Contents

1_Introductions

|1 Power Serieq

IL.2  Analytic Functiong . ... ..

L. Complex Logarithm . .. ..

2  (Cauchy-Riemann Equations

k.1 The Cauchy-Riemann EQUatIONy . . . . . . . o o 0 i i i i e e e e e e e e e e e e e e e e e e e e e

b__Complex Integration

B.1 Index / Winding Numbey . .

B.2 Cauchy Integral Formulg . .

B.3 Fundamental Theorem of Algebra & laylor Serie§ . . . . . . . . . . . . . .. . . . ...

4 Singularities of Analytic Functions

B.1  Zeros, Poles, & Unique Continuation . . . . . . . . . i i i i i i e e e e e e e e e e e e e e e e e e

@.2  Local Mapping Propertieg . .

4.0 Maximum Principlg ... ..

“.4 Schwarz L.emma

B.o0  General Form of the Cauchy Formula . . . . . . . . . . 0 o e e e e e e e e

4.6 Multiply Connected Domain

V. »

b.l Unitorm Limits of Analytic Functiong . . . . . . . . . o o o e

p.2 laylor Seried. . .. ... ...

11
13
14

18
24
26
28

31
31
35
37
38
39
43
44



YQL - MATH 520 Notes CONTENTS Current file: 1-10.tex

b/ Normal Familied




Chapter 1

Introductions

1.1 Power Series

Beginning of Jan.10, 2022

oo

A power series around a ¢ C is an infinite series of the form )" a,,(z —a)".
n=0

Some examples of series:

oo

(1) A boring one that diverges everywhere except at origin: ) nlz".

n=0
(2) The exponential, the sine, and the cosine functions:
a2
¢ nz=o n!
. Z3 Z5
sinzg=z—-—+ — —
3! 5!
22 Z4
cosz=1-—+——-
21 4l
All three converges for all z € C.
(3) Complex logarithm:

22 Z3
log(l+z)=2——+— —--
og(L+2)=2- 5+

which converges for || < 1 (also for z = 1).
(4) 1+z+2%+..=1/(1-z) converges for |z| < 1.

Recall a theorem from 425b:

Theorem 1.1.1

For a power series »_ a,(z - a)", we define the radius of convergence R ¢ [0, oo] by

n=0
1

- hm Supn—»oo|an|1/n .

Then:
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(1) If |z - a| < R then the series converges absolutely,
(2) 1If |z -a| > R, then the series diverge, and
(3) Ifre(0,R), then the series converges uniformly on the disk

D,(a):={z€C:|z—-a|<r}.

The claims can be easily proven using e.g. the root test.

[ Proposition 1.1.2

[}

oo o0
Assume that Z a,z" and Z b, z" have radii of convergence > r. Then the power series Z cn2", where
n=0 n=0 n=0

n
Cp = Z anbn_r the convolution product, has a radius of convergence > r as well.
k=0

Idea of proof. Assume that |z| < 79 < r where ry is fixed. Then

lenlel < (Z|an|rz;) (z |bnr3) .

n=0

1.2 Analytic Functions

Let Q2 c C be open. We say a function f : 2 - C is (complex) differentiable at z € Q if

exists and is finite. The value f'(z) is called the (complex) derivative of f at z. We say w = limy,_,o f(h) if for all

€ > 0, there exists § such that
|h|<dand h+0 = |w- f(h)|<e.

Note that everything resembles what was seen in real analysis, except here we are dealing with complex numbers.

[ Definition 1.2.1: Analytic Functions

A function f : ) —» C is analytic (or holomorphic) in (2 if it is differentiable at every z € Q.

Remark.
(1) In this course, we use the word “analytic” and “holomorphic” interchangeably.

(2) We don’t assume continuity of f’. A beautiful fact about complex analysis is that if a function is complex

differentiable then it is infinitely many times differentiable, i.e., holomorphic.

Beginning of Jan.12, 2022
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Sums, Differences, and Products of Analytic Functions

Some basic properties of analytic functions:

(1) Sums, differences, and products of analytic functions are analytic.

(2) The quotients, where the denominators do not vanish, are also analytic.

[ Proposition 1.2.2: Composition of Analytic Functions, Chain Rule

Assume that f, g are analytic in 2 and G respectively, and assume f(2) c G. Then g o f is analytic on {2 and
(90 f)(2) =g (f(2))f'(2)

Proof. Ideally we would like to use the definition

(g0 1Y () = tim G2DEHD =02 1))

h
i BEDEEN (90 PR R - 1(2) .
h—0 f(z+h) - f(2) h ’

but f(z+ h) - f(z) could be zero.

Let z € Q. It suffices to show that every sequence {h,,} — 0 with h,, # 0 has a subsequence h,,, such that

since showing a sequence converges is equivalent to showing that every sequence has a further subsequence.

We have two cases here:
(Case 1) f(z) # f(z+ hy,) for all n. Then we simply apply (*) and obtain our desired result.
(Case 1.1) f(z) # f(z + ho) for all but finitely many h,,’s. We can still apply (*).

(Case 2) f(z) = f(z + hy,) for infinitely many n. WLOG we may assume that this holds for all n. Then
g(f(z+hn)) —g(f(2)) -0

for all n
hp
and ¢'(f(z))f'(2) = 0. Then we have 0 = 0, which still holds.
Note that f(z+h) - f(z) = 0 as h - 0 because f is assumed to be continuous. O

[ Definition 1.2.3 |

A function f analytic in all of C is called entire.

Now we provide some examples of analytic/entire functions:

(1)

(2)

2", with (2")" = nz""L.

¥

e” =" = e”(cosy + isiny).
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Proof. Assuming we know e*'7%2 = ¢*1¢*2 we only have to check that

.oef-1
lim =
z—0 z

1.

The proof is left as an exercise in the first problem set — use € — § since this is a complex limit!
(3) sinz=(e"* —e*)/2 and cos z = (e'* + e7%%) /2 are entire.

Facts about periodic functions:

(1) e? is periodic with period 27i (since e**2™ = %e?™ = e*(cos(27) +isin(27)) = e%).

(2) sinz,cosz are periodic with periods 2.

Theorem 1.2.4: Inverse Function Theorem

Let 2, G c C be open. Assume that f: Q) - C and g : G —» C are continuous. Also assume that f(Q2) c G and
g(f(2)) = z for all z € Q (so that g is the “inverse” of f). If g is differentiable at z € C' and ¢'(f(z)) # 0, then

f is differentiable at z with
1

I'& =Gy

Note again that this is about complex variables which is different from the real-valued case.

Proof. Let h # 0 be small. Note that

_h_g(f(z+h) -9(f(2)) _g(f(z+h)) -g(f(z) [f(z+h)-[(2)
h h fz+h)-g(2) h '
Since f is injective (as we assumed ¢(f(z)) = z for all z which is impossible if f is not injective), we have

f(z+h) - f(2) #0. Also, by continuity

1

lm(f(z+h) - f(2)) =0,

o)
- 9(f(z+h) -9(f(2)) _
}llliré f(Z+h)—f(Z) _g(f(z))v

and of course the second term has to converge to 1/¢'(f(z)). O

1.3 Complex Logarithm

The problem. e is not bijective (recall it is periodic).

Beginning of Jan.14, 2022

[ Definition 1.3.1

Let f: Q) — C where ( is open. Let f be continuous and such that
z=exp(f(2)) for z € Q.

Then f is called a branch of the logarithm.
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Since e**2™ = ¢7 for all z € C, we have the following result:

[ Proposition 1.3.2

If f, g are two branches of the logarithm function on 2 c C, then

f(2)=g(2) +2nki

where k € Z is fixed.

Conversely, if f on 2 is a branch of log, then so is f(z) + 27ki where k € Z.

From this definition, different (2’s will give to different log’s.

We will use the following branch of the log called the principle branch of the logarithm:

[ Definition 1.3.3: Principle Branch

Let Q := C\(-o0,0], and we represent z € {2 as
z = |z]e® (polar representation)
where -7 < 6 < 7. Note that 6 is a continuous function of z € C. We then let
f(re?) =logr +i6 forr>0,-m<0<m.

This is called the principle branch.

This indeed makes sense, as

exp(f(re”)) = exp(logr +i6) = re’’,

so indeed exp(f(z)) = z for all defined =.

[ Proposition 1.3.4

Every branch of the log is analytic in 2 and the derivative is 1/>.



Chapter 2

Cauchy-Riemann Equations

2.1 The Cauchy-Riemann Equations

A function of x,y can be considered as a function of >z and z where

z2+7Z z2—-Z
and y = —.
2 21

€T =

A function ¢(z,Z) is analytic if aﬁ* g(z,%Z) = 0. In other words, analytic functions are the ones that only depend on z
z

but not Z.

>0 O 0<
Assume that
ooy e S (ZHR) — f(2)
e = oy
exists. If we let u = Ref and v = JmJf, then f = u + iv. We also let z = x + iy where x,y ¢ R. (We will use these
notations frequently.)

Consider h — 0 along the real line. Then

g TR IC) Wtk WD) v ) 00

h—0 h—0 h h—0 h
heR heR heR

ou Ov
- 8717($7y) +Z%($,y)'

Therefore, if f is analytic, du/0z and dv/dx exist at z, with

ou . 0Ov
r_ Y LU 1
/ or " oz &
where we have implicitly assumed that y is held constant.
Now, we let h — 0 along the imaginary values. That is, we switch A to ih:
fn LG = 1) ey i) ~u(ey) | (e +ih) - o(ey)
h—0 ih h—0 ih h—0 ih
heR heR heR
v, 0
- ay Y ay .
Therefore, assuming f exists, we see dv/dy and dv/dy both exist at z = = + iy with
ov  Ou
A el 2
f oy oy (2

8
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Comparing (1) with (2), we obtain the Cauchy-Riemann Equations:
ou v ou Ov
— = — and — =
oxr Oy y ox
The converse also holds. Now we put everything into a theorem:

(CR)

Theorem 2.1.1: Analytic Functions & the Cauchy-Riemann Equation

Let u,v:Q — R and let f = u + iv, a complex function 2 - C.
As mentioned above, if f is analytic in (2, then u, v satisfy (CR). Conversely, if u,v € C1(Q) satisfy (CR), then

f =wu+ v is analytic in .

Proof. It remains to show that (CR) = (f is analytic), so assume (CR) holds with u,v € C'. Let h,k € R, and
define

o(h,k):=u(x+h,y+ k) —u(z,y) — hug(x,y) — kuy(x,y)
=u(z+h,y+k)—u(z,y+k)-hu,(z,y)
+u(z,y+k)-u(z,y) - kuy(z,y).

(We perturb z slightly in the first three terms and perturb y slightly in the last three.) Using MVT (since u,v € C1),
there exist hy € (0,h) and k; € (0, k) such that

(p(h”k) = h’ur(gj-" h17y+ k) - hut(xay)

+kuy(z,y+ hi) — kuy(x,y).

Taking limits as h + ik — 0, we obtain that . liin . o(h,k)/(h+ik) = 0: the first two terms when divided by h + ik
+ik—
become
h
m(%(fﬂ +hoy+k) - ug(2,y))
where |h/(h +ik)| < 1 and the second term — 0. Similar argument can be made for the last two terms.

To sum up,
u(z +h,v+ k) —u(z,y) = ug (2, y)h +uy (x,9)k + o(h, k)

and similarly
v(x+h,v+ k) —v(z,y) = ve(z,y)h + vy (z,9)k + P (h, k)
where

o(h,k)y . (hk)
htik—0 h+ ik _hggio h+ik =0

We know that u, v € C*'. Therefore,

lim fGrhrik) = () ug(2) +ive(2) + lim o, k) + i (h,k) A)

h+ik—0 h+ik htik—0 h+ ik

where we used (CR) and the identity
Ugh — vek +i(vph + ugk) = (ug +ivy ) (h +ik).

Since the last term in (A) — 0, f’ exists and equals (u, + v, )(z), as claimed. O

9
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2.2 Harmonic Functions
Now we suppose that f = u + iv be analytic in 2 and further assume that u,v € C%(2). By (CR),

Ug,x = (vy)a" = (Ux)y = (_uy)y = —Uy,y-
From this we have
oz Oy?

From this we say functions like u that satisfy (H) are harmonic.

0. (H)

If f is analytic, then —if = v — 4u is analytic, so v is harmonic. We can also check this directly:

o ow?

Vpe = —(Uy)z = —(Uz)y = —Vy,y = ) + fyz =0.

If u,v are harmonic in Q and if f = u + v is analytic in §2, then we say v is conjugate harmonic to u. For example,

if v is conjugate harmonic to u, then —u is conjugate harmonic to v.
Example 2.2.1. ¢"Y is conjugate harmonic to e® cos y because

e’ cosy +ie”siny = e°.

Our next question of interest: given a harmonic function, does there exist a conjugate harmonic function? The
answer is no.
For example, let u = log+/2? + y2. We claim that there does not exist a harmonic conjugate in C \{0}, for if there

were, arg(z + iy) fails to be harmonic.

Theorem 2.2.2

Let Q:= D, (z) (disk) where r > 0 and zy € C. Let u be harmonic in Q. Then u has a harmonic conjugate.

In other words, harmonic conjugate to a given harmonic function always exists locally.

