

Math 541a Homework 5

Qilin Ye

September 22, 2022

Problem 1

Let $X, Y, Z : \Omega \rightarrow \mathbb{R}$ be discrete or continuous random variables. Let A be the range of Y . Define $g : A \rightarrow \mathbb{R}$ by $g(y) := \mathbb{E}(X | Y = y)$ for any $y \in A$. We then define the **conditional expectation** of X given Y , denoted $\mathbb{E}(X | Y)$, to be the random variable $g(Y)$.

- (i) Let X, Y be random variables such that (X, Y) is uniform distributed on the triangle given by $\{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x + y \leq 1\}$. Show that $\mathbb{E}(X | Y) = (1 - Y)/2$.
- (ii) Prove the following version of the Total Expectation Theorem:

$$\mathbb{E}(\mathbb{E}(X | Y)) = \mathbb{E}(X).$$

- (iii) Show the following

$$\mathbb{E}(X | X) = X \quad \text{and} \quad \mathbb{E}(X + Y | Z) = \mathbb{E}(X | Z) + \mathbb{E}(Y | Z).$$

- (iv) If Z is independent of X and Y , show that

$$\mathbb{E}(X | Y, Z) = \mathbb{E}(X | Y).$$

- (v) If Z is independent of X and Y , show that

$$\mathbb{E}(X | Y, z) = \mathbb{E}(X | Y).$$

Proof. (i) For $y \in [0, 1]$, note that $X | Y = y$ is uniformly distributed on $[0, 1 - y]$, so $\mathbb{E}(X | Y = y) = (1 - y)/2$. Therefore by definition $\mathbb{E}(X | Y) = (1 - Y)/2$.

(ii) For the continuous case:

$$\begin{aligned}
 \mathbb{E}(\mathbb{E}(X | Y)) &= \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}(X | Y = y) dy \\
 &= \int_{-\infty}^{\infty} f_Y(y) \left[\int_{-\infty}^{\infty} x f_{X|Y}(x | y) dx \right] dy \\
 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x, y) f_Y(y) dx dy \\
 &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy dx \\
 &= \int_{-\infty}^{\infty} x f_X(x) dx = \mathbb{E}X.
 \end{aligned}$$

For the discrete case:

$$\begin{aligned}
 \mathbb{E}(\mathbb{E}(X | Y)) &= \mathbb{E}\left(\sum_x x \mathbb{P}(X = x | Y = y)\right) = \sum_y \left(\sum_x x \mathbb{P}(X = x | Y = y)\right) \mathbb{P}(Y = y) \\
 &= \sum_x \sum_y x \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y) \\
 &= \sum_x x \left(\sum_y \mathbb{P}(X = x, Y = y)\right) = \sum_x x \mathbb{P}(X = x) = \mathbb{E}X.
 \end{aligned}$$

(iii) The first claim is trivial, as $\mathbb{E}(X | X = x) = x$. The continuous case for the second equation:

$$\begin{aligned}
 \mathbb{E}(X + Y | Z = z) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f_{X+Y|Z}(x + y | z) dx dy \\
 &= \iint_{\mathbb{R}^2} x f_{X+Y|Z}(x + y | z) dx dy + \iint_{\mathbb{R}^2} y f_{X+Y|Z}(x + y | z) dx dy \\
 &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{X+Y|Z}(x + y | z) dy dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X+Y|Z}(x + y | z) dx dy \\
 &= \int_{-\infty}^{\infty} x f_{X|Z}(x | z) dx + \int_{-\infty}^{\infty} y f_{Y|Z}(y | z) dy = \mathbb{E}(X | Z = z) + \mathbb{E}(Y | Z = z).
 \end{aligned}$$

The discrete case for the second equation:

$$\begin{aligned}
 \mathbb{E}(X + Y | Z = z) &= \sum_x \sum_y (x + y) \mathbb{P}(X = x, Y = y | Z = z) \\
 &= \sum_x x \sum_y \mathbb{P}(X = x, Y = y | Z = z) + \sum_y y \sum_x \mathbb{P}(X = x, Y = y | Z = z) \\
 &= \sum_x \mathbb{P}(X = x | Z = z) + \sum_y y \mathbb{P}(Y = y | Z = z) = \mathbb{E}(X | Z = z) + \mathbb{E}(Y | Z = z).
 \end{aligned}$$

(iv) If Z is independent of X and Y then (assuming they are continuous)

$$f_{X|(Y,Z)}(x | (y, z)) = \frac{f_{X,Y,Z}(x, y, z)}{f_{Y,Z}(y, z)} = \frac{f_{X,Y}(x, y)}{f_Y(y)},$$

so

$$\mathbb{E}(X | (Y, Z) = (y, z)) = \int_{-\infty}^{\infty} x f_{X|(Y,Z)}(x | (y, z)) dx = \int_{-\infty}^{\infty} x f_{X|Y}(x | y) dx = \mathbb{E}(X | Y = y).$$

