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Problem 1

Let x(1), ..., x(m) be m vectors with ∥x(i)∥ = 1 for all 1 ⩽ i ⩽ m. Let ϵ > 0. Assume that m > (1 + 2/ϵ)n. Show

that there exists i, j ∈ {1, ...,m} such that ∥x(i) − x(j)∥ < ϵ. Consequently, the vectors x(i), x(j) are highly

correlated so that ⟨x(i), x(j)⟩ > 1 − ϵ2/2.

Proof. Let {x(i)}mi=1 ⊂ B(0,1) be given with m > (1 + 2/ϵ)n. Suppose that for all i ≠ j, ∥x(i) − x(j)∥ > ϵ. Then,

the balls B(x(i), ϵ/2) are pairwise disjoint and are all contained in B(0,1+ ϵ/2). Therefore their disjoint union is

also contained in b(0,1 + ϵ/2). Computing volumes,

(1 + 2/ϵ)n(ϵ/2)n <m(ϵ/2)n ⩽ (1 + ϵ/2)n

whereas the first term is nothing but (1 + ϵ/2)n. This clearly gives a contradiction, so there must exist i ≠ j with

∥x(i) − x(j)∥ < ϵ.

Problem 2

Let Am×n be given with m ⩾ n. Show that A has rank n if and only if ATA is positive definite.

Proof. Note that ATA is always PSD since for all x ∈ Rn,

xTATAx = (Ax)T (Ax) = ∥Ax∥2 ⩾ 0.

Now suppose A has rank n; that is, if 0 ≠ x ∈ Rn then Ax ≠ 0 ∈ Rm, so xTATAx = ∥Ax∥2 > 0.

Conversely suppose ATA is PD. Then, for all x ≠ 0, ∥Ax∥2 = xTATAx ≠ 0, so Ax ≠ 0. This is precisely the

characterization of A having rank n.

Problem 3

Let x(1), ..., x(m) ∈ Rn. Let y ∈ Rn. Show that

m

∑
j=1
∥x(j) − 1

m

m

∑
k=1

x(k)∥
2

⩽
m

∑
j=1
∥x(j) − y∥2.

That is, the barycenter is the point in Rn that minimizes the sum of squared distances.
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Proof. Define f ∶ Rm → [0,∞) by

f(y) = f((y1, ..., yn)) =
m

∑
j=1
∥x(j) − y∥2.

The gradient is then given by ∇f =
m

∑
j=1

2(x(j) − s), and a critical point exists at

ỹ ∶= 1

m

m

∑
k=1

x(k).

To show that ỹ is the unique minimizer of f , note that

f((y1, ..., yn)) =
m

∑
j=1

n

∑
k=1
(x(j)k − yk)

2

=∑(x(j)k )
2 +∑ y2k − 2∑∑x

(j)
k yk

= constant + convex − linear = convex,

from which we conclude that f attains its unique minimum at ỹ.

Problem 4

Let n ⩾ 2 and let Sn−1 be the boundary of the n-dimensional ball. Let x ∈ Sn−1 be fixed and let v be a random

vector uniformly distributed in Sn−1. Prove that

E∣⟨x, v⟩∣ ⩾ 1

10
√
n
.1

Proof. First we reduce the claim to a much simpler case. Since the uniform distribution on Sn−1 is invariant

under rotations about the origin, and since inner product is also preserved under rotations, i.e., ⟨a, b⟩ = ⟨Ra,Rb⟩,
we have, for any rotation R ∶ Sn−1 → Sn−1,

E∣⟨x, v⟩∣ = E∣⟨x,Rv⟩∣ = E∣⟨R−1x,R−1Rv⟩∣ = E∣⟨R−1x, v⟩∣.

For any x ∈ Sn−1, letting R be such that R−1x = u ∶= (1,0,⋯,0), we have

E∣⟨x, v⟩∣ = E∣⟨u, v⟩∣ = 1

Area(Sn−1) ∫Sn−1
∣v1∣ dV. (Q9.1)

Note that, under spherical coordinates with parameters r,φ1, φ2, ..., φn−1, the first component v1 can be ex-

pressed as r cosφ1, and the Jacobian is

rn−1
n−2
∏
i=1

sinn−1−i(φi) = rn−1 sinn−2(φ − 1) sinn−3(φ2)⋯ sin(φn−2).