Proof. WLOF assume 2 is the origin so 2 = D,. := D,.(0). Suppose first that v, a harmonic conjugate, exists. We
will derive an explicit formula for it and then prove that this actually works.

Since (CR) states v, = u,, we have
Yy Yy
v(z,y) = f ug(z,t) dt + p(x) =: f ug(z,t) dt + v(z,0) (@)
0 0
where ¢(x) = v(z,0). We determine ¢ from the second (CR) v, = —u,. From (*) we get
Yy
cy (2,9) =02 = [, t) dt + ()
0
Yy
=- / Uy (z,t) dt + @' (x)
0
= —uy(z,y) + uy(z,0) + ¢’ (z).

10
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Thus ¢'(z) = —u,(x,0). Integrating gives

p(0) =00+ [Tty dt=0) = [Ty (t,0) d.

Note that ¢(0) can be any constant and harmonic conjugates are indeed constant indeterminant. Thus for

convenience we let
-
p(x) = - f uy(t,0) dt.
0

Therefore, v the harmonic conjugate, if it exists, must be given by
Yy x
v= f g (,t) dt - f uy(t,0) dt.
0 0
It remains to check that this is indeed the harmonic conjugate:

y
Vg = / Ug z(2,t) dt — uy(2,0)
0
y
:-fo wy (1) dt - uy (,0)
= _“y(l’:y) +u'y($70) _Uy(l'O) = ~Uy,

and of course v, = u,. O

Remark. In this remark, we had a “line integral” that only went horizontally and vertically. In more general

cases we will need to use actual line integrals.

One Application of Cauchy-Riemann

Theorem 2.2.3

Let f be analytic in Q. If any of the following is true, then f must be constant:
(1) f’is constantly zero;
(2) f maps to aline; and

(3) f maps to a circle.

Proof.

(1) Assume f’ = 0. Since f’ = u, + iv, we must have u, = 0 and v, = 0. By (CR), u, = v, = 0. Thus f must be

constant.

(2) Multiplying everything by an appropriate constant e and then translating by another constant, we can
assume that the line is iR. Therefore u = Ref = 0. but then f’ = u, +iv, = u, —iu, by (CR). But u, = u, = 0.

By (a), f is constant.

(3) WLOG we can assume that the circle is centered at the origin with 22 + 42 = a. Then u? +v? = @, and taking

11
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derivative implies uu, +vv, = 0 and wu, +vv, = 0. By (CR),

Uy + VU, =0 and - uv, +vu, =0

This implies u,, = v, = 0 except at points where the determinant is zero, but the determinant is u? + v? = q,

so zero means u = v = 0 in ). Otherwise, u, = v, = 0 and we can again apply (a).

Beginning of Jan.21, 2022

2.3 Analytic Functions as Mappings

We'll prove that analytic f preserves angles at points zo where f’(zo) # 0. First, some definitions.

[ Definition 2.3.1: Path |

A path in Q c C is a continuous function v : [a,b] — Q where —c0o < a < b < 0. If 4 exists for every
t € [a,b] and + is continuous, we call v a C' path. A path is piecewise C! if there exists a partition

a=ty<t) <..<t,=bsuch thatvyis C! on each [t; - 1,;].

[ Definition 2.3.2: Angles

Let 71,72 be two smooth curves such that v;(¢1) = 72(t2) = zo. The angle between ~; and 7, at zy is defined
to be as

arg vy (te) —argy; (t1) € Z/27Z.
If we assume that v : Q — C is smooth and f : Q — C is analytic. Then

Ji=foy

is smooth and
Y () = f (v (@) )
To prove this, either use differnerence quotients and chain rule or prove by decomposing v = v1 + iz, f = u + iv.

From (*), we get that

argy'(t) = arg f'((t)) + arg'(t) € Z/27Z.

At ¢ = tg, the argument of 5(¢y) equals arg~+'(t)+ a fixed number (arg f'(v(to))).
Therefore, if v, 2 are two curves with v, (t9) = v2(to) = 20, if f'(20) # 0, and ~/ (¢0),v5(t0) # 0, then

argy1 — argye = argy; — argy2. %)
In other words, the angle is indeed preserved by an analytic function.

12
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Theorem 2.3.3

Suppose f: Q — C is analytic. Then f preserves the angles at every point zq € Q where f’ does not vanish.

Also, observe that for every v and 4 = f o g,

7' (f (o))l = 1 (o)l (to);

so the analytic function also multiplies |y’(¢o)| by a fixed constant, in this case |f'(zo)]-

[ Definition 2.3.4: Conformal Mapping

A function f : 2 — C which preserves angles in the sense (**) and such that

L ) = 1Go)l

zZ—=20 |Z - Z()|

exists for every zg €  is called conformal.

It follows from this definition that analytic functions are conformal at all points where the derivative does not

vanish.

Example 2.3.5: (Angle Preservation) # (Conformality). The function f(z) = Z is not conformal even
though it preserves the size of the angles. Similarly, f(z), where f is analytic, preserves the size of the

angles of every point where f’ is nonzero.

Example 2.3.6. f(z) = z? doubles the angle at 0. Similarly, z ~ 2™, where m € N, multiplies the angle by

m at origin.

We will show later that if f'(z) =0 and f # constant then f multiplies the angle between curves by an integer given
by the multiplicity of the zero of f(z) - f(20).

Now, for the converse (conformal) = (analytic), assume that f : - C (not assumed to be analytic) is C, i.e.,

Of [|0x,0f |0y are continuous, and f preserves the angles (argument) between the curves. Let

7)) = F(v(#))
and v(t) = 71(t) + iy2(t) be the decomposition of v. Then

AW 20 =T ()

T = Forh 1)+ firh(t) = £, LT 7O
1
Let z =+'(¢p). Then B B
;yl(t) :fIZ;Z +fyZ2—i,'Z,’7
SO
’V(t) = %(fz - ny)z + %(fx + ny)f )

Assume that z(#y) # 0. Since the angles are assumed to be preserved and

¥ () = ()Y (),

13
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we have
arg(7'/7)
is independent of arg~'(¢). (*) implies that

1

1 z 0
i(f%_lfy)+§(fr+lfy)§ (%)

has a constant argument. In other words we need (**) to have a constant argument regardless of z # 0. As z € C\{0},
Z/z is arbitrary with modulus 1, (**) will be a circle with center ( f, - if,)/2 and radius (f, +if,)/2. Therefore the

modulus cannot be constant unless the radius is zero, i.e., if f, +if, = 0, which is exactly what (CR) says:

fo = —ify & uy +ivy = —iuy + vy, <= (CR).

Beginning of Jan.24, 2022

2.4 Linear Fractional Transformation

We work on Co, := CuU {o0}.

[ Definition 2.4.1: Linear Fractional Transformation |

A mapping ;
az +

Sz:= a,b,e,deC,ed+0

cz+d
is called a linear fractional transformation. If in addition ad - be # 0 then we call it a MObius transforma-
tion. (If ad = bc it is just a constant mapping assuming it is well-defined.)

If S is Mobius (i.e., nonconstant), then S~ is also a fractional transformation. See below.

a
We can represent z — Sz = (az + b)/(cz + d) via the matrix l

b
. To see this, if
c d

a1z + by asz + by
Siz=———F+ and Soz = ,
612’+d1 622+d2

then (just like matrix multiplication)

S5y = ay(agz +b2)[(caz +d2) + by
01(0,22 + bg)/(CgZ + dg) + bl

_ (a1a2 + Cgbl)z + (albg + dgbl)

N (crag + cady)z + (c1by + dady)

aq bl a9 b2
~ zZ.
C1 d1 Co dQ

(We are not really saying that this is equivalent to matrix multiplication; we simply said that the composition

resembles a pattern observed in matrix multiplications.)

From this, we also see that if S is Mébius, then S~! corresponds to the inverse of the matrix as well!

14
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Some Special Linear Transformations

1 «
(1) Translation is given by l ] is equivalent to z — z + a.
0 1

kE 0
(2) Dilation is given by l ] with positive real number k£ and rotation is the same matrix with complex k. In
0 1
both cases the transformation is z — kz. (In the complex case it is also e*2)

0 1
(3) Inversion corresponds to [ ], z1/z.
1 0

If ¢ # 0, we can write

az+b az+(cla)d . b-(c/a)d a _b- (c/da)d a (b/c) - (1/a)d.

cz+d  cz+d cz+d c cz+d c z+(dfc)

Then this is a composition given by translation, inversion, notation, dilation, and finally translation.

If ¢ = 0 then the mapping becomes
az+b gz N 9
= yl

d d

Z =

a composition of rotation, dilation, and translation.

2.5 Cross Ratio

Note that the linear transformation above has four parameters, but it only has degree of freedom 3, as we can
normalize the entire equation by setting and fixing any variable to 1. We say the linear transformation has complex

degrees of 3. Conversely —

[ Proposition 2.5.1

Given distinct zs, 23, 24 € Co, there exists a unique linear transformation S such that

Sz =1, SZgZO, and Sz4 = o0.
Proof of existence. If 25, 23, z, are all finite, then the linear transformation is simply given by

-1
Z—2Z3 Z9 — Z3
Z— 24 zZ9 — Z4

z-z — 23

3 . ) z
— 1 as z — oo, so we simply define Sz := .
zZ— 24 zZ—Z4
— 23

If 25 = o0, in the above equation, intuitively

2224

. If z4 = 00, define Sz := z

If 23 = oo, define Sz := .
Z— 24 Z9 — Z3

We define the cross ratio to be

Z—Z3 Z9 — 23
(27223237Z4) =

Z—Z4 Z9 — Z4 ’
In fact, we can map different 29, 23, z4 to arbitrary distinct ws, w3, w, by composing with the inverse of

_ (w—ws) (w2 — wy)

Tz= (w—wy) (wy —w3)

15
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(The inverse maps 1 — ws,0 — w3, and oo — wy.)
Proof of uniqueness. Let T be another mapping also satisfy the conditions. Then ST~1(1) =1, ST~1(0) = 0, and

ST 1(00) = oo. Let ST 12 := az+b (this is well-defined because we know S~! is fractional and ST is therefore
c
fractional). The three conditions imply

a+b=c+d b=0 and c=0,

soa=dandb=c,ie., T=2S5.

[ Definition 2.5.2: Cross Ratio |

The cross ratio (z1, 22, 23,24), Where {29, 23,24} are pairwise distinct, is the map of z, under S a linear

fractional transformation, defined by

zo 1, z3 0, and z4 + oo.

From the previous remark, such transformation is given by

21 =23 [Z2— %3
(21,22723724) =
21— R4 22— %24

(If one of them is infinite, adjust correspondingly as we did before.)

Beginning of Jan.26, 2022

[ Proposition 2.5.3

If 21, 29, 23, 24 are distinct and if T" is Mobius, then
(TZl, TZQ, T,Zg, TZ4) = (Zl, 294,23, Z4),
i.e., linear mappings preserve cross ratios.
Proof. Let Sz = (21, 29, 23, 24), i.€e., the mapping satisfying zo — 1,23 — 0, z4 — oo. Then
ST Tz 1,T25 7 0,Tzy > oco.

Therefore, (TZl,TZQ,TZ3,TZ4) = (ST_l)(Tzl) =Sz = (2’1,22,2:3,24). O

[ Proposition 2.5.4

Let 21, 20, 23 be distinct and let w1y, ws,ws be distinct as well. Then we can map z; — w1, 23 = wa, 23 — W3

Via (wawl,wZ,wffo) = (2721522723)'

Proof. Let T be Mobius so that (T,,T21,T22,T23) = (2, 21, 22, 23). Then (Tz, wy,ws,w3) = (2, 21, 22, 23) and we

are done. O
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Theorem 2.5.5

Let 21, 22, 23, 24 be distinct. Then (21, 22, 23, 24) € R if and only if 21, 29, 23, 24 lie on a circle or a line.

When studying linear (fractional) transformations, we consider this as circle going through oc.

Proof. It is sufficient to prove that a linear transformation maps R to a circle on a line. Let 7'z = (az +b)/(cd + 2).

Since Tz € R, we have

020 _GED | (z—dc)ez+ (ad—be)s + (be—ad)E + b — b = 0.
cz+d cz+d

If ac - ac = 0 then we get something like (ad - bc)z + (bé—ad)Z + bd - bd = 0. This either an empty set, a point, or a
line. Since it must be an infinite set (it is the image of R under the inverse) we exclude the possibility of a point.
If ac — ac # 0, we show that zy, 29, 23, 24 lie on a circle. We divide everything by a¢ — ac and get
o, ad-cb be-ad_ bd-bd
|z]© + z+ Z+ =

ac — ac ac — ac ac — ac

0.

Completing the square, we have

( ad - Eb) _ ad-cb\ bd-bd (ad-zeb)(ad- cb)
z+ Z+ = - .
ac— ac ac-ac) ac-ac (ac - ac)?

The RHS can be expanded:

2

(bd - bd)(ac - ac) — (ad - ¢b)(ad - cb) ad - be
RHS = — == |2
(ac -ac)(ac - ac)? ac—ca
Therefore,
ad-eb|° |ad-be
24— =|———|.
ac— ac ac-ca
Taking square roots we see z must be some constant distance from some point, i.e., z must lie on a circle. O

[ Corollary 2.5.6

A Mobius transformation maps circles to circles. (We showed that real axis can go to circles, so applying the

inverse once again gives our desired circle-to-circle mapping.)

