f(z) =
n−1
∑
j=0

f (j)(a)
j!

(z − a)j + fn(a) = (fn(a)F (z)(z − a)n)(z − a)n
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and this holds trivially for z = a.

We now compute fn(a) by differentiating it n times:

f (n)(z) = o + fn(a)n! +
dn

dzn
(F (z)(z − a)n+1).

Thereforefn(a) =
f (n)(z)
n!

. This proves (*).

To prove (**), we note

fn(z) =
1

2πi
∫
∂Dr(a)

fn(ζ)
ζ − z

dζ.

From (*) we have

fn(z) =
f(z)
(z − a)n

= −
n−1
∑
j=0

f (j)(0)
j!(z − a)n−j

To prove (**), it is sufficient to prove that

gn(w) ∶= ∫
∂Dr(0)

1

(ζ −w)(ζ − z)
dζ = 0.

for every z ∈Dr(a) fixed and w ∈Dr(a). For n = 1,

g1(w) = ∫
∂Dr(a)

1

(ζ −w)(ζ − z)
dζ = 1

z −w ∫∂Dr(a)
( 1

ζ − z
− 1

ζ −w
) dζ = 1

z −w
⋅ (2πi − 2πi) = 0.

Differentiating g1, we get

gn+1(w) =
g
(n)
1 (w)
n!

so that gn+1(w) = 0.
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Chapter 4

Singularities of Analytic Functions

4.1 Zeros, Poles, & Unique Continuation
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Lemma 4.1.1

Assume that f is analytic in Dr(a) and f (n)(a) = 0 for all n ∈ N (and 0). Then f ≡ 0 in Dr(a).

Intuition: if we know existence of Taylor series then this is obvious. But we don’t.

Proof. WLOG assume f is analytic in Dr(a). Let M ∶= sup
Dr(a)

∣f ∣. By Taylor’s theorem, for every n, there exists fn

analytic in Dr(a) with

f(z) = fn(z)(z − a)n +
n−1
∑
j=0

f (j)(a)
j!

(z − a)j = fn(z)(z − a)n.

Also,

fn(z) =
1

2πi
∫
∂Dr(a)

f(ζ)
(ζ − a)n(ζ − z)

dζ.

We estimate

∣fn(z)∣ ⩽
2πr sup∣f ∣

2πrn ⋅ (r − ∣z − a∣)
= M

rn−1(r − ∣z − a∣)

⩽ M ∣z − a∣n

rn−1(r − ∣z − a∣)
.

Since ∣z − a∣ < r, as n→∞ we must have ∣fn(z)∣→ 0. Thus f ≡ 0.

Theorem 4.1.2: Taylor Expansion

Let f be analytic in Ω ⊂ C and let a ∈ Ω, r > 0 such that Dr(a) ⊂ Ω. Then

f(z) =
∞
∑
n=0

f (n)(a)
n!

(z − a)n for all z ∈Dr(a).
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The expression for “error” is R(z) = fn(z)(z − a)n as mentioned previously. This converges to 0 exponentially. The

rate of convergence of the power series is at least

R = sup{r > 0 ∶Dr(a) ⊂ Ω}.

Theorem 4.1.3: Unique Continuation

Assume f is analytic in Ω ⊂ C which is open and connected and satisfies

f (n)(a) = 0 for all n ∈ N ∪ {0} (*)

for some a ∈ Ω. Then f ≡ 0 in Ω.

Alternatively if f vanishes on an nonempty open set then f vanishes everywhere.

Proof. The second assertion is a consequence of the first, so we only prove the one associated with (*).

Let

A ∶= {z ∈ Ω ∶ f (n)(z) = 0 for all n ∈ N ∪ {0}}.

This is nonempty because of (*). It is open by the previous lemma. It is also closed because of continuity of f (n).

Therefore, with Ω connected, the only possibility is if A = Ω. This completes the proof.

Remark. For C∞(R), the statement is not true in general! We can consider bump functions like

f(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−1/x
2

x > 0

0 x ⩽ 0

where f (n)(0) = 0 for all n.

Example 4.1.4. Suppose f is analytic at 0 and

f (n)(0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 n ≠ 0

1 n = 0

Then (f − z)n = 0 for all n ∈ N ∪ {0}. That is, f ≡ z. More generally, if f, g are analytic in Ω and f (n)(a) =
g(n)(a) for some a ∈ Ω and all n ∈ N ∪ {0}, then f = g.

Definition 4.1.5

Assume f is analytic in Ω and is not identically zero. Then, for a ∈ Ω with f(a) = 0, we define

min{n ∈ N ∶ f (n)(a) ≠ 0}

to be the order of vanishing or the order of the zero of a. If f(a) ≠ 0 we define the order to be 0. We use

the notation ordzf = n .
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Assume f is analytic in Ω and ordzf = n for some z ∈ Ω. Then by Taylor expansion, there exists fn analytic in Ω with

f(z) = (z − a)nfn(z)

and fn(a) ≠ 0. That is, we can factor out zeros!

Beginning of Feb.25, 2022

Theorem 4.1.6

If f is analytic and is not identically 0 in Ω ⊂ C, then {f = 0} (the zero set) does not have an accumulation

point in Ω.

Consequently, if f, g are analytic in Ω and f = g agree on a set with an accumulation point in Ω, then f = g.

(If the accumulation point is on the boundary, it does not count.)

Example 4.1.7. If f, g are analytic in Ω ⊃ R (connected) and f ≡ g on R, then f ≡ g on Ω.

Proof. Assume that a ∈ Ω is a zero of order n. Then there exists g analytic in Ω with f(z) = (z − a)ng(z) and

g(a) ≠ 0. Therefore by continuity g is locally nonzero around a, so each zero is an isolated zero!

We temporarily fix the following assumptions:

Let a ∈ C and r > 0. Fix an analytic function f in Ω/{a} where a ∈ Ω. Assume that Dr(a) ⊂ Ω.

We call a an isolated singularity.

Definition 4.1.8: Types of Singularity

The singularity of a is either

(1) a removable singularity, if f is bounded in Dρ(a)/{a} for some ρ ∈ (0, r), as stated before;

(2) a pole, if lim
z→a

f(z) =∞ (we’ll expand later); or

(3) an essential singularity otherwise.

We say lim
z→a

f(z) =∞ if, for all M > 0, there exists r > 0 such that f(z) >M for z ∈Dr(a)/{a}.

If a is a pole, it is reasonable to define f(a) =∞, and it turns out that f is analytic with values in C∞.

Theorem 4.1.9

Assume that a is a pole of f . Then there exists a unique n ∈ N and g analytic in Ω such that g(a) ≠ 0 and

f(z) = g(z)
(z − a)n

for all z ∈ Ω/{a}.

If we define f(a) =∞ then the above holds for all z ∈ Ω. (Note the connection to rational functions here.)

Studying poles, in some sense, is equivalent to studying zeros of 1/f .
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Proof. The function 1/f(z) is analytic in Ω/{f = 0}, where Ω is open and {f = 0} discrete. Then 1/f(z) has a

removable singularity at a and its extension at a vanishes at a. Therefore there exists a unique n ∈ N such that

1

f(z)
= (z − a)nG(z)

for some G analytic on Ω/{f = 0} with G(a) ≠ 0. Therefore f(z) = 1/G(z)
(z − a)n

for the same domain. Let g(z) ∶=

1/G(z) on Ω/{f = 0}.
Since g(a) ≠ 0 follows trivially, our final step is to show that we can extend g to all of Ω; that is, {f = 0} are all

removable singularities of g; that is, we check g is bounded locally around each point in {f = 0}, but this follows

from the fact that

g(z) = f(z)(z − a)n

where f(z) and (z − a)n are both locally bounded around zeros of f . (For b ∈ {f = 0}, we have lim
z→b

g(z) =
lim
z→b

f(z)(z − a)n = f(b)(b − a)n which is still removable.)

Beginning of Feb.29, 2022

Theorem 4.1.10

Let a be a pole and n ∈ N its order. Then there exist unique nonzero b1, b2, ..., bn ∈ C and φ analytic in Ω/{a}
such that

f(z) = bn
(z − a)n

+ ... + b1
z − a

+ φ(z) for all z ∈ Ω/{a}.