(v) If Y, Z are independent, then (assuming all variables are continuous),

$$\begin{aligned}
 \mathbb{E}(X | (Y, Z) = (y, z)) &= \int_{-\infty}^{\infty} x f_{X|Y,Z}(x | y, z) dx \\
 &= \int_{-\infty}^{\infty} x \cdot \frac{f_{X,Y,Z}(x, y, z)}{f_{Y,Z}(y, z)} dx \\
 &= \int_{-\infty}^{\infty} x \cdot \frac{f_{X,Y}(x, y)}{f_Y(y)} dx = \mathbb{E}(X | Y = y).
 \end{aligned}$$

□

Problem 2

Prove Jensen's inequality for the conditional expectation. Let $X, Y : \Omega \rightarrow \mathbb{R}$ be random variables that are either both discrete or both continuous. Let $\varphi : \mathbb{R} \rightarrow \mathbb{R}$ be convex. Show that

$$\varphi(\mathbb{E}(X | Y)) \leq \mathbb{E}(\varphi(X) | Y)$$

and that the equality can be attained if and only if X is constant on any set where Y is constant.

Proof. Since φ is convex, there exists constant c and a linear function $L(x) = c(x - \mathbb{E}X) + \varphi(\mathbb{E}X)$. Then $L(X) \leq \varphi(X)$ implies $\mathbb{E}(L(X) | Y) \leq \mathbb{E}(\varphi(X) | Y)$ by the very definition of expectation. Then

$$\sup \mathbb{E}(L(X) | Y) = \sup L(\mathbb{E}(X | Y)) \leq \varphi(\mathbb{E}(X | Y)) \leq \mathbb{E}(\varphi(X) | Y)$$

where the supremum is taken over all linear functions with $L(X) \leq \varphi(X)$. \square

Problem 3

Let Y, Z be statistics and suppose Z is sufficient for $\{f_\theta : \theta \in \Theta\}$. Show that $W := \mathbb{E}_\theta(Y | Z)$ does not depend on θ . That is, there is a function $t : \mathbb{R}^n \rightarrow \mathbb{R}$ that does not depend on θ such that $W = t(X)$.

Proof. Let $W := g(Z)$ where $g(z) := \mathbb{E}(Y | Z = z) = \int_{-\infty}^{\infty} y f_\theta(y | Z = z) dy$. By sufficiency $f_\theta(x | Z = z)$ does not depend on θ , so W does not depend on θ either. \square

Problem 4

Let X_1, \dots, X_n be a random sample of size n so that X_1 is a sample from the uniform distribution on $[\theta - 1/2, \theta + 1/2]$ where $\theta \in \mathbb{R}$ is unknown.

- (1) Show that $(X_{(1)}, X_{(n)})$ is minimal sufficient but not complete.
- (2) The sample mean \bar{X} might seem to be a reasonable estimator for θ but it is not a function of the minimal sufficient statistic so it is not so good. Find an unbiased estimator for θ with smaller variance than \bar{X} . Examine the ratio of variances for \bar{X} and your estimator.

Proof. (1) Sufficiency follows from factorization because the joint likelihood is $1_{\theta-1/2 \leq X_{(1)} \leq X_{(n)} \leq \theta+1/2}$. Minimal sufficiency follows from the characterization since for $x_1, \dots, x_n, y_1, \dots, y_n$,

$$f(x_1, \dots, x_n) = f(y_1, \dots, y_n) \quad \text{for all } \theta \in \mathbb{R}$$

if and only if $x_{(1)} = y_{(1)}$ and $x_{(n)} = y_{(n)}$.

- (2) The variance of sample mean is $1/3 - 1/4 = 1/12$.

We consider $Y := ((X_{(1)} + X_{(2)})/2)$ which is unbiased for θ due to symmetry. This estimator certainly has smaller variance than \bar{X} because both $X_{(1)}, X_{(n)}$ are part of \bar{X} whereas \bar{X} contains more random data for $n > 2$, thereby increasing its variance. \square

Problem 5

Let X_1, \dots, X_n be a random sample of size n from an exponential distribution with unknown parameter $\theta > 0$, i.e., the PDF of X_1 is $\theta e^{-x\theta} \chi_{x>0}$. Suppose we want to estimate the mean

$$g(\theta) := \frac{1}{\theta}.$$

- (1) Find the UMVU for $g(\theta)$. (Hint: Cramér-Rao.)
- (2) Show that $\sqrt{X_1 X_2}$ has smaller mean squared error than the UMVU, i.e.,

$$\mathbb{E}(\sqrt{X_1 X_2} - 1/\theta)^2$$

is less than that of the UMVU.

- (3) Find an estimator with even smaller mean square error than $\sqrt{X_1 X_2}$ for all $\theta \in \Theta$.