[ Definition 2.5.7

z and z* are symmetric with respect to the circle through 21, 29, 23 if

(2*721, 2’2,23) = (2721, 22723)~

Remark. Right now the definition depends on the choice of z1, 25, 23, but in fact it is independent, as we

will prove later.

Beginning of Jan.28, 2022
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Remark. Note that the operation defined in symmetry is also symmetric:
(2%, 21,22, 23) = (2,21, 22,23) = (2%, 21,22,23) = (2,21, 22, 23).

Since linear transformations preserve the cross-ratio, we can reduce the case to where C' = R, since we can map a
circle to the real axis.
Then 21, 25, 23 € R, and the symmetry means

*
zZ —Z2 zZ—Z22

£T22 * =
z*—2z3 Z-2z3 Z —Z2 Z—Z2
= E = .
Z1—Z2 Z1—Z2 Z* — 2 2_ z
21723 21723 3 3

Since Moboius transformations (check it is Mobius) are injective, we must have z* = Z.
This shows that z* is uniquely determined by z and it does not depend on the choice of 21, 29, 23.
Also, recall that dilation and rotation are Mobius. Therefore if 21, 25, z3 lie on any other line, z* is the mirror image

across that line.

How about symmetry with respect to circles?

WLOG assume the circle is centered at origin and has radius 1, denoted D := D;(0) = B;(0). By rotation, we further

assume z € (0,1). We define a mapping 7 : H — D (where H denotes the upper half plane, i.e., z with Jmz > 0) by
zZ—1 1+2

Z — and z — 1 .
Z+1 1-2

This is a conformal (bijective and analytic) mapping from H to D. For convenience we call the inverse S.
Then

. _1( ,(1+a)) -i(l+a)/(1-a)-i 1

a”=S"|- = — - = -,
l1-a -i(l+a)/(1-a)+i a

i.e., the symmetric point for a is 1/a. The same claim holds after rotation and dilation, except we rotate the way

from R* to the one that originates at the center and passes through z. Note that we have |2*||z| = r%. As z - the

center, z* — infinity, and as |z| - r we have |z| —» r as well.

Two Important Conformal Mappings

Z—1

The first one is T': H — D as defined above: z — -
z 1

z-1 .
The other one: z — T which maps {fRez > 0} - D.
z+
To understand the M6bius mappings, consider
zZ—a
z2-b
Then the line segment connecting a to b becomes a ray starting from 0. The circle arcs connecting a to b become

Tz=k

rays oriented in other directions (since b — oo and circles go to circles, they must be mapped to lines!). In other

words, arcs go to rays.
. . z-a
On the other hand, what’s the preimage of circles? If |k|’b‘ =r then
o
lz—a| r
lz=0l |k’
i.e., the ratio of distance between 2 — a and z — b are kept constant. These are circles centered somewhere on the

line passing through a and b. These are called Apollonius circles.

18
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Complex Integration

Beginning of Jan.31, 2022

Assume that v : [a,b] — Q (where Q c C is open) is piecewise smooth. Then, for f: Q@ — C, we define

[reras= [ 1awn e

We immediately have some nice properties:

Y]

(2

(3)

4)

(5)

Invariance under change of parameter: if ¢ = ¢t(7) where 7 : [«, 8] — [a,b] is piecewise smooth and ~ smooth,

then

b B
[ e @ de= [T e ) () dr.

We can have directed integrals, which can be proved via reparametrization:

[ﬂ/f(z) dz:—[/ f(2) dz.

Partition: if v can be partitioned into 71,72, ..., 7n, then
/ f(z)dz=)] [ f(2)dz.
Y =17
Integral w.r.t. conjugate:
f f(z)dz = f f(z)dz.
el v
Decomposition:

Lf(z)dxzﬂ%ef(x) dx+i£jmf(x) dz.

Similar things for dy. Alternatively,

5~
Kﬁ
(oW
&
1]

N | —
N
&h
(o}
N
+
DO | —

I

and

5~
~
o,
<
1l
W=
5~
~
(oW
N
|
2]
5~
~
&l
N
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| Definition 3.0.1: Arc Length

Let v : [a,b] = 2 be piecewise smooth. Then we define

L fldz] == f PG ()] dt

is called the arc length integral.

Theorem 3.0.2

Let p, g be continuous on 2 where €2 c C is open and connected. Then

f (pdz+qdy)

v

depends only on the endpoints of v if and only if there exists U € C*(£2) such that
or P dy ¢

Proof. (The proof is identical to its calculus counterpart.) Assume that there exists such U and let v be

parametrized by some (xz(¢),y(t)), t € [a,b]. By definition,

f(pd:quy) /(—d +—d)
[( 20+ G (0) de

- [" S W) a
= U((5),y(1)) ~ U (a(a), y(a).

Conversely, we assume that the integral depends only on the endpoints. Fix (zo, o) and define

U(z,y) = L (pdz +qdy)

where ~ is any curve starting at (z, yo) and ends at («,y).Consider the polygonal curve with segments parallel
to the z,y axis and ending with the horizontal part. (This is possible since U is open and connected.) Denote

the last segment by (x1,y) and (z,y). Then we have

Ue,y) =Uany)+ [ pls,y) ds.
Then,

B =p(z,y).

Similarly, we can use a polygonal curve with an vertical ending piece to show that 88—(] =q(z,y). O
Y
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| Definition 3.0.3

Let Q c C be open. We call
pdx+qdy

an exact differential if there exists U € C'(Q) such that OU/0x = p and 0U /0y = q.

Now let f(z) be continuous and complex valued. Assume that f(z) dz is an exact differential, where

f(2)dz = f(z)dz +if(2)dy.

Then, there exists F € C*((2,C) such that 9F [0z = f(z) and 0F /0y = if(z). Observe that

OF  OF

oz~ oy’
which is the Cauchy-Riemann equation in complex form.
Check: if ' =U +4V then F, = U, +iV, and F, = U, +1iV,,. Tthus

F F
gx:_ia@y —= Upy+iVy=-iVy+V, < U,=V,and V, = -U,..

That is, if fdz is an exact differential, then it is the derivative of an analytic function.

Beginning of Feb.2, 2022

Theorem 3.0.4

Let f be a complex-valued continuous function on ). Then [ f(z) dz depends only on endpoints of ~ if
Y
and only if there exists F' analytic on €2 such that F’ = f.

This criterion is equivalent to / f(2) dz = 0 for every closed, piecewise smooth ~.
Y

(At this point we don’t conclude if f is analytic — we will later show that it is though.)

[ Corollary 3.0.5

/. ,(z=a)" dz =0 for all a € C and for any closed piecewise smooth ~ in C since (z - a)" is the derivative of
(z-a)""/(n+1).

[ Proposition 3.0.6

Let C be a (positive oriented) circle C around a € C with radius p > 0. Then

1
f dz =2mi
cz—-a

f;dz:() forn > 2.
c(

z—a)m"

and

21
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Proof. We use z(t) = a + pe'*, 0 < § < 2 as the parametrization for C. Then by definition

1 21 i pt0 T
[ [T a0~ [Tido-2m
cz-a o pet 0

Theorem 3.0.7: Cauchy’s Theorem for Rectangles

Let R = [a,b] x [¢,d] be a rectangle with boundary OR given by (a,c) - (b,c) — (b,d) - (a,d) where
a,b,c,d < o0, a<b,and ¢ < d. If f is analytic in (a neighborhood of) R, then

faRf(z) dz=0.

Proof. For any rectangle S, denote 7n(S) := fa < f(z) dz. We divide R into 4 congruent rectangles by two
perpendicular bisectors. Among these four, choose the rectangle with the biggest n. Call this R; (so in particular
[n(R1)| = In(R)|/4). We further divide R; into four congruent rectangles and choose Ry with [n(R2)| > [n(R2)|/4.
Continuing by induction, we obtain a sequence {R,} with |[n(R,+1)| = |n(Rn)|/4. Also, the perimeters satisfy

|OR,,11| = |OR,|/2. Furthermore, there exists z* € C with (| R, = {z*}.
=1

Let € > 0. Then b assumption there exists ¢ > 0 such that
|z-2"|<0 = ‘f(z) —ffz ) -f'(z")] <e.
zZ—Zz
That is,
1f(2) = F(") = (2= 2") f'(z7) < ez = 27
We choose ng € N such that R,, ¢ B(z*,9) for all n > ng. Then
R = [ d
SR OTE
_ _ *\ % ! * d
Jo @1 -2 ) e
(since integrating a constant f(z*) over a closed curve is zero.) Thus
(Rl < faR elz - 2*| |d2] < |OR||OR].

Then, [n(R)| < 4"n(R,)| < 4"€|OR,|* = ¢[n(R)|*. Therefore |n(R)| must be zero! O

Theorem 3.0.8

Let R be a rectangle and let zi,...,2, be distinct in the interior of R. Assume f is analytic in R’ :=
R\{z1, ..., 2, } and assume that lim (2 - 2;) f(2) = 0.
Then

faRf(z) dz=0.

In particular, we can define/change of values of f at these points to make f analytic on R.

22
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Beginning of Feb.4, 2022
In fact, a sufficient condition for lim (z - 2;) f(2) = 0 is that f is bounded in R'.

Proof. WLOG assume n = 1 (for otherwise we can subdivide the rectangles). Let ¢ > 0. Then there exists § > 0

such that
€

|z =21 <6 = |f(2)| € .
|z = 21

Then we find a square R, centered at z; contained in Bs(z;). Then

faRode

Now, subdividing R into nine rectangles, with the middle one being R, we see

faROfdz:faRfdz.

Since ¢ is arbitrary (even though Ry depends on it), we are done. O

d
gefa € opy<ce

N .
Ro |z = 21| min |z = 21]
0

Theorem 3.0.9

Assume that f(z) is analytic in D and ~ is a closed piecewise smooth curve in D. Then

fwf(Z) dz=0.

Later; we will generalize this from D to any simply connected domain.

Proof. We will use a previous theorem saying that if f = F’ for some analytic F' then the claim holds.
We define

F(z):= / f(z)dz
o1
where o, is the piecewise linear curve from 0 — fRez — z (i.e., first horizontal then vertical). Then using

F(z)= fdx+if f dy we have
” ” OF
dy
Now consider the path o5 given by 0 - Jmz — z (i.e., first vertical then horizontal). Then

if.

F(z)= fdz
since o1 — (—09) forms a rectangle and by the Cauchy’s theorem, f dz =-F(z). Therefore,
OF
o T
Therefore
ox Oy
and (C-R) in complex form implies F is analytic. O
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Theorem 3.0.10
Let 21, 22, ..., 2, ¢ D, assume f is analytic on Q := D\{z1, ..., z,, }, with

lim (2 -2;)f(2)=0 forj=1,..,n

Z—?Zj

Then
f f(z)dz=0 for all closed, piecewise smooth « c (2.
.

Proof. We pick zy € Q such that the vertical and horizontal lines through z; contain no exceptional point
(21, .., 2n). Then we use two paths along with the “rectangle-with-dot” theorem to prove this claim.
For z € Q, we pick Z close to z and let 01,02 be the corresponding “zigzag” paths from z; to Z and then to z,

while both o, 05 begin by 25 — 2o + Re(Z — 29) — 2 such that this sub-path contains no singularity. Again define

F(z)::fglfdz:f@fdz.

By a same reasoning we will see that F' is analytic which concludes the proof. O
Beginning of Feb.7, 2021

Proof. Let A: {z eD:Jmz + Jmz;, Rez + Rez; }, i.e., the collection of “good” points whose corresponding vertical
and horizontal lines contain no singular points. We choose z; € A. For z € 2, choose any vertical-horizontal-
vertical path ¢y avoiding z1, ..., z,.

Note that the definition F(z) := f f(2) dz is well-defined and independent of choice of the horizontal part
of oy. This is because of the generahzed” Cauchy’s rectangle theorem which states that the integral around a
rectangle, even if there are bad points inside, is 0.

Because of this, the y-derivative of F' depends only on the last vertical segment, that is,

OF .y
Ay

Similarly, we define o5 to be a horizontal-vertical-horizontal path, also avoiding z1, ..., z,,, and by the same token
oF
or T

(We can easily check that with the same endpoinds, integral over o; and o, are indeed the same by using the

rectangle theorem twice, so the resulting capital function is indeed F). Then we have

oF oF
= —7—

Or oy

so F'is analytic. It remains to notice that

OReF . OImE  OReF OReF

F' = D i e - On i oy =Ref —i(-Imf) =Ref +iImf = f.

Upshot. If F' is analytic and Z—F = f, aa—F =if, then F'(z2) = f(2).
z Y
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3.1 Index / Winding Number

To define the index of a curve around a point, we need the next lemma:

Lemma 3.1.1

Let a € C and let v be a piecewise smooth closed curve that does not pass through a. Then

1 1
2t Jy z—a

Recall that ~ is oriented; that is, reversing the orientation flips the sign of the number above and therefore the

index. We assume + is piecewise smooth.