We all all but the last term (φ(z)) the singular part at a.

Proof. By Taylor expansion, since a is a removable singularity for (z − a)nf(z), we have

f(z)(z − a)n = bn + bn−1(z − a) + ... + b1(z − a)n−1 + φ(z)(z − a)n

for every z ∈ Ω/{a}. Dividing by (z − a)n gives the claim.

Theorem 4.1.11: Casorati-Weierstrass Theorem

Assume that a is an essential singularity. Then for every ρ ∈ (0,1), we have

f(Dρ/{a}) = C.

Example 4.1.12. e1/z has an essential singularity at 0. It does not take the value 0 or∞.

Theorem 4.1.13: Great Picard’s Theorem

For a an essential singularity and for every ρ ∈ (0,1), we have

f(Dρ(a)/{a}) = either C or C/{b} for some b ∈ C.
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Theorem 4.1.14: Little Picard’s Theorem

If f is entire and nonconstant, then f(C) is either C or C/{b} for some b.

Proof of Casorati-Weierstrass. Assume the closure statement does not hold. Then there exists g ∈ (0,1), A ∈ C,

and δ > 0, such that

∣f(z) −A∣ ⩾ δ for all z ∈Dρ(a)/{a}.

This implies that lim
z→a

∣f(z) −A∣
∣z − a∣

=∞. Therefore the function (f(z) −A)/(z − a) has a pole at a. Therefore there

exists n ∈ N and g analytic on Dρ(a) such that g(a) ≠ 0 and

f(z) −A
z − a

= g(z)
(z − a)n

for all z ∈Dρ(a)/{a}.

Therefore

f(z) = A + g(z)
(z − a)n−1

for all z ∈Dr(a)/{a}

so f is either a pole (if n ⩾ 2) or a removable singularity (if n = 1).

Isolated Singularity at ∞

Assume that f is analytic in Ω and Dc
r ⊂ Ω for some r > 0. Now consider the function

g(z) ∶= f(1/z).

Then f is a removable singularity / pole / essential singularity at∞ if and only if g has the same thing at 0.

Example 4.1.15. Let P be a polynomial. Then∞ is a pole if degP ⩾ 1.

Beginning of March 2, 2022

4.2 Local Mapping Properties

There are a number of ways to count zeroes in regions.

Theorem 4.2.1

Let z1, z2, ... be all the zeros of f that is not identically zero in Dr(a). Let γ be a closed curve in D which

does not pass through any zeros. Then

∑n(γ, zi) =
1

2πi
∫
γ

f ′(z)
f(z)

dz.

This implies that almost all zeros have zero index.

Since analytic functions have discrete zeros, if f (nonzero) is analytic in a connected Ω and K ⊂ Ω is compact, then

f can only have finitely many zeros in K. We will use his fact in the proof.
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Proof. By reducing the radius we may assume that there are only finitely many zeros, z1, ..., zn of f , repeated

according to their multiplicities. (Use the compact argument above.)

Then there exists a nonzero g in D such that

f(z) = (z − z1)(z − z2)...(z − zn)g(z).

We define the logarithmic derivative by applying the Leibniz rule:

f ′(z) =
n

∑
i=1
g(z)∏

j≠i
(z − zj) Ô⇒

f ′(z)
f(z)

= 1

z − z1
+ ... + 1

z − zn
+ g

′(z)
g(z)

.

Integrating over γ, we have

∫
γ

f ′(z)
f(z)

dz = 2πi
n

∑
i=1
n(γ, zn) + 0.

Using chance of variable w = f(z), we have

∫
γ

f ′(z)
f(z)

= ∫
f○γ

dw

w
.

Then the number of zeros in γ is simply the index of 0 in f ○ γ. That is,

Corollary 4.2.2

Under the assumptions of the previous theorem, we have

∑n(γ, zj) = n(Γ,0),

where Γ = f ○ γ. In particular, if γ is a simple closed curve which does not intersect itself, then the total

number of zeros inside γ (with multiplicities counted repeatedly) equals the index of f ○ γ around 0.

This can be applied to f(z) − a for any a ∈ C. We obtain

∑
j

n(r, zj(a)) =
1

2πi
∫
γ

f ′(z)
f(z) − a

da

where zj(a) are the zeros of f − a. After changing variable we see that the RHS is also the index of f ○ γ around a.

Upshot. The winding number does not change if we perturb a (i.e., if ∆a is small).

Theorem 4.2.3

Assume that f is analytic at z0 and f(z) − w0 has a zero of order n at z0. Then for δ > 0 sufficiently small,

there exists ϵ > 0 such that

f(z) − a has n distinct simple zeros in Dϵ(z0) for all a ∈Dδ(w0)/{w0}.

Beginning of March 4, 2022

Proof. Let ϵ0 > 0 be small. Choose δ small so that f ′, f −w0 has no zeros in Dδ(z0)/{z0}. Since zeros are isolated

such action is positive. Also assume Dδ(z0) ⊂ Ω. Consider rδ ∶= ∂Dr(z0) and denote Γδ as the composition f ○rδ.
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Choose ϵ small so that Dϵ(w0) is in one component, i.e., Dϵ(w0) ∩ {Γ} = ∅.

Let a ∈Dϵ(w0)/{w0}. Then a has the same index number as w0, and f(z)−a has n zeros inside Dϵ(w0) (counting

multiplicities) as shown in the index theorem above. By construction of ϵ0, f ′ has no zeros in Dδ(z0)/{z0}, so

the multiplicities can only be one.

Corollary 4.2.4

Let f be analytic, nonconstant, and Ω connected. Then f maps every open set to an open set. We say such a

mapping is open.

Corollary 4.2.5

Let f be analytic at z0 with f ′(z0) ≠ 0. Then there exists an open neighborhood of z0 which is mapped

conformally and homeomorphically to a neighborhood of f(z0).

Proof. Let δ > 0 be sufficiently small. Then we can reduce it (if necessary) so that f ′(z) ≠ 0 in Dδ(z0). Then use

the previous theorem, as f maps f−1(Dϵ(w0)) conformally and homeomorphically to Dϵ(w0).

Higher Order Multiplicities

Intuitively: if a is a zero of multiplicity n, then f behaves like zn near a.

Beginning of March 7, 2022

More formally, assume that the multiplicity of F (z) − f(z0) at z0 is n ⩾ 2. Denote w0 ∶= f(z0). Then there exists g

such that fn −w0 = (z − z0)ng(z), g(z) ≠ 0.

By continuity, there exists ϵ > 0 such that ∣g(z) − g(z0)∣ < ∣g(z0)∣ for all ∣z − z0∣ < ϵ. Thus we can define log on the set

D∣g(z0)∣(g(z0)), and thus exists h(z) ∶= (g(z))1/n or exp(log g(z)/n), and

f(z) −w0 = (z − z0)nh(z)n =∶ ζ(z)n

where ζ(z) = (z − z0)h(z). Note that

ζ ′(z) = h(z) + (z − z0)h′(z) Ô⇒ ζ ′(z0) = h(z0) ≠ 0

since g(z0) ≠ 0. By the previous corollary, ζ(z) is a local conformal homeomorphism. Hence f can be written as a

composition z ↦ ζ(z) and then ζ(z)↦ (ζ(z))n.

4.3 Maximum Principle

Theorem 4.3.1

Assume that f is nonconstant and analytic in Ω ⊂ C (open and connected). Then ∣f(z)∣ does not attain a

local maximum in Ω.

The converse is clearly false, as we have analytic functions that vanish at a point. However if we exclude
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this case then the theorem holds by the same reasoning below.

Proof. Let w0 = f(z0) where z0 ∈ Ω. Since f is open, it maps open neighborhoods of z0 to open neighborhoods

of w0. Thus f cannot attain a local maximum at z0 (in an open neighborhood, there always exists some point

with larger modulus).

Beginning of March 9, 2022

Corollary 4.3.2

Assume that Ω is open, bounded, and connect. Assume f nonconstant is analytic in Ω and continuous on

Ω. Then f achieves its maximum only on the boundary. (It has to attain max on Ω by compactness and

continuity, whereas maximum principle prohibits such maximum to be in Ω.)