Solution. (1) Claim: the sample mean $\frac{1}{n} \sum_{i=1}^n X_i$ is the UMVU. In this case the UMVU is simply $\bar{X} := (X_1 + X_2)/2$. The variance of \bar{X} is $\text{var}(\bar{X})/n = 1/(n\theta^2)$. (In this case it's just $1/(2\theta^2)$.) We now compute the Fisher information $I_X(1/\theta)$. Let $\lambda := 1/\theta$. Assuming $x_i > 0$,

$$\begin{aligned} \frac{d^2}{d\lambda^2} \log f_\lambda(X) &= \frac{d^2}{d\lambda^2} \log \left(\prod_{i=1}^n \lambda^{-1} e^{-x_i/\lambda} \right) = \frac{d^2}{d\lambda^2} \left(\sum_{i=1}^n \log(1/\lambda) - x_i/\lambda \right) \\ &= \frac{d}{d\lambda} \left[-\frac{n}{\lambda} + \frac{n\bar{x}}{\lambda^2} \right] = \frac{n}{\lambda^2} - \frac{2n\bar{x}}{\lambda^3}. \end{aligned}$$

Therefore $I_\lambda(1/\theta) = -\mathbb{E}[n/\lambda^2 - (2n\bar{X})/\lambda^3] = n/\lambda^2 = n\theta^2$. Indeed we have

$$\text{var}_\lambda(1/\theta) = \frac{1}{I_\lambda(1/\theta)},$$

so Cramér-Rao shows the sample mean is the UMVU.

- (2) Note that by independence

$$\mathbb{E}(\sqrt{X_1 X_2} - 1/\theta)^2 = \mathbb{E}X_1 X_2 - \frac{2}{\theta} \mathbb{E}\sqrt{X_1 X_2} + \frac{1}{\theta^2} = (\mathbb{E}X_1)^2 - \frac{2}{\theta} (\mathbb{E}\sqrt{X_1})^2 + \frac{1}{\theta^2} = \frac{2}{\theta^2} - \frac{2}{\theta} (\mathbb{E}\sqrt{X_1})^2. \quad (1)$$

It remains to compute $\mathbb{E}\sqrt{X_1} = \int_0^\infty \sqrt{x} \theta e^{-x\theta} dx = \theta \int_0^\infty \sqrt{x} e^{-x\theta} dx$. Let

$$\begin{aligned} u &= \sqrt{x} & dv &= e^{-x\theta} dx \\ du &= dx/(2\sqrt{x}) & v &= -e^{-x\theta}/\theta. \end{aligned}$$

Then

$$\int_0^\infty \sqrt{x} e^{-x\theta} dx = -\frac{\sqrt{x} e^{-x\theta}}{\theta} \Big|_{x=0}^\infty + \int_0^\infty \frac{e^{-x\theta}}{2\theta\sqrt{x}} dx. \quad (2)$$

Letting $s := \sqrt{\theta}\sqrt{x}$ so that $ds = \frac{\sqrt{\theta}}{2\sqrt{x}} dx$, we have

$$\int_0^\infty \frac{e^{-x\theta}}{2\theta\sqrt{x}} dx = \int_{x=0}^{x=\infty} \frac{e^{-x\theta}}{2\theta\sqrt{x}} \frac{2\sqrt{x}}{\sqrt{\theta}} ds = \theta^{-3/2} \int_0^\infty e^{-s^2} ds. \quad (3)$$

By a well-known result that $\int_{-\infty}^{\infty} e^{-s^2/2} ds = \sqrt{2\pi}$ we know $\int_0^{\infty} e^{-s^2/2} ds = \sqrt{\pi/2}$ (this is related to a Gaussian PDF; for proof, see [here](#)). Another simple u -substitution suggests $\int_0^{\infty} e^{-s^2} ds = \sqrt{\pi}/2$. Thus (3) becomes $\theta^{-3/2}\sqrt{\pi}/2$, and putting this back to (2) we obtain

$$\int_0^{\infty} \sqrt{x}e^{-x\theta} dx = 0 + \theta^{-3/2} \frac{\sqrt{\pi}}{2}.$$

Therefore,

$$\mathbb{E}\sqrt{X_1} = \theta \int_0^{\infty} \sqrt{x}e^{-x\theta} dx = \frac{\sqrt{\pi}}{2\sqrt{\theta}}.$$

Finally, putting everything into (1), we have

$$\mathbb{E}(\sqrt{X_1 X_2} - 1/\theta)^2 = \frac{2}{\theta^2} - \frac{2}{\theta} \cdot \left(\frac{\sqrt{\pi}}{2\sqrt{\theta}} \right)^2 = \frac{2}{\theta^2} - \frac{\pi}{2\theta^2} = \frac{4 - \pi}{2\theta^2} < \frac{1}{2\theta^2} = \text{var}(\bar{X}).$$

(3) To replace $\sqrt{X_1 X_2}$ by $t\sqrt{X_1 X_2}$, the MSE becomes

$$\frac{t^2}{\theta^2} - \frac{2t}{\theta} \frac{\pi}{4\theta} + \frac{1}{\theta^2} = \frac{1}{\theta^2} (t^2 - t(\pi/2) + 1)$$

which can be minimized when $t = \pi/4$. Hence $\pi\sqrt{X_1 X_2}/4$ is a better estimator in terms of MSE.