[ Definition 3.1.2: Index |

For a € C not on the curve {7} (the image of v : [a, 3] - C), we define the index / winding number of v

n(vy,a) = L[y ! dz.

211 z—a

with respect to a as

Motivation for winding number.

If log exists on some ~ (not necessarily closed), then

L / L dz = L‘(log(ZQ —a)-log(z —a)) =
y 27

1 1l
211 zZ—a

+— - )
omi |21 - a QW(argzg arg z1)

As ~ approaches a closed curve, arg z5 — arg z; approaches +27, and the first quotient — 0. That is,

Beginning of Feb.9,2022

Proof of Lemma. Let z(t), t € [, 8], be a parametrization of 7. Let

h(t) = fat Z(Z;)(S_)a ds,

which is well-defined since z(t) # a for all ¢.

Idea: we expect h(t) =log(z(t) — a) but we have some technical difficulties. Thus we consider the exponential. Then
the fundamental theorem of calculus should imply that e~"(¥)(z(t) — a) is the constant 1 so derivative of everything
is 0.

We have, by FTC, that

(for piecewise smooth curve, partition the interval if needed). Then

("D (2(t) = a)) = =n' (£)e "D (2(t) —a) + D2 (1)

_ M —h(t —a e tzl _
= —at MO (2(t) - a) +e "D (t) = 0.

This implies e ") (2(t) - a) is constant on each partitioned interval. But e "(!)(z(t) - a) itself is continuous, so

it must be constant everywhere on [«, 3]. Hence substituting ¢ by « gives
PO(a(1) ) = MO ((a) = @) =M (3(0) a) = O ((8) - )
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so
e~h(®) eh(a)z(a) —a and eh(B) _ z(a) - a.
z2(t)-a z(B)-a
(Note that h(«) = 0.) Since z(a) = z(8) (the curve is closed) we see e™"(¥) = 1, so —h () € 2miZ. O

[ Proposition 3.1.3

Assume that ~ is inside B, (a). Then n(~, 29) = 0 for all 2 ¢ B,.(a).

Proof. Since 1/(z - zp) is analytic in B,(a). Then this along with - being closed implies the integral being 0. [

If v is closed, then C\{~} is open, so it is the union of open connected sets. These are the regions determined by ~.

[ Proposition 3.1.4

The index n(+,a) is constant in each of the regions determined by ~ and is 0 in the unbounded region.

Proof. The index is a continuous function in z; for z in the region determined by + (a short € — § proof on the

definition suffices) but the index can only take integer values. For the unbounded region, use the previous result

— continuously transform « to a sufficiently far a’ so that « can be entirely contained in some disk not including
/

a'. O

Lemma 3.1.5

Let v be closed. Let 21, 20 € {7y} and assume 0 ¢ {v}. Let 74 be the part of v going from z; to 25 and let ~, be
the part from z, to z;. Suppose

Jmzo > 0> JImzy

and assume

71N (_0070) =T2 ﬂ(0700) =g.

Then n(~,0) = 1.

Beginning of Feb.11, 2022

Proof. Let C be a “small” circle around 0 not touching + (in fact this is redundant). Consider the rays originating
from origin and passing though z; and z;. They intersect C' at two points. Let the one corresponding to z; — 2o

be C; and the other by Cs. Let the ray originating from 2z to the starting of C; be ¢; and the other §,. Consider
0'12:’)/1+")/2—61—51 and 02:’)/2+02—CQ—(52.
Then

Y=71 72

= (0’1 —52+01 +51)+(0’2—51 +CQ+52).
Though ~;,v2 are not closed, we can define their “non-integer index” as the integral

1 1
w00 = 5 5 4
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Using cancellations,
n(’Ya 0) = TL(C, 0) + n(ah 0) + n(027 0)

Note that the origin is in the unbounded component of o1 so n(c1,0) = 0. Likewise n(c2,0) = 0. Since n(C,0) =1,
we have n(v,0) = 1. O

Alhfor’s proof (HW): a piecewise piecewise smooth Jordan curve (closed path without self-intersections) splits a

plane into at least two components, an unbounded one and at least one bounded one with index +1.

3.2 Cauchy Integral Formula
Theorem 3.2.1: Local Cauchy Integral Formula

Assume f is analytic in a disk D = D,.(a). Let -y be a closed curve (smooth, by convention) in D. Then
_ 1 f(©)
n(2)f()= g [ To2AC forze Do)
In particular, if n(v, z) = 1 for some z, then
11 f(©)
=— | —=d(.
O e

We frequently apply this theorem to ~ as circles.

Proof. Consider
f(Q) - f(z)

c for ¢ e D\{~}.

F(¢):=

The F is analytic in D\{z}. At z, we have
lim(¢ - 2)F(¢) = lim £(¢) = /(2) = 0
by continuity of f. Applying the “general form” of Cauchy’s rectangle/disk theroem, we have

LF(C)dC=f7Wd<:o for z ¢ {~}.

f(z)[vgfzdczfvf.(fidc.

The LHS is f(z)n(y,2) and we are done. O

Therefore, for 2 ¢ {v},

Theorem 3.2.2
Assume that f is analytic in Q. Let D := D,.(a) be such that D c Q. Then f* is infinitely differentiable in D

and for all z € D, ) ©
(- Ef=) _ nl f(¢
F ) = dzn  2mi /(;D (¢ - z)n+l dc.

Beginning of Feb.14, 2022
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Proof. One can use Lebesgue differentiation theorem to show this proof, but we will adopt a more elementary

one. Let v : 9D — C be continuous and let

_ 2489,
P = o ey

where n € N. We claim that F}, is (continuous and) differentiable. For this, we note that for z € D,

F(Z) —F(ZO) = ./;D 7(5) ((5 _1Z)n B (f —12’0)71) df

Since 1/(¢ - 2z)™ is uniformly continuous inside D and z € D, we can adopt an € — § argument showing that
lim (F(z) — F(20)) = 0. (Because we also have 9D is compact so sup|p| < o). To compute the derivative, note
z—20

that (a-b)" = (a-b)(a" ' +a"2b+...+b"71).

1/(<—z>”—1/(<—20>":1/<<—z>—1/(<—20>( 1 1 )
: .

+ ...+
R R (R

Note that as z — zj, every term in the second parenthesis goes to 1/(¢ — z)""!. In the first term we have

1/((¢ - 2)(¢ - 20)). Therefore the difference quotient converges uniformly to

1 n

(C=20)2 (C-20)"!

lim M - faD ’Y(C)% de.

z=20 z-2 ¢ —2zp)nt!

Applying € - §, we have

Theorem 3.2.3: Morera’s Theorem

If f:Q — C is continuous and if f f dz =0 for every closed « in €, then f is analytic in €.
2l

Proof. We have proven that under these assumptions there exists F' analytic with F'(z) = f(z), i.e., f has an

analytic primitive. Therefore, by the previous theorem, f = F" is also analytic. O

Theorem 3.2.4: Cauchy Estimate

If | £(€)| < m on D,(a), then | (™ (a)| < Mn!/r™.

From this, f can be developed into an infinite Taylor series with radius at least r.

Proof. Choose any 0 < p <r. Then

n! 2w Jop,(a) (( - z)"*

TEAIC J Ny Y (S S
17}

Thus (n)
" 1 M M

n! 27 pn+1 pn
For other points, we consider smaller disks centered at z so that they are still contained in D,.(a). In particular
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we set the radius to be r — |z|. Then

Mn)
O i
(We will later see that f(")(z)/n!- (z - a)™ are the Taylor coefficients.) O
Theorem 3.2.5: Liouville’s Theorem
Let f be entire and bounded. Then f must be constant.
Proof. By the Cauchy estimate, |f'(z)| < sup|f|/r for all » > 0. Let r - oo, Done. O

Beginning of Feb.16, 2022

[ Proposition 3.2.6

If f is entire and |f(z)| < C|z|™ + 1 for some C' >0 and n € N, then f is a polynomial of degree < n.

Proof. By differentiating and using Cauchy estimate, we have f("*1)(z) = 0. O
3.3 Fundamental Theorem of Algebra & Taylor Series
Theorem 3.3.1: Fundamental Theorem of Algebra

A (complex) polynomial P such that deg P > 1 has at least one root. (So we can have factorization.)

Proof. Assume P has no zero. Then since lim|P(z)| = co, we obtain that 1/P(z) is well-defined, bounded, and

entire. Therefore P must be constant by Liouville’s theorem. O

[ Definition 3.3.2: Removable Singularity

Let 2 be open. Let a € Q and f: Q\{a} — C be analytic/holomorphic. Then f has a removal singularity at

a if f can be extended to an analytic function F': 2 — C.

Theorem 3.3.3

Let Q2 be open and a € Q. Let f: Q\{a} - C be analytic. Then f has a removable singularity at « if and only
if lim(z — a) f(z) = 0. An (seemingly weaker but still) equivalent version holds, requiring that f is bounded
inZ; ;eighborhood of a (excluding a).

(If a is removable, then f must be bounded to ensure F' is analytic; conversely if f is bounded then the limit

is 0.)
Proof. If a is removable, then
lim f(2)(z-a) - lim F(2)(z-a) =0

Since F is bounded, we must have the second term = 0 and so the first term = 0.

Conversely, let » > 0 be such that D,.(a) c . Using the more general version of Cauchy’s integral theorem for a
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disk, we have

fR) -1 .
faD,,.(a) z = C dC =0

(Nontrivial claim!) This is because the integrand is analytic in D,.(a) with a singularity satisfying the “nice”

condition. There are two singularities: z and a. Define the integrated to be G({). Then

lim (¢ - a)G(¢) = lim(¢ - a)if(z) nt ACOR

(~a (~a z-C
since %im(( —a)f(¢) = 0 by assumption, and for fixed = we have %im(q —a)f(z) = 0 as well. Similarly, %im(( -
a)G(¢) = 0. Therefore the nontrivial claim follows from the generalized Cauchy’s Theorem for circles.

)

This implies that f(z) = (2mi)~! oD@y 2~ C d¢ for all z € D,.(a)\{a}. Now we define
~(a) 2 —
o f(©)
F(z):= (2mi)™ :
()= (emiy [ 7oA
Then this is the analytic extension we seek. O

Beginning of Feb.18, 2022

Theorem 3.3.4: Taylor’s Theorem with Analytic Remainder

Let Q c C and assume that P is analytic on 2. Then, for all n € N, there exists f,, analytic on 2 such that

n-1 1) (g |
[ T A CO A 0 PR *)

= !

if some D,.(a) c  (here a € Q) is fixed). Moreover, for z € D,.(a),
1 (9)
In(2) =55 /ama) (e )

and (*) can be used to obtain an upper bound for the error term.

Proof. We prove by induction. For n = 1, we have
f(z) = fla) + f1(2)(z - a).

Consider F(z) := (f(2) - f(a))/(z—a). Since F is bounded, a is a removable singularity of F, so we can extend
F to a and call the new function f;.

To prove the inductive step, assume

n-1

D (a |
f)=3 fj,”( a) () (- a)"

J=1

and consider

F(z)= (fn(2) = fu(a))/(z~-a) z#a

fi(x) 2-a.

Then F’ is analytic in  in 2 (bounded assumption plus removable singularity). Then, we have

=l £ (a) .
HOEDY 7 ey fala) = (F(@)F(2)(z - a)")(z - a)"

J=0
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and this holds trivially for z = a.

We now compute f,(a) by differentiating it n times:

F™ () =0+ fn(a)n! + %(F(z)(z —a)™?).

(n)
Thereforef,, (a) = fil(z) This proves (*).
n

To prove (**), we I’lOté
r 1 n 1

271 JoD,(a) ( -z

From (*) we have o
n—1 7

(z-a)"  Filz-a)

To prove (**), it is sufficient to prove that

1
mw= [ o me s €°

for every z € D,.(a) fixed and w € D,(a). Forn =1,

1 1 1 1 1 . .
gu(w) = [GDT(a) (C-w)(C-2) de = Z-w f{wr(a)(g—z _C—7w) de = z—w.(2m_2m) =0

Differentiating g;, we get

(n)
g (w)
gn+1(w) = 2 !

so that g,.+1(w) = 0. O
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Chapter 4

Singularities of Analytic Functions

4.1 Zeros, Poles, & Unique Continuation

Beginning of Feb.23, 2022

Lemma 4.1.1

Assume that f is analytic in D,.(a) and £ (a) =0 for all n € N (and 0). Then f = 0 in D, (a).

Intuition: if we know existence of Taylor series then this is obvious. But we don't.

Proof. WLOG assume f is analytic in D,.(a). Let M := sup |f|. By Taylor’s theorem, for every n, there exists f,

D,(a)
analytic in D,.(a) with
n-1 £(j) .
1) = 1@+ 3 E ey = £ )6 -
=0 T
Also, ©
_ L 1O
fn(2) = 2mi /6D,‘(a) (C-a)"(¢-2) de.
We estimate
27r sup|f]| ~ M
[ (2)] < 2mrn - (r—|z—al) ™ l(r-|z-al)
M|z - a|™

Since |z — a| < 7, as n — oo we must have |f,,(z)| - 0. Thus f = 0. O

Theorem 4.1.2: Taylor Expansion

Let f be analytic in Q c C and let a € Q, r > 0 such that D,.(a) c Q. Then

co  r(n) a
IBENE n.( )

n=0

(z—a)" forall z € D,(a).
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The expression for “error” is R(z) = f,(2z)(z — a)™ as mentioned previously. This converges to 0 exponentially. The

rate of convergence of the power series is at least

R=sup{r>0:D,(a) cQ}.