4.4 Schwarz Lemma

The Schwarz lemma can be considered as an enforcement of the maximal principle for a disk.

Theorem 4.4.1: Schwarz Lemma

Assume that f is analytic in D and satisfies ∣f(z)∣ ⩽ 1, f(0) = 0. Then ∣f(z)∣ ⩽ ∣z∣ and ∣f ′(0)∣ ⩽ 1.

If in addition there exists z ∈ D such that ∣f(z)∣ = ∣z∣ or if ∣f ′(0)∣ = 1, then there exists c ∈ C with ∣c∣ = 1 such

that f(z) = cz.

Proof. Consider the analytic function

g(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(z)/z z ∈ D/{0}

f ′(0) z = 0

which is analytic (since 0 is a removable singularity or alternatively f(z) = zg(z)). Then

∣g(z)∣ = ∣f(z)∣ ⩽ 1 for all z ∈ ∂D

and by maximum principle ∣g(z)∣ ⩽ 1 so ∣f(z)∣ ⩽ ∣z∣ in the disk.

The second claim follows since ∣g∣ cannot have an interior maximum 1 unless it’s constant.

Corollary 4.4.2: Schwarz-Pick

If f ∶ D→ C is analytic and ∣f(z)∣ ⩽ 1 for all ∣z∣ ⩽ 1 and f(z0) = w0, then

∣ f(z) − f(z0)
1 − f(z0)f(z)

∣ ⩽ ∣ z − z0
1 − z0z

∣

and
∣f ′(z)∣

1 − ∣f(z)∣2
⩽ 1

1 − ∣z∣2
.
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For the proof, we use S ∶ w ↦ (w −w0)/(1 −w0w), T ∶ z ↦ (z − z0)/(1 − z0z), where w0 = f(z0). Then apply

Schwarz lemma to S ○ f ○ T −1.

Remark. This theroem says that analytic f with ∣f ∣ ⩽ 1 on D reduces the Poincare distance

d(z, z0) = ∣
z − z0
1 − z0z

∣.

If ∣f ∣ ⩽ 1 then

d(f(z0, f(z2)) ⩽ d(z1, z2).

4.5 General Form of the Cauchy Formula

Let γ1, ..., γn be piecewise smooth curves. We define

∫
∑γi

f dz =
n

∑
i=1
∫
γi

f dz.

The “sum” γ ∶= ∑γi is called a chain. Two chains are considered the same if they lead to the same line integral for

every continuous f .

We can represent every chain as γ = a1γ1 + ... + anγn

Beginning of March 21, 2022

(Missed March 11: definition of a cycle and simply connected domains. Theorem: a region is simply connected iff

the index of every curve w.r.t. every point in the complement is zero.)

Index Zero ⇒ Simply Connected. Suppose Ω is not simply connected; that is, there exist A,B disjoint and

closed such that Ωc = A ∪B.

Let A be the bounded one. Let δ be the distance between A and B, and cover the plane with a net of squares of

side length ⩽ δ/4 (so that B is some squares away from A). If necessary, we slightly adjust the net to ensure that

at some point a ∈ A is not on any edge. Consider

γ ∶= ∑
q∈A

∂q

whereA is the net. Since overlapping edges cancel, γ is the smallest “zigzag” cycle containing γ. (Each boundary

is a cycle so the sum also is.) Furthermore, A∩ {γ} = ∅. (Otherwise a point a ∈ A∩ {γ} needs to belong to either

two or four squares, and it will get cancelled.) Note that n(γ, a) = 1. This is because a ∈ q0 for some q0 ∈ A, and

so n(∂q0, a) = 1 and n(∂q, a) = 0 for other q’s. Adding them up gives n(γ, a) = 1.

For points in A that lie on the mesh boundaries, we can “merge” two or four adjacent squares and see that the

indices are still 1.

The notion of singly connected domains is useful for multiply connected domains, which we will discuss later.

For (finitely many) multiply connected regions, we can pick δ sufficiently small such that each bounded component

of Ωc is separated by the δ-mesh. For (infinitely many) multiply connected region this might fail: for example
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D/ ⋃
n⩾1
{1/n}. Then n(γ, a) = 0 for all a in the unbounded component of Ωc and n(γ, a) = 1 for all a in the union of

bounded components of Ωc.

If Ω is bounded, we can do a similar mesh thing for Ω (to obtain a large zigzag γ contained by Ω, so it is closed and

is in Ω) and get a “zigzag” boundary path γ for Ω.

Proposition 4.5.1

Assume Ω is open and connected but not simply connected. Then there exists f analytic in Ω and a cycle γ

such that

∫
γ
f(z) dz ≠ 0.

Proof. By the previous theorem there exist a cycle γ and a point a ∈ Ωc such that n(γ, a) = 1. Hence

1

2πi
∫
γ

1

z − a
dz = 1.

Done: let f(z) ∶= 1/(z − a).

Definition 4.5.2

We say γ ∈ C0 is homologous to 0 with respect to Ω (we write γ ∼ 0 (mod Ω)) if n(γ, a) = 0 for all a ∈ Ωc.

In particular, if Ω is simply connected, γ ∼ 0 (mod Ω) for all γ ∈ C0.

Theorem 4.5.3: Cauchy Theorem, General Form

Assume f is analytic in Ω connected and γ is homologous to 0. Then

∫
γ
f(z) dz = 0.

Before now, Cauchy theorem required the domain to have the property that any z1, z2 can be connected via a zigzag

path.

Corollary 4.5.4: Cauchy Theorem for Simply Connected Region

Let Ω be simply connected and f analytic in Ω. Then

∫
γ
f(z) dz = 0 for all γ ∈ C0.

Corollary 4.5.5

Let Ω be simply connected. Let f be analytic in Ω such that f(z) ≠ 0 for all z ∈ Omega. Then one can define

log f(z), i.e., there exists a g analytic with

eg(z) = f(z).

Consequently, we can define f(z)α for α ∈ R.

41



YQL - MATH 520 Notes 4.5 - General Form of the Cauchy Formula Current file: 3-25.tex

Beginning of March 23, 2022

Proof. We apply the Cauchy theorem to f ′/f . There exists F such that F ′ = f ′/f . Then

(f(z) exp(−F (z))′ = f ′e−F − f
′

f
fe−F = 0.

Therefore there exists a ∈ C such that f(z)e−F (z) = aα.

Fix z0 ∈ Ω. Then argf(z0) ∈ [0,2π). Then

f(z)e−F (z) = f(z0)e−F (z0) = exp(log∣f(z0)∣ + iargf(z0)) exp(−F (z0))

so

f(z) = exp(F (z) + log∣f(z0)∣ + iargf(z0) − F (z0))

and we are done.

Proof of Cauchy Theorem. Assume Ω is bounded (otherwise since γ is bounded we can shrink it) and γ ∼ 0

(mod Ω). We cover the plane with squares by size δ. Let A be the set of all squares and let A0 be the set

contained in Ω. Define

Ωδ ∶= int ⋃
Q∈A0

Q.

(That is, Ωδ is the collection of δ-squares entirely contained in Ω.)

If δ is sufficiently small (smaller than the distance between γ and Ωc), then γ is contained in Ωδ. Define

Γδ ∶= ∑
Q∈A0

∂Q

so that intuitively n(γ, ζ) = 0 for ζ ∈ Γδ (since γ is away from Γδ).

To see this, if z ∈ Q0 ∈ A0, then

1

2πi
∫
∂Q

f(ζ)
ζ − z

dζ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(z) if Q = Q0

0 otherwise
.

Therefore

f(z) = 1

2πi
∫
Γδ

f(ζ)
ζ − z

dζ for all z ∈ Ωδ

so

∫
γ
f(z) dz = ∫

γ

1

2πi
∫
Γδ

f(ζ)
ζ − z

dζ dz = ∫
Γδ

f(ζ) dζ ( 1

2πi
∫
γ

1

ζ − z
dz) = ∫

Γδ

f(ζ) dζ ⋅ 0 = 0.

Definition 4.5.6

A differential pdx + qdy (p, q continuous) is locally exact if it is exact in a bounded neighborhood of every

point in Ω.

Beginning of March 25, 2022
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Proposition 4.5.7

p dx + q dy is locally exact if and only if

∫
∂R
p dx + q dy = 0

for every rectangle R with sides parallel to the axes and R ⊂ Ω.