Theorem 4.1.3: Unique Continuation

Assume f is analytic in 2 ¢ C which is open and connected and satisfies
f™@)=0  forallneNu/{0} (*)
for some a € 2. Then f =0 in Q.

Alternatively if f vanishes on an nonempty open set then f vanishes everywhere.

Proof. The second assertion is a consequence of the first, so we only prove the one associated with (*).
Let
A={zeQ: fM(z)=0forallneNu{0}}.

This is nonempty because of (*). It is open by the previous lemma. It is also closed because of continuity of f(").

Therefore, with 2 connected, the only possibility is if A = Q. This completes the proof. O

Remark. For C*(R), the statement is not true in general! We can consider bump functions like

2
eV 150

f(x) =
0 <0
where £ (0) = 0 for all n.
Example 4.1.4. Suppose f is analytic at 0 and
0 n+0
1(0) =
1 n=0

Then (f - 2)” = 0 for all n e Nu {0}. That is, f = z. More generally, if f, g are analytic in Q and f(")(a) =
g™ (a) for some a € Q and all n e Nu {0}, then f = g.

[ Definition 4.1.5 |

Assume f is analytic in  and is not identically zero. Then, for a € Q2 with f(a) = 0, we define
min{n e N: f("(a) # 0}

to be the order of vanishing or the order of the zero of a. If f(a) # 0 we define the order to be 0. We use

the notation ord, f =n .
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Assume f is analytic in 2 and ord, f = n for some z € ). Then by Taylor expansion, there exists f,, analytic in 2 with
f(z)=(z-a)"fn(2)

and f,(a) # 0. That is, we can factor out zeros!

Beginning of Feb.25, 2022

Theorem 4.1.6

If f is analytic and is not identically 0 in 2 ¢ C, then {f = 0} (the zero set) does not have an accumulation
point in €.
Consequently, if f, g are analytic in  and f = g agree on a set with an accumulation point in 2, then f = g.

(If the accumulation point is on the boundary, it does not count.)

Example 4.1.7. If f, g are analytic in 2 > R (connected) and f =g on R, then f =g on Q.

Proof. Assume that a € Q) is a zero of order n. Then there exists ¢ analytic in Q with f(z) = (z - a)"¢(z) and

g(a) # 0. Therefore by continuity g is locally nonzero around a, so each zero is an isolated zero! O

[

We temporarily fix the following assumptions:

Let a € C and r > 0. Fix an analytic function f in Q\{a} where a € Q. Assume that D,.(a) c Q.

We call ¢ an isolated singularity.

[ Definition 4.1.8: Types of Singularity

The singularity of a is either
(1) aremovable singularity, if f is bounded in D,(a)\{a} for some p € (0,r), as stated before;
(2) apole, if E_I)r}l f(2) = 0o (we'll expand later); or
(3) an essential singularity otherwise.
We say lim f(z) = oo if, for all M > 0, there exists r > 0 such that f(z) > M for z € D,.(a)\{a}.
Ifais azp_;ale, it is reasonable to define f(a) = oo, and it turns out that f is analytic with values in C.

Theorem 4.1.9

Assume that a is a pole of f. Then there exists a unique n € N and ¢ analytic in Q2 such that g(a) # 0 and

f(z) = 92) for all z € O\{a}.

(z-a)"

If we define f(a) = oo then the above holds for all z € 2. (Note the connection to rational functions here.)

Studying poles, in some sense, is equivalent to studying zeros of 1/f.
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Proof. The function 1/f(z) is analytic in Q\{f = 0}, where Q is open and {f = 0} discrete. Then 1/f(z) has a

removable singularity at a and its extension at a vanishes at a. Therefore there exists a unique n € N such that

1
) (z-a)"G(z)
for some G analytic on Q\{f = 0} with G(a) # 0. Therefore f(z) = (12/?22)21 for the same domain. Let g(z) :=

1/G(z) on Q\{f = 0}.
Since g(a) # 0 follows trivially, our final step is to show that we can extend g to all of ; that is, {f = 0} are all
removable singularities of g; that is, we check g is bounded locally around each point in {f = 0}, but this follows

from the fact that
9(2) = f(2)(z - a)"

where f(z) and (z — a)” are both locally bounded around zeros of f. (For b € {f = 0}, we have lin% g(z) =
lin% f(z)(z=-a)" = f(b)(b-a)™ which is still removable.) O
Beginning of Feb.29, 2022

Theorem 4.1.10

Let a be a pole and n € N its order. Then there exist unique nonzero by, b, ..., b, € C and ¢ analytic in Q\{a}

such that

b_la +¢(2) for all z € Q\{a}.

bn
f(Z)— (Z—a)” +

We all all but the last term ((2)) the singular part at a.

Proof. By Taylor expansion, since a is a removable singularity for (z — a)" f(z), we have
f(2)(z=a)" =bp +bp-1(z=a) + ...+ b1 (z—a)" " +(2)(z - a)"
for every z € Q\{a}. Dividing by (z — a)™ gives the claim. O
Theorem 4.1.11: Casorati-Weierstrass Theorem

Assume that « is an essential singularity. Then for every p € (0, 1), we have

f(Dp\a}) =C.

Example 4.1.12. ¢'/# has an essential singularity at 0. It does not take the value 0 or co.

Theorem 4.1.13: Great Picard’s Theorem

For a an essential singularity and for every p € (0,1), we have

f(D,(a)\{a}) = either C or C\{b} for some b € C.
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Theorem 4.1.14: Little Picard’s Theorem

If f is entire and nonconstant, then f(C) is either C or C\{b} for some b.

Proof of Casorati-Weierstrass. Assume the closure statement does not hold. Then there exists g € (0,1), A€ C,
and ¢ > 0, such that
If(z)-A|>246 forall z ¢ D,(a)\{a}.

This implies that lim M

| = oo. Therefore the function (f(z) — A)/(z - a) has a pole at a. Therefore there
z=a  |z—a

exists n € N and ¢ analytic on D,(a) such that g(a) # 0 and

f)-A  ¢(2)

= forall z € D,(a)\{a}.
z-a (z—a)”
Therefore
flz)=A+ _9(z) for all z € D,.(a)\{a}
(z=a)r 1t
so f is either a pole (if n > 2) or a removable singularity (if n = 1). O

Isolated Singularity at oo
Assume that f is analytic in 2 and D¢ c 2 for some r > 0. Now consider the function
9(2) = f(1/z2).
Then f is a removable singularity / pole / essential singularity at co if and only if g has the same thing at 0.

Example 4.1.15. Let P be a polynomial. Then oo is a pole if degP > 1.

Beginning of March 2, 2022

4.2 Local Mapping Properties

There are a number of ways to count zeroes in regions.

Theorem 4.2.1

Let z1, 29, ... be all the zeros of f that is not identically zero in D, (a). Let v be a closed curve in D which

does not pass through any zeros. Then

Vo L o)
Zn(v,zz)—zm v f(2)

dz.

This implies that almost all zeros have zero index.
Since analytic functions have discrete zeros, if f (nonzero) is analytic in a connected 2 and K c 2 is compact, then

f can only have finitely many zeros in K. We will use his fact in the proof.
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Proof. By reducing the radius we may assume that there are only finitely many zeros, z1, ..., 2, of f, repeated
according to their multiplicities. (Use the compact argument above.)

Then there exists a nonzero g in D such that

f(2) = (z-21)(2 = 22)-..(2 = 2n)g(2).
We define the logarithmic derivative by applying the Leibniz rule:

f@ZEﬂ@H@wﬁzﬁf@: L)

j#i f(Z) Z—Z1 Z = Zn g(Z) .

Integrating over v, we have

F'(2) =27 nn z
[vf(z) dz=2 Z; (7, 2n) +0.

Using chance of variable w = f(z), we have

f'(2) dw
ﬁf@zﬁmﬂ"

Then the number of zeros in v is simply the index of 0 in f o~. That is,

[ Corollary 4.2.2

Under the assumptions of the previous theorem, we have
> n(v,2;) =n(T,0),

where T" = f o 4. In particular, if v is a simple closed curve which does not intersect itself, then the total

number of zeros inside v (with multiplicities counted repeatedly) equals the index of f o~ around 0.

This can be applied to f(z) — a for any a € C. We obtain

da

Stz (@) = 5 [ 8

; mi Jy f(z)-a

where z;(a) are the zeros of f — a. After changing variable we see that the RHS is also the index of f o+ around a.

Upshot. The winding number does not change if we perturb a (i.e., if Aa is small).

Theorem 4.2.3

Assume that f is analytic at 2o and f(z) — wp has a zero of order n at zy. Then for § > 0 sufficiently small,

there exists € > 0 such that

f(2) = a has n distinct simple zeros in D.(zg) for all a € Dgs(wp)\{wo}-

Beginning of March 4, 2022

Proof. Let ¢y > 0 be small. Choose ¢ small so that f’, f —wg has no zeros in Ds(z9)\{#0}. Since zeros are isolated

such action is positive. Also assume Ds(zp) c 2. Consider r; := D,.(29) and denote I's as the composition f ors.
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Choose e small so that D.(wp) is in one component, i.e., D.(wg) n{I'} = @.
Leta € D.(wp)\{wp}. Then a has the same index number as wy, and f(z)-a has n zeros inside D.(wg) (counting
multiplicities) as shown in the index theorem above. By construction of ¢y, f’ has no zeros in Ds(z9)\{z0}, S0

the multiplicities can only be one. O

[ Corollary 4.2.4

Let f be analytic, nonconstant, and 2 connected. Then f maps every open set to an open set. We say such a

mapping is open.

[ Corollary 4.2.5

Let f be analytic at 2o with f'(z9) # 0. Then there exists an open neighborhood of 2z, which is mapped

conformally and homeomorphically to a neighborhood of f(z).

Proof. Let ¢ > 0 be sufficiently small. Then we can reduce it (if necessary) so that f/(z) # 0 in Ds(2). Then use

the previous theorem, as f maps f~'(D.(wp)) conformally and homeomorphically to D, (wp). O

Higher Order Multiplicities

Intuitively: if a is a zero of multiplicity n, then f behaves like 2™ near a.
Beginning of March 7, 2022

More formally, assume that the multiplicity of F'(z) — f(20) at 2 is n > 2. Denote wy := f(z9). Then there exists g
such that f,, —wo = (2 — 20)"g(2), g(z) # 0.
By continuity, there exists € > 0 such that |g(z) — g(z0)| < |g(z0)] for all |z — zg| < . Thus we can define log on the set

Dig(z0)(9(20)), and thus exists h(z) := (g())"/" or exp(log g(z)/n), and
f(2) =wo = (2= 20)"h(2)" = ((2)"
where ¢(z) = (z - z0)h(2). Note that
('(2) = h(2) + (2= 20)l'(2) = ('(20) = h(20) #0

since g(zo) # 0. By the previous corollary, ((z) is a local conformal homeomorphism. Hence f can be written as a

composition z ~ ((z) and then {(z) ~ ({(2))™.

4.3 Maximum Principle
Theorem 4.3.1

Assume that f is nonconstant and analytic in 2 ¢ C (open and connected). Then |f(z)| does not attain a
local maximum in €.

The converse is clearly false, as we have analytic functions that vanish at a point. However if we exclude
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this case then the theorem holds by the same reasoning below.

Proof. Let wy = f(20) where zg € Q. Since f is open, it maps open neighborhoods of z; to open neighborhoods
of wy. Thus f cannot attain a local maximum at 2, (in an open neighborhood, there always exists some point

with larger modulus). O

Beginning of March 9, 2022

[ Corollary 4.3.2

Assume that () is open, bounded, and connect. Assume f nonconstant is analytic in 2 and continuous on
Q. Then f achieves its maximum only on the boundary. (It has to attain max on Q by compactness and

continuity, whereas maximum principle prohibits such maximum to be in 2.)

4.4 Schwarz Lemma

The Schwarz lemma can be considered as an enforcement of the maximal principle for a disk.
Theorem 4.4.1: Schwarz Lemma
Assume that f is analytic in D and satisfies | f(z)| < 1, f(0) = 0. Then |f(z)| < |z| and |f'(0)| < 1.

If in addition there exists z € D such that | f(z)| = |z| or if |f/(0)| = 1, then there exists ¢ € C with |¢| = 1 such
that f(z) = cz.

Proof. Consider the analytic function
f(2)]z zeD\{0}
f1(0) =z=0

which is analytic (since 0 is a removable singularity or alternatively f(z) = zg(z)). Then

9(z) =

lg(2)| =1f(2)| <1 for all z € OD

and by maximum principle |g(z)| < 1 so |f(z)| < |z| in the disk.