Proof. For⇐, use R as the neighborhood and the differential is locally exact.

For⇒, subdivide R into sufficiently small. Use local exactness and compactness to prove the claim.

Theorem 4.5.8

If p dx + q dy is locally exact in Ω, then

∫
γ
p dx + q dy = 0

for every cycle γ such that γ ∼ 0 (mod Ω).
This generalizes Cauchy theorem because if f is analytic then f(z) dz is locally exact.

Proof. We can replace γ with a polygonal curve with edges parallel to the axes. Note that γ does not contain a

inner curve or otherwise the original γ is not homological to 0. We extend every segment into infinite lines so

that the plane and in particular γ is partitioned into various rectangles.

Let R1 be the collection of all the finite rectangles and R2 the infinite ones (half strips). For each R ∈ R1 ∪ R2,

choose a point aR in the interior. Let

σ0 ∶= ∑
R∈R1∪R2

n(γ, aR)∂R.

We will show that γ = σ0. Easy computations show that

n(γ0, aR) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n(γ, aR) for all R ∈ R1

n(γ, aR) = 0 for all R ∈ R2.

Therefore n(γ − σ0, aR) = 0 for all R ∈ R1 ∪R2, and we can replace aR by any point not on the edges.

Let σ be any common side between two finite rectangles R′ and R′′, where R′ is on the left side of σ relative to

its orientation.

Assume that the reduced representation of γ − σ0 has some cσ where σ is an cycle. Consider

σ − σ0 − c∂R′

which is a cycle. This cycle does not contain σ. Then

n(σ − σ0 − c∂R′, aR′) = n(σ − σ0 − c∂R′′, aR′′)

since the σ in-between is no longer present and the winding number must be constant when moving inside the

same rectangle. However, the LHS is −c and the RHS is 0. Similar proof for infinite strips. Therefore c = 0. Hence

γ = ∑
R∈R1

n(σ, aR)∂R.

This is because the expression for γ − σ0 contains no edge. It remains to show that every rectangle R ∈ R1 such

that n(γ, aR) has the property R ⊂ Ω. This holds since γ ∼ 0 (mod Ω): if R has a point not in Ω, then for that

point n(γ, aR) = 0.
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Beginning of March 28, 2022

4.6 Multiply Connected Domain

Definition 4.6.1

Ω has connectivity n ∈ N if C∞/Ω has n connected components.

For example, Ω ∶= C has connectivity 1. C/{0} has connectivity 2: the complement in C∞ has two components, one

{0}, the other {∞}.
Intuitively, if we let A1, ...,An be the connected components of C∞/Ω, we can construct γ1, ..., γn−1 such that

n(γi, a) = 1 for a ∈ Ai ∈ C∞/Ω and n(γi, a) = 0 for a ∈ Ωc/Ai.

Let γ ∈ C0 (cycles) and let ci ∶= n(γ, a) for a ∈ Ai. Then

γ ∼ c1γ1 + ... + cn−1γn−1 (mod Ω)

since if a ∈ Ai for some fixed i ∈ {1, ..., n − 1} then

n(γ −∑
j≠i
cjγj , a) = n(γ, a) − cin(γi, a) = 0.

Then, let a ∈ Ai for some i, and

n(c1γ1 + ... + cn−1γn−1, a) = 0

We call γ1, ..., γn−1 a homology basis for Ω.

Application

We would like to compute ∫
γ
f dz using ∫

γi

f dz.

If γ ∈ C0, the there exist unique c1, ..., cn−1 ∈ Z such that

γ ∼ c1γ1 + ... + cn−1γn−1 (mod Ω).

Then

∫
γ
f dz = c1 ∫

γ1

f dz + ... + cn−1 ∫
γn−1

f dz.

The integrals

Pi ∶= ∫
γi

f dz

are called modulus of periodicity or periods.

Proposition 4.6.2

If all periods of f vanish, e.g., if Ω is simply connected, then ∫
γ
f dz = 0 for all cycles γ and thus f has a

primitive. This is a version of Cauchy’s theorem for a n-connected domain.
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Example 4.6.3. Let Ω ∶= D/{0}. Then γ1 = ∂Dδ(0) for any δ ∈ (0,1).

4.7 Residues

The calculus of residues is based on the following theorem.

Theorem 4.7.1

Assume f is analytic in Dr(a)/{a}. Then there exists a unique R ∈ C, called the residue of f at a, resaf , and

an analytic function F in Dr(a)/{a}, such that

f(z) − R

z − a
= F ′(z).

In particular,

∫
γ
f(z) dz = 2πiRn(γ, a).

Proof. Let γ1 = ∂Dρ(a) where ρ ∈ (0, r). Let

R ∶= 1

2πi
∫
γ1

f(z) dx.

The function

g(z) = f(z) − R

z − a
satisfies

∫
γ1

g(z) dz = ∫
γ1

f(z) dz − ∫
γ1

R

z − a
dz = 2πiR − 2πiR.

Therefore ∫
γ
g(z) dz = 0 for all γ ∈ C0. Therefore g has a primitive.

Beginning of March 30, 2022

Theorem 4.7.2: Residue Theorem

Assume that f is analytic except on a discrete set A = {a1, a2, ...} ⊂ Ω and that f is analytic in Ω/A. Then

∫
γ
f dz = 2πi∑

j

n(γ, aj)Res(f, aj)

for every γ ∈ C0 not intersecting A and γ ∼ 0. Since A is discrete, we have n(γ, aj) = 0 for all but finitely

many.

Proof. WLOG assume A = {a1, ..., an} is finite (for we can always throw away those with index 0). Let γ1, ..., γn

be sufficiently small circles so that the disks are separated. Also assume that these disks are entirely in Ω. Then

g(z) ∶= f −
n

∑
j=1

Res(f, aj)
z − aj
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is periodic. So

∫
γ
f −

n

∑
j=1

Res(f, aj)
zj

dz = 2πi∑
j

Res(f, aj)n(γ, aj).

Computing Residues at Poles

If f has a pole of order n, then

f(z) = g(z)
(z − a)n

where g is analytic and g(0) ≠ 0. By Taylor’s theorem,

f(z) = g(a) + (z − a)g′(a) + ... + (z − a)n−1 ⋅ g
n−1(a)
(n − 1)!

+ (z − a)nh(z)

where h(z) is also analytic.

Then

Res(f, a) = f
(n−1)(a)
(n − 1)!

.

Inductively we have

g(a) = lim
z→a

f(z)(z − a)n

g′(a) = lim
z→a
(f(z)(z − a)n−1 − g(a)

z − a
)

g(n−1)(a)
(n − 1)!

= lim
z→a
(f(z)(z − a) − g(a)

(z − a)(n−1)
− g′(a)/1!
(z − a)n−2

− ... − g
(n−1)(a)/(n − 2)!

z − a
) .

Example 4.7.3. Compute ∫
∞

0

sinx

x
dx using residue theorem. Note that

sin z = e
iz − e−iz

2i

and eiz is small in the upper plane and e−iz small in the lower plane. We use

sinx

x
= Ime

ix

x

which has a pole. Let R > ϵ > 0 and we consider the upper ring induct by the disks with radii R and ϵ. Call

the upper semicircle of ϵ rϵ and the one by R, rR. Then by the residue theorem / Cauchy theorem,

∫
−ϵ

−R

eiz

z
dz + ∫

rϵ

eiz

z
dz + ∫

R

ϵ

eiz

z
dz + ∫

rR

eiz

z
dz = 0.

We claim that

lim
ϵ→0
∫
γϵ

eiz

z
dz = −1

2
2πiRes(eiz/z,0) = −πi.

To see this, note that ∣(eiz − 1)/z∣ is bounded by some M > 0 for ∣z∣ ∈ (0,1). Therefore

lim
ϵ→0
∫
rϵ

eiz − 1
z

dz = lim2πϵ = 0.

Therefore

lim
ϵ→0
∫
rϵ

eiz

z
dz = lim

ϵ→0
∫
rϵ

1

z
dz = −πi.
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We claim

lim
R→∞∫rR

eiz

z
= dz = 0.