The second claim follows since |g| cannot have an interior maximum 1 unless it’s constant. O

[ Corollary 4.4.2: Schwarz-Pick

If f:D — C is analytic and |f(z)| < 1 for all |z| <1 and f(z0) = wp, then

f(z) - f(20) < Z-20
1-f(z0)f(2)| [1-%0%
and
IO

1-1f(2)P ~ 1~ ol
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For the proof, we use S': w — (w —wg)/(1 - wWow), T : z = (z - 20)/(1 - Zpz), where wy = f(20). Then apply

Schwarz lemma to So foT71.

Remark. This theroem says that analytic f with |f| <1 on D reduces the Poincare distance

d(z,20) = £

1-20z2
If | f| <1 then
d(f(zo, f(22)) <d(z1, 22).

4.5 General Form of the Cauchy Formula

Let 74, ...,7n be piecewise smooth curves. We define

fdz= z f fdz.
i i=1J7i

The “sum” v := ¥ ; is called a chain. Two chains are considered the same if they lead to the same line integral for
every continuous f.

We can represent every chain as vy = a1y + ... + an¥n
Beginning of March 21, 2022

(Missed March 11: definition of a cycle and simply connected domains. Theorem: a region is simply connected iff

the index of every curve w.r.t. every point in the complement is zero.)
Index Zero = Simply Connected. Suppose 2 is not simply connected; that is, there exist A, B disjoint and
closed such that Q¢ = Au B.
Let A be the bounded one. Let § be the distance between A and B, and cover the plane with a net of squares of
side length < 6/4 (so that B is some squares away from A). If necessary, we slightly adjust the net to ensure that
at some point a € A is not on any edge. Consider

vi= > 9q

qe A

where A is the net. Since overlapping edges cancel, ~ is the smallest “zigzag” cycle containing ~. (Each boundary
is a cycle so the sum also is.) Furthermore, An{y} = @. (Otherwise a point a € An{~} needs to belong to either
two or four squares, and it will get cancelled.) Note that n(vy,a) = 1. This is because a € gy for some ¢ € A, and
so n(dqo,a) = 1 and n(dq,a) = 0 for other ¢’s. Adding them up gives n(v,a) = 1.
For points in A that lie on the mesh boundaries, we can “merge” two or four adjacent squares and see that the
indices are still 1. O
The notion of singly connected domains is useful for multiply connected domains, which we will discuss later.
For (finitely many) multiply connected regions, we can pick ¢ sufficiently small such that each bounded component

of Q¢ is separated by the §-mesh. For (infinitely many) multiply connected region this might fail: for example
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D\ |J{1/n}. Then n(~,a) = 0 for all a in the unbounded component of Q¢ and n(~y,a) = 1 for all a in the union of
nx1
bounded components of °.

If Q2 is bounded, we can do a similar mesh thing for €2 (to obtain a large zigzag ~ contained by (2, so it is closed and

is in Q) and get a “zigzag” boundary path ~ for .

[ Proposition 4.5.1

Assume () is open and connected but not simply connected. Then there exists f analytic in §2 and a cycle

such that

L F(2)dz % 0.

Proof. By the previous theorem there exist a cycle v and a point a € Q¢ such that n(y,a) = 1. Hence

1 1
—f dz =1.
2mi Jy z—a

Done: let f(z) :=1/(z - a). O

[ Definition 4.5.2 |

We say v € Cy is homologous to 0 with respect to Q (we write v ~ 0 (mod 2)) if n(v,a) =0 for all a € Q°.
In particular, if Q) is simply connected, v ~ 0 (mod Q) for all v € Cy.

Theorem 4.5.3: Cauchy Theorem, General Form

Assume f is analytic in € connected and ~ is homologous to 0. Then
[ f(z)dz=0.
~

Before now, Cauchy theorem required the domain to have the property that any z1,z3 can be connected via a zigzag

path.

[ Corollary 4.5.4: Cauchy Theorem for Simply Connected Region

Let  be simply connected and f analytic in 2. Then

f F(2)dz=0  forallyeCp.
Y

[ Corollary 4.5.5

Let 2 be simply connected. Let f be analytic in 2 such that f(z) # 0 for all z € Omega. Then one can define

log f(2), i.e., there exists a g analytic with
eI = f(2).

Consequently, we can define f(2)“ for o € R.
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Beginning of March 23, 2022

Proof. We apply the Cauchy theorem to f’/f. There exists F' such that F’ = f’/f. Then

Pt

7 fef=o.

(f(z)exp(-F(2))" = f'e”

Therefore there exists a € C such that f(z)e 7*) = qa.
Fix zp € Q. Then argf(zo) € [0,27). Then

F(2)e ) = f(z9)eF0) = exp(log| f(20)| + iargf(z0)) exp(~F(z0))

s0
f(2) = exp(F(2) +log|f (20)| + iarg f(z0) - F'(20))

and we are done. O
Proof of Cauchy Theorem. Assume () is bounded (otherwise since v is bounded we can shrink it) and v ~ 0
(mod ). We cover the plane with squares by size 0. Let A be the set of all squares and let 4, be the set

contained in Q. Define

Q(g = int U @

QeAp
(That is, Qs is the collection of §-squares entirely contained in (2.)

If § is sufficiently small (smaller than the distance between ~ and 2¢), then ~ is contained in Q5. Define
F5 = z 8@
QeAo
so that intuitively n (v, () = 0 for ¢ € I'5 (since ~ is away from I's).
To see this, if z € Qg € Ap, then

1 10 f(z) ifQ=Qo

; d¢ =
2mi Jog - = 0 otherwise
Therefore
1 f(<)
= forall ze(
f(2) 5.7 r5§—zd< or all z € Q5
o)

[rea- [ o[ Zf(_cz d<dz:/mf(<)d<(%/7édz):/mf«)dco:o.

[ Definition 4.5.6 |

A differential pdx + ¢dy (p, q continuous) is locally exact if it is exact in a bounded neighborhood of every

point in €.

Beginning of March 25, 2022
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[ Proposition 4.5.7

p dz + g dy is locally exact if and only if
[ pdx+qdy=0
OR

for every rectangle R with sides parallel to the axes and R c .

Proof. For <, use R as the neighborhood and the differential is locally exact.

For =, subdivide R into sufficiently small. Use local exactness and compactness to prove the claim. O
Theorem 4.5.8

If p dx + ¢ dy is locally exact in €2, then
f pdr+qdy=0
~

for every cycle v such that v ~ 0 (mod ).

This generalizes Cauchy theorem because if f is analytic then f(z) dz is locally exact.

Proof. We can replace v with a polygonal curve with edges parallel to the axes. Note that v does not contain a
inner curve or otherwise the original + is not homological to 0. We extend every segment into infinite lines so
that the plane and in particular ~ is partitioned into various rectangles.

Let R; be the collection of all the finite rectangles and R, the infinite ones (half strips). For each R € R1 uR2,
choose a point ap in the interior. Let

0p = Z n(vy,ar)0R.
ReRiUR,

We will show that + = oy. Easy computations show that

n(vy,ar) forall Re Ry
77/(’7070,1{) =
n(y,ag) =0 forall Re Rs.

Therefore n(y - 0g,ar) =0 for all R € R; U Ry, and we can replace ar by any point not on the edges.
Let o be any common side between two finite rectangles R’ and R”, where R’ is on the left side of o relative to
its orientation.

Assume that the reduced representation of v — oy has some co where ¢ is an cycle. Consider
o —o09—-cOR’'
which is a cycle. This cycle does not contain . Then
n(oc—o9-cOR' ar) =n(oc-0og—cOR", arr)

since the o in-between is no longer present and the winding number must be constant when moving inside the

same rectangle. However, the LHS is —c and the RHS is 0. Similar proof for infinite strips. Therefore ¢ = 0. Hence

v = Z n(o,ar)0R.
ReRy
This is because the expression for v — o contains no edge. It remains to show that every rectangle R € Ry such
that n(y,ar) has the property R c Q. This holds since v ~ 0 (mod ©): if R has a point not in €, then for that

point n(~,ar) = 0. O
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Beginning of March 28, 2022

4.6 Multiply Connected Domain

[ Definition 4.6.1 |

Q has connectivity n € N if C.,\Q2 has n connected components.

For example, () := C has connectivity 1. C\{0} has connectivity 2: the complement in C., has two components, one
{0}, the other {co}.

Intuitively, if we let A,,..., A,, be the connected components of C.,\(2, we can construct ~q,...,7,-1 such that
n(vi,a) =1forae A; € Co,\Q and n(v;,a) = 0 for a € Q°\A;.

Let v € Cy (cycles) and let ¢; := n(y,a) for a € A;. Then

Y~ ot eno1Yp-1 (mod Q)

since if a € A; for some fixed i € {1,...,n — 1} then

n(y - Y e1.a) = n(v,a) - cin(y,a) = 0.

j=i
Then, let a € A; for some 4, and

n(c1y1 + .o + Cn_1Yn-1,a) =0

We call 74, ..., v,-1 a homology basis for ().

Application

We would like to compute f f dz using / fdz.
. v

Yi
If v € Cy, the there exist unique ¢y, ..., ¢,_1 € Z such that
Y~y e+ Cuo1Yn-1 (mod Q).

Then

ffdzzclf fdz+...+cn,1f fde.
o Y1 Yn-1
P ::[ fdz
Vi

The integrals

are called modulus of periodicity or periods.

[ Proposition 4.6.2

If all periods of f vanish, e.g., if 2 is simply connected, then f f dz = 0 for all cycles v and thus f has a
vy

primitive. This is a version of Cauchy’s theorem for a n-connected domain.
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Example 4.6.3. Let 2:=D\{0}. Then v; = 9Ds(0) for any § € (0,1).

4.7 Residues

The calculus of residues is based on the following theorem.
Theorem 4.7.1

Assume f is analytic in D,.(a)\{a}. Then there exists a unique R € C, called the residue of f at «a, res, f, and

an analytic function F' in D, (a)\{a}, such that
R /
f(z)- = F'(2).
zZ—a

In particular,

[y f(2) dz = 2miRn (v, a).

Proof. Let v, = 0D,(a) where p € (0,7). Let

1
R::%/;1 f(z) dz.

The function
R
9(z) = f(z) - —
z-a

satisfies

f g(z)dz = f f(z)dz - f i dz =2miR - 2miR.
71 Y1 Y1 2 —Q

Therefore f g(z) dz =0 for all y € Cy. Therefore g has a primitive. O
vy

Beginning of March 30, 2022
Theorem 4.7.2: Residue Theorem
Assume that f is analytic except on a discrete set A = {ay, as, ...} c Q and that f is analytic in Q\A. Then
L fdz=2mi) n(y,a;)Res(f,a;)
J

for every v € Cy not intersecting A and v ~ 0. Since A is discrete, we have n(v,a;) = 0 for all but finitely

many.

Proof. WLOG assume A = {ay,...,a,} is finite (for we can always throw away those with index 0). Let vy, ..., v,

be sufficiently small circles so that the disks are separated. Also assume that these disks are entirely in Q2. Then

oy -3 R0

i zZ—aj
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is periodic. So

/ f- Z Res(/,a;) dz = 27TiZReS(f» a;)n(v, a;)-

47
Computing Residues at Poles
If f has a pole of order n, then

9(2)

(z-a)

f(z) =

where g is analytic and ¢g(0) # 0. By Taylor’s theorem,

F(2) = 9(a) + (2 - ) (a) + ot (2 -y LD L (o ay(a)

(n-1)!
where h(z) is also analytic.
Then D)
Res(f,a) = NCEE
Inductively we have
g(a) = lim f(2)(z - a)"
@)= (£ -0y - 242
9" V() g(a) g'(a)/1! 9"V (a)/(n - 2)!
(nlyli“(f”()()(w) )

Example 4.7.3. Compute f M 4z using residue theorem. Note that
0o
sinz = -
27
and e'* is small in the upper plane and e~** small in the lower plane. We use

. 1T
sinx e
=Jm—
a8 T

which has a pole. Let R > ¢ > 0 and we consider the upper ring induct by the disks with radii R and e. Call

the upper semicircle of € r. and the one by R, rr. Then by the residue theorem / Cauchy theorem,

—e eiz eiz R iz eiz
[ —dz+[—dz+[ —dz+f — dz=0.
-R Z Te 2 € z TR R

eiz 1 .
lim [ —dz= —§2m'ReS(e”/z,0) = -
z

e~>0 Jy,

We claim that

To see this, note that |(e’* — 1)/z| is bounded by some M > 0 for |z| € (0,1). Therefore

iz _

lim dz = lim 27e = 0.
=0 Jr, z
Therefore ‘
1z 1
lim — dz =1lim —dz=-mi
e~0Jr, 2 e—~0Jr, 2
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We claim

lim — =dz=0.

R—o0 TR z

To this end, partition r into three parts, rg) , rg), rg’) so that rg) is the part with Jm > /R. Then

and

eiz (1) 1 1 C
— dz|<|rp’| - =<C-VR-—=——>0asR— o
|/rg;> z EUR R r
iz =R
(& e 1/2
f — dz| < 27R :QWe’R/ —0as R — oo.
rg) z R

The part for rg’) is the same as the first.

Going back to the original four sums, we obtain

_€ei:c Reia:
f —dx+/ — dr > 7miase—>0,R — oo.
-R X € &

Taking imaginary part,

SO

~€sinz R sinx
f dz + f dz -,
-R 4 € xT

% ginx T
/ dx = —
0 x 2

in the improper Riemann sense.