To this end, partition rR into three parts, r(1)R , r
(2)
R , r

(3)
R so that r(2)R is the part with Im ⩾

√
R. Then

∣∫
r
(1)
R

eiz

z
dz∣ ⩽ ∣r(1)R ∣ ⋅

1

R
⩽ C ⋅

√
R ⋅ 1

R
= C√

r
→ 0 as R →∞

and

∣∫
r
(2)
R

eiz

z
dz∣ ⩽ 2πRe

−R1/2

R
= 2πe−R

1/2
→ 0 as R →∞.

The part for r(3)R is the same as the first.

Going back to the original four sums, we obtain

∫
−ϵ

−R

eix

x
dx + ∫

R

ϵ

eix

x
dx→ πi as ϵ→ 0,R →∞.

Taking imaginary part,

∫
−ϵ

−R

sinx

x
dx + ∫

R

ϵ

sinx

x
dx→ π,

so

∫
∞

0

sinx

x
dx = π

2

in the improper Riemann sense.

Beginning of April 1, 2022

With the method of residues, we can evaluate integrals:

(1) ∫
2π

0
R(cos θ, sin θ) dθ. Use z = eiθ, cos θ = (z + 1/z)/2, and sin θ = (z − 1/z)/(2π). Then the integral becomes

∫
∂D

R((z + z−1)/2, (z − z−1)/2)
iz

dz

(2) P,Q polynomials with degQ ⩾ degP + 2 and Q(x) ≠ 0 on the real axis. Then

∫
∞

−∞

P (x)
Q(x)

dx = 2πi ∑
z0∈Q−1({0})∩{Imz>0}

Res(P /Q,z0).

(3) P,Q polynomials with degQ ⩾ degP + 2 and Q(x) ≠ 0 on the real axis. Then

∫
∞

−∞

P (x)
Q(x)

eix dx = 2πi ∑
z0∈Q−1({0})∩{Imz>0}

Res(e(iz)P (z)/Q(z), z0).

(4) If degQ ⩾ degP + 1 and Q(x) ≠ 0 on the real axis then

∫
∞

−∞

P (x)
Q(x)

eix dx = ...

as an improper Riemann integral.

(5) ∫
∞

−∞

P (x)
Q(x)

sinx dx where deg(Q) ⩾ degP + 1 and Q has a simple zero at 0. Use the upper half disk minus an

upper half ϵ-disk as used in the example of sinx/x.

(6) ∫
∞

0
xα
P (x)
Q(x)

dx where degQ ⩾ degP + 2 and α ∈ (0,1).
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Consequences of the Residue Theorem

Theorem 4.7.4: Argument Principle

Assume that f is meromorphic (analytic except at poles) in Ω with zeros aj and poles bj repeated according

to multiplicity. Then for every cycle γ ∈ C0 such that γ ∼ 0 (mod Ω) and γ does not pass through any poles

or zeros, we have
1

2πi
∫
γ

f ′

f
dz =∑

j

n(γ, aj) =∑
j

n(γ, bj).

More generally,
1

2πi
∫
γ

f ′(z)
f(z)

g(z) dz =∑
j

n(γ, aj)g(aj) −∑
j

n(γ, bj)g(bj).

Proof. If f has a zero of order n at a, then f(z) = (z − a)ng(z) where g is analytic and g(a) =≠ 0. Then

f ′(z) = n(z − a)n−1g(z) + (z − a)ng(z)

so
f ′(z)
f(z)

= n

z − a
+ g

′(z)
g(z)

where the quotient is analytic, so the residue only comes from n/(z − a). Hence

Res(f ′/f, a) =m.

If f has a pole at a of order m, then by the same argument we have Res(f ′/f, a) = −m. Combing the cases and

we obtain the claim.

Theorem 4.7.5: Rouche’s Theorem

Assume γ ∼ 0 (mod Ω) and assume that n(γ, z) is either 0 or 1 for z ∈ Ω. Assume ∣f(z) − g(z)∣ ⩽ ∣f(z)∣ for

z ∈ {γ}. Then f and g have the same number of zeros enclosed by γ.

In particular, if g looks crazy but f is not, then his provides a powerful method of counting zeros.

Beginning of April 4, 2022

Proof. We know

∣g(z)/f(z) − 1∣ < 1.

Let Γ be F ○ γ, where F = g/f . Then by the argument principle,

1

2πi
∫
γ

F ′

F
= ∑

zeros of F
n(γ, aj) − ∑

poles of F
n(γ, aj).

The first corresponds to the zeros of g and the second to that of f . (We can assume the zeros of F are not zeros

of f for the zeros of g, for even if that happens our claim holds.)
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Example 4.7.6: Fundamental Theorem of Algebra. Consider p(z) ∶= zn + an−1zn−1 + ... + a0. We suppose

p(z) and zn are in a disk Dr where R is sufficiently large. Since for R > 1,

∣p(z)/zn − 1∣ = ∣an−1
z
+ an−2

z2
+ ... + an

zn
∣ ⩽ ∣an−1∣ + ... + ∣an∣

∣z∣
,

if we set R > max{1, ∣an−1∣ + ... + ∣an∣} then ∣p(z)/zn∣ < 1 in ∂Dr. By Rouché, p(z) and zn have the same

number of zeros in DR, so it has n zeros in the closure.

Theorem 4.7.7: Enhanced Version of Rouché

Assume γ ∼ 0 (mod Ω) and assume that n(γ, z) is either 0 or 1. Assume f, g are meromorphic in Ω with no

zero and pole on {γ}. If

∣f(z) − g(z)∣ < ∣f(z)∣ + ∣g(z)∣,

then (the number of zeros of f inside γ) minus (the number of poles of f inside γ) equals (the number of

zeros of g inside γ) minus (the number of poles of g inside γ).

Proof. We write

∣f(z)
g(z)

− 1∣ < ∣f(z)
g(z)

∣ + 1.

Then f(z)/g(z) ∉ (−∞,0]. Since {γ} is compact,

h(z) ∶= f(z)
g(z)

∉ (−∞,0]

in an open neighborhood Ω0 of {γ}. Let Ω′ ∶= h(Ω0). This is open (WLOG f/g is not constant) not containing

zero. Therefore log is defined. With the principle branch,

(logh)′ = (log f − log g)′ = f
′

f
− g

′

g

so f ′/f − g′/g has a primitive in Ω0. Hence

0 = 1

2πi
∫
γ

f ′

f
− g

′

g
.

The claim then follows from using γ ∼ 0 (mod Ω).

49



Chapter 5

More Topics

5.1 Uniform Limits of Analytic Functions

Theorem 5.1.1

Suppose fn is analytic in Ωn ⊂ C and fn converges to f defended on Ω uniformly in compact subsets of Ω.

Then f is analytic in Ω.

Moreover, f ′n converges to f ′ uniformly on compact subsets of Ω as well.

This does not hold in calculus: n−1 sin(nx) → 0 uniformly in [0,1] but the derivatives cos(nx) does not converge in

any sense.

The assumptions imply that

Ω ⊂ lim inf
n→∞

Ωn =
∞
⋃
j=1

∞
⋂
i=j

Ωi

Beginning of April 6, 2022

More formally, we say fn defined on Ωn converge to f on Ω uniformly on compact sets (subsets of Ω) if, for all

ϵ > 0 and for all K ⊂ Ω compact, there exists n0 ∈ N such that

n ⩾ n0 Ô⇒ K ⊂ Ωn and ∣fn(x) − f(x)∣ ⩽ ϵ for all x ∈K.

Alternatively we can replace K by any disk whose closure is in Ω. Typically we either have Ωn = Ω or Ωn ↗ Ω.

Proof. Let z0 ∈ Ω and r > 0 be such that Dr(z0) ⊂ Ω. Since fn → f uniformly on Dr(z0), we get

∫
γ
f dz = 0

for every γ in C0 w.r.t. Dr(z0).

Assertion: let Dr(z0) ⊂ Ω. Then

f ′n(z) =
1

2πi
∫

fn(ζ)
(ζ − z)2

dζ

for all z ∈Dr(z0). Since (ζ −z)2 is bounded, for fixed z, fn(ζ)/(ζ −z)2 converges uniformly to f(ζ)/(ζ −z)2. Passing
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to the limit on a compact set we obtain

lim
n→∞

f ′n(z) =
1

2πi
∫
∂Dr(z0)

fn(ζ)
(ζ − z)2

dζ = f ′(z)

where the last = is by Cauchy. Observe that this is uniform in compact subsets of Dr(z0) as well.

Corollary 5.1.2

Assume fn is analytic in Ωn and assume that

f(z) = f1(z) + f2(z) + ...

converges uniformly on compact subsets of Ω. Then f must be analytic in Ω.

Theorem 5.1.3: Hurwitz

Assume that each fn is analytic and nonzero in Ω and assume that fn → f uniformly in compact subsets of

Ω. Then either f = 0 or f has no zeros in Ω.

Beginning of April 8, 2022

Proof. Assume that f is not identically 0. Let Dr(a) ⊂ Ω and assume that

f−1({0}) ∩ ∂Dr(a) = ∅,

which is always possible since zeros cannot accumulate. Then there exists c0 > 0 such that ∣f ∣ ⩾ c0 in ∂Dr(a).
Therefore

0 = 1

2πi
∫
∂Dr(a)

f ′n(z)
fn(z)

dz → 1

2πi
∫
∂Dr(a)

f ′(z)
f(z)

dz

where the first = is because fn has no zero. The RHS is the number of zeros of f in Dr(a), counting multiplicity.

5.2 Taylor Series

Recall that if f is analytic in Dr(z0) then

f(z) = f(z0) +
f ′(z0)
1!
(z − z0) + ... +

f (n)(z0)
n!

(z − z0)n + fn+1(z)(z − z0)n+1

where

fn+1(z) =
1

2πi
∫
∂Dr(z0)

f(ζ)
(ζ − z0)n+1(ζ − z)

dζ.

Also,

∣fn+1(z)(z − z0)n+1∣ ⩽
1

2π
2πr

sup∂Dr(z0)∣f(z)∣∣z − z0∣
n+1

rn+1(r − ∣z − z0∣)
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Theorem 5.2.1

Assume f is analytic in Ω and z0 ∈ Ω. Then

f(z) =
∞
∑
n=0

f (n)(z0)
n!

(z − z0)n

for ∣z − z0∣ < r where r is the distance between 0 and ∂Ω.

If the radius r of the series is strictly greater than the distance between z0 and ∂Ω, then f can be extended to an

analytic function in Ω ∪Dr(z0).

If we have two series,
∞
∑
i=0
aiz

i and
∞
∑
j=0

bjz
j with radii of convergence r1, r2, then

fg = a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + ...,

where the coefficients convolve, has radius of convergence min(r1, r2) since fg is analytic and its nth derivative is

precisely the convolution of the first n terms.

How about inverse? Given f , find g such that g(f(z)) = z? We want b0, b1, ... such that

b0 + b1(a0 + a1z + a2z2 + ...) + b2(z0 + a1z + a2z2 + ...)2 + ... = z.

Beginning of April 11, 2022

For a product, define

f(z) ∶= a0 + a1(z − z0) + z2(z − z0)2 + ...

and

g(z) = b0 + b1(z − z0) + b2(z − z0)2 + ...

so that

f(z)g(z) = c0 + c1(z − z0) + c2(z − z0)2 + ...

where

cn = (n!)−1
dn

dzn
(f(z)g(z)) = (n!)−1

n

∑
j=0
(n
j
)d

jf(z0)
dzj

dn−jg(z0)
dzn−j

.

Going back to the “inverse”, we see that

1 = a1b1

0 = b1a2 + b2a21

0 = b1a3 + 2b2a1a2 + b3a31

...

so that we know b1 = 1/a1 from the first equation, b2 from the second, and b3 from the third.

5.3 Laurent Series

Recall that a0 + a1z + a2z2 + ... converges for ∣z∣ < R where R ∈ [0,∞) is its radius of convergence. For aanlytic

function and R > 0,

a0 +
a1
z
+ a2
z2
+ ...
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therefore converges for ∣z∣ > 1/R if the function corresponding to these coefficients is analytic for ∣z∣ > 1/R.

The series

... + a−2
(z − z0)2

+ a−1
z − z0

+ a0 + a1(z − z0) + a2(z − z0)2 + ...

is called a Laurent series and converges in some region R1 < ∣z − z0∣ < R2 (an annulus).

Theorem 5.3.1: Laurent Development

Assume that f is analytic in a ring AR1,R2
∶= {R1 < ∣z − z0∣ < R2} where 0 ⩽ R1 < R2 ⩽∞. Then we have

f(z) =
∞
∑

n=−∞
an(z − z0)n

for every z ∈ AR1,R2 , with

an ∶=
1

2πi
∫
∣ζ−z0∣=r

f(ζ)
(ζ − z0)n+1

dζ, for any/some r ∈ (R1,R2).

If R1 = 0 (i.e., isolated singularity at origin), then

Res(f, z0) = a−1.

Proof. WLOG assume z0 = 0. Let γ = γ1 + γ2 where γ1 = −∂Dr1 and γ2 = ∂Dr2 . We get

f(z) = − 1

2πi
∫
∂Dr1

f(ζ)
ζ − z

dζ + 1

2πi
∫
∂Dr2

f(ζ)
ζ − z

dζ

for all z in between. We call the first term f1 and the second f2.

Then more generally, for z ∈ Ω/{γ},
n(γ, z)f(z) = 1

2πi
∫
γ

f(ζ)
ζ − z

dζ.

Consider first

f2(z) ∶=
1

2πi
∫
∂Dr2

f(ζ)
ζ − z

dζ

which is analytic for ∣z∣ < R2. Moreover,

f
(j)
2 (z) =

j!

2πi
∫
∂Dr2

f(ζ)
(ζ − z)j+1

dζ

so
f
(j)
2 (z0)
j!

= 1

2πi
∫
∂Dr2

f(ζ)
(ζ − z0)j+1

dζ.

Therefore

f2(z) = a0 + a1z + a2z2 + ...

Beginning of April 13, 2022

Proof Continued. Now we analyze f1. We rewrite it as

f1(z) =
1

2πi
∫
∂Dr1

f(ζ)
z − ζ

dζ = 1

2πi
∫
∂Dr1

f(ζ)/z
1/ζ/z

dζ
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which can be written as a series:

1

2πi
∫
∂Dr1

1

z
f(ζ)(1 + ζ/z) + ζ2/z2 + ... dζ

where the limit commutes with the integral, so it equals

1

z

1

2πi
∫
∂Dr1

f(ζ) dζ + 1

z2
1

2πi
∫
∂Dr2

ζf(ζ) dζ + 1

z3
∫
∂Dr2

ζ2f(ζ) dζ + ...

Recall that if f has a pole at z0, then

f(z) = a−n
(z − z0)n

+ ... + a−1
(z − z0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
singular part

+a0 + a1(z − z0) + ...
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regular/analytic part

.

Note that if the singular part has finitely many terms then it is a removable singularity or a pole, whereas infinitely

many terms correspond to an essential singularity.

Theorem 5.3.2: Mittag-Leffler Theorem

Assume that {bn}∞n=1 are different and bn →∞. Let Pn(ζ) be polynomials without constant coefficient. Then

there exists a meromorphic function f with poles at bn with the singular part Pn(1/(ζ − bn)). Moreover,

every such function can be written as

f(z) =∑
n

(Pn(1/(z − bn)) − pn(z)) + g(z)

where pn are polynomials and g entire.

Proof. WLOG assume bn ≠ 0. The function Pn(1/z − bn) is analytic in ∣z∣ < bn. Then there exists ñn such that

∣Pn (
1

z − bn
) − pn(z)∣ <

ϵ

2n
for ∣z∣ < ∣bn∣

z
whenever n ⩾ ñn.

Let pn be the polynomial with index n = ñn. Then

f(z) =
∞
∑
n=1
(Pn (

1

z − bn
) − pn(z))

converges uniformly on compact subsets of C/{b1, b2, ...} to an analytic function. Consider

g ∶= f − Pn(1/(z − bn))

for a fixed n. Then g has a removable singularity at bn, so f has a removable singularity at bn.
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5.4 Infinite Products

Definition 5.4.1

Let p1, p2, ... ∈ C. The product

p = p1p2... =
∞
∏
i=1
pn

converges if

(1) at most finitely many terms are zero, and

(2) there exists k ∈ N such that

pk, pkpk+1, pkpk+1pk+2, ...

converges to some q ∈ C/{0}.