Beginning of April 1, 2022

With the method of residues, we can evaluate integrals:

2w .
1) /0 R(cosf,sinf) df. Use z = €', cos = (2 + 1/2)/2, and sinf = (2 — 1/2)/(27). Then the integral becomes

2

(3)

4)

(5)

(6)

/‘ R((z+271)/2,(z-2"1)/2) &
oD )

12

P, @ polynomials with deg@ > degP + 2 and Q(x) # 0 on the real axis. Then

o~ P
() dz = 2mi Z Res(P/Q, z).
-~ Q(7) 20€Q-1({0})n{Imz>0}

P, @ polynomials with deg@ > degP + 2 and Q(z) # 0 on the real axis. Then

P(z) e dx = 2mi > Res(e") P(2)/Q(z2), 20).
—00 Q(x) 20€Q1({0})n{Imz>0}

If deg@ > degP + 1 and Q(x) # 0 on the real axis then

~ P(x)
Q)

e dx=...

as an improper Riemann integral.

© P(x)
[oo Q(z)

sinz dx where deg(Q) > degP + 1 and @ has a simple zero at 0. Use the upper half disk minus an

upper half e-disk as used in the example of sin z/x.

oo
S
0

P(z)

Q(z)

dz where deg@ > degP +2 and a € (0,1).
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Consequences of the Residue Theorem

Theorem 4.7.4: Argument Principle

Assume that f is meromorphic (analytic except at poles) in Q2 with zeros a; and poles b; repeated according
to multiplicity. Then for every cycle v € C such that v ~ 0 (mod Q) and v does not pass through any poles

or zeros, we have

L[v f—’ dz = Zn('y,aj) = Zn(’y,bj).

2mi f ; 5

More generally,

3 [ £ 0 4z = Tntr.a)ata) - KnGab)a(h).

Proof. If f has a zero of order n at a, then f(z) = (2 — a)"¢(z) where g is analytic and g(a) =+ 0. Then
f'(z)=n(z-a)""g(z) + (z - a)"g(2)

SO
fe) L g
1) Tama )

where the quotient is analytic, so the residue only comes from n/(z — a). Hence

Res(/'/f,a) = m.
If f has a pole at a of order m, then by the same argument we have Res(f’/f,a) = —m. Combing the cases and

we obtain the claim. O

Theorem 4.7.5: Rouche’s Theorem

Assume v ~ 0 (mod ) and assume that n(v, z) is either 0 or 1 for z € Q. Assume |f(z) - g(2)| < |f(2)| for
z € {~}. Then f and g have the same number of zeros enclosed by ~.

In particular; if g looks crazy but f is not, then his provides a powerful method of counting zeros.

Beginning of April 4, 2022
Proof. We know
lg(2)/f(2) -1 <1.

Let T be F o+, where F = g/f. Then by the argument principle,

e[ Fe T - B e

zeros of F' poles of F'

The first corresponds to the zeros of g and the second to that of f. (We can assume the zeros of F' are not zeros

of f for the zeros of g, for even if that happens our claim holds.) O
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Example 4.7.6: Fundamental Theorem of Algebra. Consider p(z) := 2" + a,,_12"" + ... + ap. We suppose

p(z) and z" are in a disk D, where R is sufficiently large. Since for R > 1,

Ip(2)/2" - 1] = dn-1 | a”;2 o+ a—: < [anal+ ... +]an|

)

if we set R > max{1,|ap-1| + ... + |a,|} then |p(z)/2"| < 1 in dD,. By Rouché, p(z) and z" have the same

number of zeros in Dg, so it has n zeros in the closure.

Theorem 4.7.7: Enhanced Version of Rouché

Assume v ~ 0 (mod 2) and assume that n(~, z) is either 0 or 1. Assume f, g are meromorphic in 2 with no

zero and pole on {~}. If
1£(2) =92 <[F () +]g(2)l,

then (the number of zeros of f inside ) minus (the number of poles of f inside ) equals (the number of

zeros of g inside ) minus (the number of poles of g inside 7).

Proof. We write

OIS
FERRN FE) i
Then f(z)/g(z) ¢ (-0, 0]. Since {7} is compact,
O
()= ¢ (ceo.0)

in an open neighborhood Qg of {v}. Let Q' := h(€). This is open (WLOG f/g is not constant) not containing
zero. Therefore log is defined. With the principle branch,

14 !
(loghY = (o5 f ~logg)' = == -~
[
so f'/f - ¢'/g has a primitive in Qy. Hence
U !
0= [ g
2ri vy f g
The claim then follows from using v ~ 0 (mod £2). O
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Chapter 5

More Topics

5.1 Uniform Limits of Analytic Functions

Theorem 5.1.1

Suppose f, is analytic in €2, ¢ C and f,, converges to f defended on 2 uniformly in compact subsets of €.
Then f is analytic in €.

Moreover, f; converges to f’ uniformly on compact subsets of €2 as well.

This does not hold in calculus: n~!sin(nz) — 0 uniformly in [0, 1] but the derivatives cos(nx) does not converge in
any sense.

The assumptions imply that

(@
8

QcliminfQ,, =

n—o00

Q;

I
=
.

]

<

J
Beginning of April 6, 2022

More formally, we say f, defined on ,, converge to f on 2 uniformly on compact sets (subsets of ) if, for all

€ >0 and for all K c Q compact, there exists ng € N such that

n2ng =— KcQ,and|f,(z)- f(z)|<e forall x € K.

Alternatively we can replace K by any disk whose closure is in Q2. Typically we either have Q,, = Q or Q,, » Q.

Proof. Let zy € Q and r > 0 be such that D,.(z) c . Since f,, - f uniformly on D,.(29), we get

/;fdz:()

for every v in Cy w.r.t. D,.(z). O

Assertion: let D,.(z9) c Q. Then

fy L[ 1O
O T

forall z € D,.(29). Since (¢ -z)? is bounded, for fixed 2, f,,(¢)/(¢-z)? converges uniformly to f(¢)/(¢-z)?. Passing
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to the limit on a compact set we obtain

L PO
lm =g o =T

where the last = is by Cauchy. Observe that this is uniform in compact subsets of D,.(z) as well.

[ Corollary 5.1.2

Assume f,, is analytic in §2,, and assume that

f(2) = f1(2) + fa(2) + ...

converges uniformly on compact subsets of 2. Then f must be analytic in .

Theorem 5.1.3: Hurwitz
Assume that each f,, is analytic and nonzero in 2 and assume that f,, — f uniformly in compact subsets of
Q. Then either f = 0 or f has no zeros in ().
Beginning of April 8, 2022
Proof. Assume that f is not identically 0. Let D,.(a) c Q and assume that
1({0}) ndD,(a) = @,
which is always possible since zeros cannot accumulate. Then there exists ¢y > 0 such that |f| > ¢y in dD,.(a).

1 OIS 1'(2)
0= 2mi ./8Dr(a) fn(2) dz 2mi fam(a) f(z) dz

where the first = is because f,, has no zero. The RHS is the number of zeros of f in D,.(a), counting multiplicity.
O

Therefore

5.2 Taylor Series

Recall that if f is analytic in D,.(z¢) then

(% M) (2
f(2)=f(z0)+ / (1!0) (z—20) + ...+ fT('O)(z - 20)" + frne1(2) (2 - 2)"

where

_ 1 f(©)
Fri(2) = 27 [@DT(ZQ) (¢ —20)"1(C-2) d¢.

Also,

SUDoD, (20)lf ()12 = z0]"*
(e — |z = z|)

" 1
|frs1(2) (2 = 20) +1| < —27r
2T
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Theorem 5.2.1
Assume f is analytic in 2 and zg € 2. Then
<z>-zf Ok
for |z — zg| < r where r is the distance between 0 and 92.

If the radius r of the series is strictly greater than the distance between zy and 912, then f can be extended to an
analytic function in Qu D,.(z).

o0
If we have two series, Z a;z" and Z b, 2z’ with radii of convergence rq, 73, then
i=0 3=0

fg = aobo + (a0b1 + albo)Z + (a0b2 + CL1b1 + a2b0)22 + ...,

where the coefficients convolve, has radius of convergence min(r,7) since fg is analytic and its n'" derivative is
precisely the convolution of the first n terms.

How about inverse? Given f, find ¢ such that g(f(z)) = 2? We want by, b1, ... such that

b0+b1(a0+alz+a22 +. )+bg(zo+a1z+a2,z +. )2 =

Beginning of April 11, 2022

For a product, define

f(z)=ag+a1(z-2) + z2(z - 20)2 + ...

and
g(2) =bo +b1(z—20) +ba(2 - 20)? + ...
so that
F(2)g(2) = co +c1(z — 20) + ca(z — 20)° + ...
where

()& (z0) A7)
U@ =@ 3 (") .

= '
()™ d” P dzi deni

Going back to the “inverse”, we see that
1= a1 b1
0= blag + bga%

0= b1a3 + 2b2a1a2 + bga?
so that we know b; = 1/a; from the first equation, b, from the second, and b3 from the third.

5.3 Laurent Series

Recall that ag + a1z + as2? + ... converges for |z| < R where R € [0, ) is its radius of convergence. For aanlytic

function and R > 0,

ay as
a0+—+—+
z Z9
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therefore converges for |z| > 1/R if the function corresponding to these coefficients is analytic for |z| > 1/R.

The series

a_9 a_q

5 +ag+ay(z-2)+as(z-2)%+...
(z-20)2 z-2

is called a Laurent series and converges in some region R; < |z — 2| < R2 (an annulus).

Theorem 5.3.1: Laurent Development

Assume that f is analytic in a ring Ag, g, := {R1 < |z — 20| < R2} where 0 < R; < Ry < oo. Then we have

f(z)= i an(z—=20)"

n=—oo

for every z € AR, r,, with

1 f| O de, for any/some r € (Ry, Ry).

ap = —
" 271 J|¢—z0|=r (C - Zo)nJrl

If R; =0 (i.e., isolated singularity at origin), then

Res(f7 ZU) =a-1.

Proof. WLOG assume z = 0. Let 7y = 1 + 2 where v, = -0D,,, and v2 = 9D,.,. We get
1 f(<) 1 f f(<)
=5 fop o s oy 7o 4

2mi Jop,, (-2 2mi -z

for all z in between. We call the first term f; and the second f5.

Then more generally, for z € Q\{v},

w1 = o [ H e

Consider first

e o [ M

2mi -z

which is analytic for |z| < Ry. Moreover,

= [ IO g

2mi Jop,, ((—z)i*L
o) o)
fa(20) 1 f(<)
jl 2w faD,,2 (¢ —2p)*t de.
Therefore

fo(2) =ap+arz + asz? + ...

Beginning of April 13, 2022

Proof Continued. Now we analyze f,;. We rewrite it as

1) =5 faD,‘l ¢ m faDm ez
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which can be written as a series:

i Loy, SIOQ )+ e

2m z
where the limit commutes with the integral, so it equals

11 1 1 1
2 2mi faprl f(0) d<+;% faDrz ¢f(0) dC+§ff)~Dr2 CrO)d¢+...

—> 00—

Recall that if f has a pole at zg, then

f(z):a%”+...+ ¢

-1
(z—20)" (2 - 20)

singular part

tag+ai(z—20)+....

regular/analytic part

Note that if the singular part has finitely many terms then it is a removable singularity or a pole, whereas infinitely

many terms correspond to an essential singularity.

Theorem 5.3.2: Mittag-Leffler Theorem

Assume that {b, }>>, are different and b,, > . Let P, (¢) be polynomials without constant coefficient. Then
there exists a meromorphic function f with poles at b,, with the singular part P,(1/(¢ - b,)). Moreover,

every such function can be written as
F(2) = 2 (Pa(1/(2 = bn)) = pu(2)) + 9(2)

where p,, are polynomials and ¢ entire.

Proof. WLOG assume b,, # 0. The function P,,(1/z - b,,) is analytic in |z| < b,,. Then there exists 7,, such that

[bn]

€ ~
<— for 2| < — whenever n > 7.
2n z

E

—Un

Let p,, be the polynomial with index n = 7i,,. Then

1= 3 (P () -2)

n=1

converges uniformly on compact subsets of C\{b1, b5, ...} to an analytic function. Consider
g:=f-Pu(1/(z-bn))
for a fixed n. Then g has a removable singularity at b,,, so f has a removable singularity at b,,. O
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5.4 Infinite Products

[ Definition 5.4.1 |

Let p1, po, ... € C. The product
p=pipa- =[] pn
i=1

converges if
(1) at most finitely many terms are zero, and

(2) there exists k € N such that

DPks PkPk+15 PkPk+1Pk+25 -+

converges to some g € C\{0}.

We then say p = p1p2-.-Pr-19-

Note that we allow finitely many factors to be 0 but we do not want the product to converge to 0 so that (product

is 0) < (one of the factors is zero).

Example 5.4.2. We will see that (1+1/2%)(1+1/32)(1 + 1/4?)... converges.
Then0-1-0-1-... does not converge (diverges), 0-1-1-1-... convergesto0-1=0,and 0-0-0-... diverges.
Finally, 1-(1/2)-(1/3) - ... diverges since the product — 0.