We then say p = p1p2...pk−1q.

Note that we allow finitely many factors to be 0 but we do not want the product to converge to 0 so that (product

is 0)⇔ (one of the factors is zero).

Example 5.4.2. We will see that (1 + 1/22)(1 + 1/32)(1 + 1/42)... converges.

Then 0 ⋅ 1 ⋅ 0 ⋅ 1 ⋅ ... does not converge (diverges), 0 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ ... converges to 0 ⋅ 1 = 0, and 0 ⋅ 0 ⋅ 0 ⋅ ... diverges.

Finally, 1 ⋅ (1/2) ⋅ (1/3) ⋅ ... diverges since the product → 0.

Proposition 5.4.3

p1p2... = 0 if and only if there exists j ∈ N such that pj = 0.

Beginning of April 15, 2022

Proposition 5.4.4

If p = p1p2..., then pn → 1.

Proof. WLOG assume p∩eq0 for all n. Let Pn ∶= the first n products. By assumption Pn → p for some p ∈ C/{0}.
Then since pn+1 = Pn+1/Pn, we have pn+1 → 1.

Theorem 5.4.5

Assume 1 + an ≠ 0 and an → 0. Then the product
∞
∏
n=1
(1 + an) converges iff

∞
∑
n=1

log(1 + an) converges.

Proof. (Idea: One direction follows from above. If the product converges then 1 + an → 1 and 1 + an eventually

belongs to {Rez > 0} so the principal branch of log is defined. Conversely, we want log(1 + an) → 0 and so

principal branch is well-defined and 1 + an → 1. )
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Denote

Sn ∶=
n

∑
k=1

log(1 + ak) and Pn ∶=
n

∏
k=1
(1 + ak).

If Sn converges to some s, then Pn → es.

Conversely, we assume Pn → p, i.e., eSn → p ≠ 0. From this we see Sn → some s modulo 2πi. That is, there exist

kn such that Sn − 2πkni→ s. This implies

n

∑
k=1

log(1 + ak) − aπkni→ s,

so

(
n+1
∑
k=1

log(1 + ak) − 2πkn+1i) − (
n

∑
k=1

log(1 + ak) − 2πkni)→ 0.

Hence

log(1 + ak+1) − 2π(kn+1 − kn)i→ 0.

Since Pn converges, we have 1 + ak → 1, i.e., ak → 0. On the other hand 2π(kn1 − kn)i is always an integer

multiple of 2πi. Therefore we must have kn+1 = kn for sufficiently large n. This solves the modulo 2πi issue.

Theorem 5.4.6

Assume Rezn > −1 so that Re(1 + zn) > 0. Then

∞
∑
n=1

log(1 + zn) converges absolutely ⇔
∞
∑
n=1

zn converges absolutely.

As usual we are taking the principal branch of the log. In either case zn → 0.

Proof. The proof relies on the estimate
1

2
∣z∣ ⩽ ∣log(1 + z)∣ ⩽ 3

2
∣z∣

for z close enough to 0, say ∣z∣ ⩽ 1/2. For such nonzero z,

∣1 − log(1 + z)
z

∣ = ∣1 − z − z
2/2 + z3/3 − ...

z
∣ = ∣z

2
− z

2

3
+ ...∣

⩽ 1

2
(∣z∣ + ∣z2∣ + ∣z3∣ + ...) = ∣z∣/2

1 − ∣z∣
⩽ 1/2.

Therefore
1

2
⩽ ∣ log(1 + z)

z
∣ ⩽ 3

2
for ∣z∣ < 1

2
.

Now for⇒, assume∑∣log(1 + zn)∣ <∞. Then there exists n0 such that ∣zn∣ ⩽ 1/2 for n ⩾ n0. Then

∞
∑
n=1
∣zn∣ =

n0−1
∑
n=1
∣zn∣ +

∞
∑

n=n0

∣zn∣ ⩽
n0+1
∑
n=1
∣zn∣ + 2 ∑

n=n0

∣log(1 + zn)∣.

For⇐ we split up the sum again and do the same thing.
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Definition 5.4.7

∞
∏
n=1
(1 + an) converges absolutely if

∞
∑
n=1

log(1 + an) converges absolutely. By the previous theorem, we

have
∞
∑
n=1
∣log(1 + an)∣ <∞⇔

∞
∑
n=1
∣an∣ <∞.

Theorem 5.4.8

Let {zn} ∈ C. Then
∞
∏
n=1
(1 + an) converges absolutely ⇔

∞
∑
n=1
∣an∣ <∞.

Beginning of April 18, 2022

Theorem 5.4.9

Assume that fn are continuous functions on A ⊂ C to Dz(0) and

∞
∑
n=1
∣fn∣ ⩽M <∞ on A

or
∞
∑
m=1
∣log(1 + fn)∣ ⩽M <∞ on A.

Then
∞
∏
n=1
(1 + ∣fn∣) ⩽

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eM in the first case

3M/2 in the second case.

5.5 Canonical Products

For motivation, we prove the following theorem:

Theorem 5.5.1

Assume that f is entire and has a finite number of zeros a1, ..., aN (nonzero), listed according to multiplici-

ties. Assume 0 is of order m. Then there exists a nonvanishing entire g such that

f(z) = zm exp(g(z))
N

∏
n=1
(1 − z/an).

Proof. WLOG assume N = 0 and m > 0, for we can divide by zm∏N
n=1(1 − z/an).

Now assume f is entire and has no zeros. We claim that we can write it as exp(g). Let g0 be an entire function

with g′0 = f ′/f . Then

(e−g0f)′ = −g′0e−g0f + e−g0f ′ = 0
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so

e−g0(z)f(z) = constant = e−g0(0)f(0).

Since f(0) ≠ 0, there exists a ∈ C with f(0) = ea. Then

f(z) = eg0(z)e−g0(0)ez = ea−g0(0)+g0(z).

Theorem 5.5.2

(Weierstrass) Let a1, a2, ... ∈ C/{0}, be listed according to multiplicities be such that liman =∞. Then

(1) there exists f entire with the zeros prescribed as above and 0 with multiplicity m ∈ N.

(2) there exists mn ∈ N (depending only on a1, a2, ...) such that for every function f as in (1), there exists

g with

f(z) = zmeg(z)
∞
∏
n=1
(1 − z/an) exp(z/an + (z/an)2/2 + ... + (z/an)mn/mn).

Corollary 5.5.3

Every meromorphic f on C is a quotient of two entire functions.

In any bounded region, a meromorphic function is therefore a quotient of two analytic functions.

Proof. Consider zeros and poles, apply Weierstrass.

Example 5.5.4. If we want the product

zm
∞
∏
n=1
(1 − z/an)

to converge, then a sufficient condition is
∞
∑
n=1

1/∣zn∣ < ∞. This is not necessary though; for example we can

take an = n.

Beginning of April 20, 2022

Proof of Weierstrass. Consider
∞
∏
n=1
(1 − z/an) exp(pn(z) where pn are polynomials TBD. It converges if and only

if
∞
∑
n=1
(log(1 − z/an) + pn(z))

converges. Ignoring a finite amount of terms, for any z, eventually 1 − z/an ∈ D1/2(1) uniformly on bounded

sets, for we can choose the principal branch of the log. Recall that

log(1 − z) = z + z
2

2
+ z

3

3
+ ...

which converges uniformly in ∣z∣ < 1/2. Let

pn(z) ∶=
z

an
+ 1

2
( z
an
)
2

+ ... + 1

mn
( z
an
)
mn
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where mn depends on n. We need to estimate the error

rn(z) = −
1

m + n + 1
( z
an
)
mn+1

− 1

mn + 2
( z
an
)
mn+2

− ...

Note that for ∣z∣ ⩽ R,

∣rn(z)∣ ⩽
1

mn + 1
∣ z
an
∣
mn+1 ⎛

⎝
1 + ∣ z

an
∣ + ∣ z

an
∣
2

+ ...
⎞
⎠
⩽ 1

mn + 1
( R
∣an∣
)
n

1

1 −R/∣an∣
.

We can arrange the mn’s so that
∞
∑
n=1

1

mn + 1
( R
∣an∣
)
mn+1

<∞

for all R > 0. This is possible since mn = n works:

∞
∑
n=1

1

n + 1
( R
∣an∣
)
n+1

<∞.

Also, mn = nδ works for any δ ⩽ 1.

With such choice of mn’s, we get
∞
∑
n=1
∣rn(z)∣ <∞

uniformly on bounded sets, so the product converges absolutely and uniformly on bounded sets.

5.6 Riemann Mapping Theorem

Theorem 5.6.1

Let Ω be simply connected with Ω ≠ C. Then there exists a conformal isomorphism (analytic homeomor-

phism) f ∶ Ω → D. Moreover, for any z0 ∈ Ω, there exists a unique f ∶ Ω → D conformal, bijective, such that

f(z0) = 0 and f ′(z0) > 0.

Corollary 5.6.2

In R2, all simply connected open subsets are homeomorphic to each other.

Lemma 5.6.3

Assume that f ∶ D → D is an analytic automorphism. Then there exists a ∈ D and φ ∈ R such that f(z) =
eiφ(z − a)/(1 − az).

Beginning of April 22, 2022

Proof. Let f(a) = 0. Consider

g(z);= f(z)
(z − a)/(1 − az)

which is analytic with a being a removable singularity. Since g have no zeros and ∣g(z)∣ → 1 as ∣z∣ → 1. Applying

maximum and minimum principle we see ∣g(z)∣ = 1 for all z ∈ D. We need: for all ϵ there exists δ such that

∣f(z)∣ ⩾ 1 − ϵ whenever ∣z∣ ⩾ 1 − δ. If this is false, then there exist a sequence {zn} with ∣zn∣→ 1 such that ∣f(z)∣ <
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1−ϵ. Passing to a subsequence, since the disk with radius 1−ϵ is compact, there exists a convergent subsequence.

Applying this to the inverse implies that znk
converges inside the disk with radius 1 − ϵ, contradiction.

5.7 Normal Families

We denote the set of holomorphic functions in Ω ⊂ C (open, connected) by Hol(Ω). It is possible to define a metric

on Hol(Ω) so that the corresponding topology is uniform convergence on compact sets.

Let Kn ↑ Ω be an increasing sequence of compact sets. Define

d(f, g) ∶=
∞
∑
n=1

1

2n
supKn

∣f − g∣
1 + supKn

∣f − g∣
.

Then (Hol(Ω), d) is a metric space (and an algebra).

Definition 5.7.1

A set Φ ⊂ Hol(Ω) is normal or relatively compact if Φ is compact.

Definition 5.7.2

A set Φ ⊂ Hol(Ω) is uniformly bounded on compact sets in Ω if for all K ⊂ Ω compact, there exists

B(K) ⩾ 0 such that ∣f(z)∣ ⩽ B(K) for all z ∈K and f ∈ Φ.

Definition 5.7.3

A set Φ ⊂ Hol(Ω) is equicontinuous in a set A ⊂ Ω if for all ϵ > 0, there exists δ > 0 such that the ϵ − δ
condition holds for all z1, z2 ∈ A and all f ∈ Φ.

Theorem 5.7.4: Arzelá-Ascoli Theorem

If a family is equicontinuous on a compact set then it is relatively compact.

Beginning of April 25, 2022

Theorem 5.7.5: Normal Families

Assume Φ ⊂ Hol(Ω) and assume Φ is uniformly bounded on compact subsets of Φ. Then Φ is equicontinuous

on every compact subset of Ω and and is also relatively compact. That is, local boundedness implies relative

compactness.

Proof. Let K ⊂ Ω be compact and let δ ∶= dist(K,∂Ω). Then for all z ∈K,

f ′(z) = 1

2πi
∫
∂Dδ(z)

f(ζ)
(ζ − z)2

dζ

so

∣f ′(z)∣ ⩽ 1

2πi
2π
δ

2
sup

Dδ/2K
∣f ∣

(We need Dδ/2K because the derivative on the boundary of K involves points further away.)
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Now for relative compactness. Let K1 ⊂ K2 ⊂ ... be compact with ⋃Kn = Ω, and let f1, f2, ... ∈ Hol(Ω). By

Arzelá-Ascoli there exists a subsequence f11, f12, ... converging uniformly on K1. Again there exists a subse-

quence f21, f22, ... of the previous subsequence converging uniformly on K2. So forth and so on. Now consider

f11, f22, f33, ... which converges on every Kn. We are done since every compact set is contained in some Kn.

We’ll work with injective mappings. Let Ω ⊂ C be a region. If f ∈ Hol(Ω) is 1 − 1, then f ′(z) ≠ 0 for all z ∈ Ω and

f ∶ Ω→ f(Ω) is an analytic isomorphism. In particular, it is open.

Proposition 5.7.6

If Ω is open, connected, fn is 1 − 1 and analytic in Ω, and fn → f in Hol(Ω), then f is 1 − 1 or constant.

Proof. Assume f is not constant. Let z0 ∈ Ω be arbitrary and consider

gn(z) ∶= fn(z) − fn(z0).

Then g0 has no zero in Ω/{z0}. Since f is not constant, the function

f(z) − f(z0)

has no zero in Ω/{z0} (Hurwitz). Since z0 is arbitrary, f is 1 − 1.

Beginning of April 27, 2022

Proof of the Riemann Mapping Theorem

Proof. Step 1. There exists an analytic isomorphism of Ω with an open subset of D.

Here we require Ω ≠ C. Then there exists α ∈ Ωc. Since Ω is simply connected, we may define g(z) ∶= log(z − α)
which is analytic in Ω and 1 − 1.

We also have g(z) ≠ g(z0) = 2πi for all z ≠ z0. We claim that there exists δ > 0 such that g(Ω)∩Dδ(g(z0)+2πi) = ∅.

If not, there exists zn ∈ Ω such that g(zn)→ g(z0) + 2πi so gn → z0 and g(z0) = g(z0) + 2πi.
Then

1

g(z) − g(z0) − 2πi
is 1 − 1 and bounded above by 1/δ.
Step 2. By step 1, we can WLOG assume Ω ⊂ D and that 0 ∈ Ω by using fractional linear transformations. (For

the latter, use for example z ↦ (z − a)/(1 − az).) That is, Ω ⊂ D is open, simply connected, and contains origin.

Consider the nonempty family

Φ ∶= {f ∶ Ω→ D, f is 1-1 and f(0) = 0}.

We claim that there exists f such that ∣f ′(0)∣ is maximal.

Denote

λ ∶= sup
f∈Φ
∣f ′(0)∣ > 0.

and find a sequence fn ∈ Φ with ∣f ′n(0)∣ → λ. Note that fn is normal. By the theorem on normal families, we

can assume fn → f in Hol(Ω) (uniformly on compact subsets). By the maximum principle, we have ∣f(z)∣ < 1
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for all z ∈ Ω. Also, f is 1 − 1 by the previous proposition and nonconstant since f ′(0) ≠ 0. Therefore f ∈ Φ and

∣f ′(0)∣ = λ.

Step 3. Let f be as in the step. Then f(Ω) = D. Assume not, so there exists α ∈ D/f(Ω). Let

T (z) ∶= z − α
1 − αz

.

Since Ω is simply connected and 0 ∉ T (f(Ω)), there exists h(z) =
√
T (f(z)). Let

R(z) ∶= z − h(0)
1 − h(0)z

and consider g(z) ∶= R(
√
T (f(z)). Then g(0) = 0 so g ∈ Φ. It remains to prove ∣g′(0)∣ > ∣f ′(0)∣ for a contradiction.

Let Sz ∶= z2 and consider

φ(z) ∶= T −1(S(R−1(z)))

so that f(z) = φ(g(z)). Then φ(0) = 0 since f(0) = g(0) = 0 and φ ∶ D→ D. Also, φ is not 1-1 so ∣φ′(0)∣ < 1 by the

Schwarz lemma. Now by chain rule

f ′(0) = φ′(g(0))g′(0) < g′(0).

Contradiction.
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