[ Proposition 5.4.3

p1p2... = 0 if and only if there exists j € N such that p; = 0.

Beginning of April 15, 2022

[ Proposition 5.4.4

If p=pips..., then p, > 1.

Proof. WLOG assume pneqq for all n. Let P, := the first n products. By assumption P,, — p for some p € C\{0}.

Then since p,+1 = Ppy1/ P, we have p,.1 — 1. O

Theorem 5.4.5

Assume 1 +a,, # 0 and a,, - 0. Then the product [[(1 + a,,) converges iff " log(1 +a,) converges.
n=1 n=1

Proof. (Idea: One direction follows from above. If the product converges then 1 + a,, » 1 and 1 + a,, eventually
belongs to {$Rez > 0} so the principal branch of log is defined. Conversely, we want log(1 + a,,) — 0 and so

principal branch is well-defined and 1 + a,, > 1. )
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Denote

NIE

Sp =) log(1+ay) and P, := [[(1 +ay).
k=1

o
I

1
If S,, converges to some s, then P, — e®.
Conversely, we assume P, — p, i.e., e>» — p # 0. From this we see S,, - some s modulo 27i. That is, there exist

kn, such that S,, — 27k,i — s. This implies
> log(1+ay) - arkyi — s,
k=1

SO

n+l n
(3 tog(1 +ax) = 2mknsai) - (3 log(1 +ax) - 2mkni) > 0.
k=1 k=1
Hence

log(l + ak+1) - 27T(kn+1 - k‘n)i - 0.

Since P, converges, we have 1 + a; — 1, i.e., ap — 0. On the other hand 27 (k,, — k)i is always an integer

multiple of 27ri. Therefore we must have k.1 = k,, for sufficiently large n. This solves the modulo 27 issue. [

Theorem 5.4.6
Assume Rez, > —1 so that Re(1 + z,,) > 0. Then

log(1 + 2, ) converges absolutely < Z z, converges absolutely.
1 n=1

M8

n

As usual we are taking the principal branch of the log. In either case z,, > 0.

Proof. The proof relies on the estimate

1 3
5l < llog(1+2)] < 52

for z close enough to 0, say |z| < 1/2. For such nonzero z,

1_10g(1+z) :1_z—z2/2+z3/3—... _ z_£+.
z z 2 3
1 2
< =(lz| + |z2| + |z3| +..) = |2l/ <1/2.
2 1-17]
Therefore
1 [log(1 3 1
2 z 2 2

Now for =, assume ) [log(1 + z,,)| < 0. Then there exists ng such that |z,| < 1/2 for n > ng. Then

oo no—1 oo no+1
Z|zn| = Z |zn| + Z |2n] € Z |zn| + 2 Z [log(1+ z,)|-
n=1 n=1 n=ng n=1 n=ng
For < we split up the sum again and do the same thing. O
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| Definition 5.4.7 |

[1(1 + a,) converges absolutely if » log(1 + a,) converges absolutely. By the previous theorem, we
n=1

n=1

have2|log(1 +ap)| < oo < Z|an| < oo.

n=1 n=1

Theorem 5.4.8

Let {z,} € C. Then
[1(1+a,) converges absolutely < »"|a,| < .

n=1 n=1

Beginning of April 18, 2022
Theorem 5.4.9
Assume that f,, are continuous functions on A c C to D, (0) and

M lfal €M < o0 on A
n=1

or
> flog(1+ f)| < M < o0 on A.

m=1

Then
M in the first case

fiu+mm< ‘

3M/2 in the second case.

5.5 Canonical Products

For motivation, we prove the following theorem:
Theorem 5.5.1

Assume that f is entire and has a finite number of zeros a4, ...,ay (nonzero), listed according to multiplici-

ties. Assume 0 is of order m. Then there exists a nonvanishing entire g such that

N
f(2) =2"exp(g(2) [1(A - 2/an).

n=1

Proof WLOG assume N =0 and m > 0, for we can divide by 2™ [T)_, (1 - z/a,,).

Now assume f is entire and has no zeros. We claim that we can write it as exp(g). Let go be an entire function

with g{ = f'/f. Then
(0 = ~ghe™®f + e =0
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S0
e™9(3) () = constant = ¢ %) £(0).

Since f(0) # 0, there exists a € C with f(0) = ¢®. Then

f(z) = 90(2) o=90(0) oz _ ,a=g0(0)+g0(2)

O

Theorem 5.5.2

(Weierstrass) Let a1, as, ... € C\{0}, be listed according to multiplicities be such that lim a,, = co. Then

(1) there exists f entire with the zeros prescribed as above and 0 with multiplicity m e N.

(2) there exists m,, € N (depending only on ay, as,...) such that for every function f as in (1), there exists

g with
f(z) = 2meI®) [T1(1-2/an)exp(z/a, + (2)an)?)2 + ...+ (z]an) ™ [my,).
n=1
[ Corollary 5.5.3

Every meromorphic f on C is a quotient of two entire functions.

In any bounded region, a meromorphic function is therefore a quotient of two analytic functions.
Proof. Consider zeros and poles, apply Weierstrass. O

Example 5.5.4. If we want the product

2™ 102[1(1 - z/an)

to converge, then a sufficient condition is ) 1/|z,| < co. This is not necessary though; for example we can
n=1
take a,, = n.

Beginning of April 20, 2022
Proof of Weierstrass. Consider [ [(1 - z/a,) exp(p,(z) where p,, are polynomials TBD. It converges if and only
n=1
if
Z (log(1 - z/an) + pn(2))
n=1

converges. Ignoring a finite amount of terms, for any z, eventually 1 - z/a,, € D;5(1) uniformly on bounded
sets, for we can choose the principal branch of the log. Recall that
2 .3

z
log(l-2)=24+—+—+...
og(l-z)=z+—+7

which converges uniformly in |z| < 1/2. Let

2 1( z )2 1 ( 2 )mn
pn(z) = —+ = ot —
a, 2\a, Mp \Qp
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where m,, depends on n. We need to estimate the error

o (T ()

m+n+1\a, My +2 \a,

Note that for |2| < R,

1

my + 1

z

a’ﬂ,

z

Qnp

5 myp+1 2 1 R n 1
1+ +..]—— P Er—
my, + 1\ |ay] 1= Rflan|

(293
oo 1 R ma+1
e < 00
TLZ::l My + 1 (|a7‘b|)

for all R > 0. This is possible since m,, = n works:

o n+l
> L ( R ) < 00,
n=1

Irn(2)] < +

We can arrange the m,,’s so that

n+1 m

Also, m,, = n® works for any § < 1.

With such choice of m,,’s, we get
Z [rn(2)] < o0
n=1
uniformly on bounded sets, so the product converges absolutely and uniformly on bounded sets. O
5.6 Riemann Mapping Theorem

Theorem 5.6.1

Let Q2 be simply connected with 2 # C. Then there exists a conformal isomorphism (analytic homeomor-
phism) f : Q — D. Moreover, for any 2, € (2, there exists a unique f : Q — D conformal, bijective, such that
f(z0)=0and f'(2) > 0.

[ Corollary 5.6.2

In R2, all simply connected open subsets are homeomorphic to each other.
Lemma 5.6.3

Assume that f : D — D is an analytic automorphism. Then there exists a € D and ¢ € R such that f(z) =
e¥(z-a)/(1-az).

Beginning of April 22, 2022

Proof. Let f(a) = 0. Consider
f(2)
(z-a)/(1-az)

which is analytic with a being a removable singularity. Since g have no zeros and |g(z)| — 1 as |z| - 1. Applying

9(2);=

maximum and minimum principle we see |g(z)| = 1 for all z ¢ D. We need: for all ¢ there exists ¢ such that

|f(2)] 2 1- e whenever |z| > 1 - ¢. If this is false, then there exist a sequence {z,} with |z,| - 1 such that | f(z)| <
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1-e. Passing to a subsequence, since the disk with radius 1 - is compact, there exists a convergent subsequence.

Applying this to the inverse implies that z,, converges inside the disk with radius 1 - ¢, contradiction. O

5.7 Normal Families

We denote the set of holomorphic functions in {2 ¢ C (open, connected) by Hol((2). It is possible to define a metric
on Hol(Q2) so that the corresponding topology is uniform convergence on compact sets.
Let K, 1 Q2 be an increasing sequence of compact sets. Define
= 1 supg|f -l
d(f,g) = —_
9= 2 o Tosupy, I -
Then (Hol(2), d) is a metric space (and an algebra).

[ Definition 5.7.1 |

A set ® c Hol(Q?) is normal or relatively compact if ® is compact.

[ Definition 5.7.2 |

A set @ c Hol(Q?) is uniformly bounded on compact sets in  if for all K c Q compact, there exists
B(K) >0 such that |[f(2)| < B(K) forall z ¢ K and f € ®.

| Definition 5.7.3 |

A set ® c Hol(2) is equicontinuous in a set A c ) if for all € > 0, there exists § > 0 such that the e - ¢

condition holds for all 21,25 € A and all f € ®.
Theorem 5.7.4: Arzela-Ascoli Theorem
If a family is equicontinuous on a compact set then it is relatively compact.
Beginning of April 25, 2022
Theorem 5.7.5: Normal Families

Assume ® c Hol(2) and assume @ is uniformly bounded on compact subsets of ®. Then ® is equicontinuous
on every compact subset of {2 and and is also relatively compact. That is, local boundedness implies relative

compactness.

Proof. Let K c ) be compact and let § := dist(K,012). Then for all z € K,

()= b £(©)
J() = 2mi /aDg(z) (C-2)? dc

SO

1 )
£ < 5m2ms sup |7
T 2 DK

(We need D;/, K because the derivative on the boundary of K involves points further away.)
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Now for relative compactness. Let K; c K5 c ... be compact with | JK,, = Q, and let f, f2,... €¢ Hol(Q2). By
Arzela-Ascoli there exists a subsequence fi1, fi2,... converging uniformly on K;. Again there exists a subse-
quence fo1, fo2, ... of the previous subsequence converging uniformly on K5. So forth and so on. Now consider

f11, f22, f33, ... which converges on every K,,. We are done since every compact set is contained in some K,. [

We’ll work with injective mappings. Let Q2 c C be a region. If f € Hol(Q2) is 1 — 1, then f'(z) # 0 for all z € Q and

f:Q - f(Q) is an analytic isomorphism. In particular, it is open.

[ Proposition 5.7.6

If Q) is open, connected, f,, is 1 - 1 and analytic in Q, and f,, - f in Hol(Q2), then f is 1 — 1 or constant.

Proof. Assume f is not constant. Let zg € ) be arbitrary and consider

gn(2) = fn(2) = fa(20)-

Then gy has no zero in Q\{zy}. Since f is not constant, the function

f(z) = f(%0)
has no zero in Q\{zp} (Hurwitz). Since z, is arbitrary, f is 1 - 1. O

Beginning of April 27, 2022

Proof of the Riemann Mapping Theorem

Proof. Step 1. There exists an analytic isomorphism of €2 with an open subset of .

Here we require 2 # C. Then there exists a € Q°. Since 2 is simply connected, we may define g(z) := log(z — «)
which is analytic in 2 and 1 - 1.

We also have g(z) # g(z0) = 2mi for all z # z;. We claim that there exists ¢ > 0 such that g(2)nDs(g(z0)+2mi) = @.
If not, there exists z,, € Q2 such that g(z,,) = g(20) + 27 s0 g, - 2o and g(zo0) = g(z0) + 2.

Then
1

9(2) = g(z0) - 2mi

is 1 - 1 and bounded above by 1/4.
Step 2. By step 1, we can WLOG assume 2 c D and that 0 € 2 by using fractional linear transformations. (For
the latter, use for example z — (z - a)/(1 - @z).) That is, 2 c D is open, simply connected, and contains origin.
Consider the nonempty family

O:={f:Q->D,fis1-1and f(0) = 0}.

We claim that there exists f such that |f/(0)| is maximal.
Denote

A :=supl|f’(0)] > 0.
fe®

and find a sequence f,, € ® with |f](0)] — A. Note that f,, is normal. By the theorem on normal families, we

can assume f, — f in Hol(Q) (uniformly on compact subsets). By the maximum principle, we have |f(2)| < 1
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for all z € Q. Also, f is 1 -1 by the previous proposition and nonconstant since f'(0) # 0. Therefore f ¢ & and

[17(0)] = A
Step 3. Let f be as in the step. Then f(§2) = D. Assume not, so there exists « € D\ f(§2). Let

-«

T(z):=

1-oz
Since () is simply connected and 0 ¢ T'(f(f2)), there exists h(z) = /T (f(z)). Let

_ 2=N0)
R(z): L h0)s

and consider g(z) := R(\/T(f(z)). Then g(0) = 0 so g € ®. It remains to prove |¢’(0)| > | f/(0)| for a contradiction.

Let Sz := 22 and consider

p(2) =T (S(R'(2)))
so that f(z) = ¢(g(z)). Then ¢(0) = 0 since f(0) = g(0) =0 and ¢ : D — D. Also, ¢ is not 1-1 so |¢’(0)| < 1 by the
Schwarz lemma. Now by chain rule

£1(0) = ¢"(9(0))g'(0) < g'(0).

Contradiction. O
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