In this case r ≡ 1 on Sn−1 so we get two simpler (n − 1)-fold integrals:

∫
Sn−1
∣v1∣ dV = ∫

2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0
∣cosφ1∣

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1 (Q9.2)

and

Area(Sn−1) = ∫
Sn−1

1 dV = ∫
2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1. (Q9.3)

1The solution is copied from 541a HW1.
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Division gives E∣⟨x, v⟩∣ = (Q9.2)/(Q9.3) = ∫
π

0
∣cosφ∣ sinn−2 φ dφ/∫

π

0
sinn−2 φ dφ. Since both integrals satisfy

∫
π

0
= 2∫

π/2

0
, the ratio further equals ∫

π/2

0
cosφ sinn−2 φ dφ/∫

π/2

0
sinn−2 φ dφ. The numerator is 1/(n−1) by

a simple u-substitution with u ∶= sinφ, and for n ⩾ 3, the denominator is bounded by 0 and
√
π/2(n − 2) since

cosx ⩽ exp(−x2/2) on [0, π/2] and

∫
π/2

0
sinn−2 φ dφ = ∫

π/2

0
cosn−2 φ dφ ⩽ ∫

π/2

0
exp(−(n − 2)x2/2) dx

< ∫
∞

0
exp(−(n − 2)x2/2) dx = 1

2
⋅
√
2π/(n − 2).

For n = 2, it is immediate that

∫
π/2

0
sin2 φ dφ = 1

2
∫

π/2

0
sin0 φ dφ = π/4

using the well-known reduction formula

∫
π/2

0
sink φ dφ = k − 1

k
∫

π/2

0
sink−2 φ dφ.

Therefore, for n = 2, E∣⟨x, v⟩∣ = 4/π > 1/(10
√
2) and for n ⩾ 3,

10
√
n ⋅E∣⟨x, v⟩∣ ⩾ 20√

π
⋅ ( n2 − 2n

n2 − 2n + 1
)
1/2

⩾
20
√
3/4
√
π
> 1.

(Note that (n2 − 2n)/(n2 − 2n + 1) is monotone on [3,∞) and equals 3/4 at 3.) This proves the claim.

Problem 6

Run a k-means clustering algorithm on a planted data set in R2 consisting of samples from different Gaussian

distributions. Also run a k-means algorithm on Airline Safety Information.

Solution. To make things look a bit nicer, I used four Gaussian pairs, all with variance 1 but centered at (0,0),
(1,1), (−1,1), and (2,−1), respectively. I sampled each Gaussian 50 times.

1 % (code to generate Gaussians)

2 dot_list = [X1,X2,X3,X4; Y1,Y2,Y3,Y4];

3 dot_index = linspace(1,200,200);

4

5 subplot(1,2,1);

6 scatter([X1,X2,X3,X4],[Y1,Y2,Y3,Y4]);

7

8 T = zeros(4,100);

9 y = randn(2,4);

10

11 for p = 1:5

12 for j = 1:length(dot_list)

13 tempdiff = vecnorm(y - repmat(dot_list(:,j),1,4));

14 [tempdiff, min_val] = min(tempdiff);

15 loc = min(find(~T(min_val,:)));

16 T(min_val, loc) = j;

17 end

18

3



MATH 547 Homework 1 YQL

19 for j = 1: length(y)

20 temp = T(j,:);

21 temp = temp(temp~=0);

22 y(:,j) = sum(dot_list(:,temp),2) / nnz(temp);

23 end

24 end

25

26 subplot(1,2,2);

27 hold on

28 for j = 1:4

29 temp = T(j,:);

30 temp = temp(T(j,:)~=0);

31 scatter(dot_list(1,temp), dot_list(2,temp),'filled');

32 end

33 matlab2tikz('gaussian_k_means.tex')
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For the airline safety information, below are two plots — the one on left plots airlines’ number of incidents

during 2000 and 2014 (y-axis) against that during 1985−1999 (x-axis); the second plot plots number of fatalities

instead.
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It seems like the fatality of an airline between 2000 and 2014 cannot be predicted by the data between 1985 and

1999, but the numbers of incidents seem to behave nicer, and they are potentially correlated. (I did not do re-

gression though.) Assuming this is true, a possible explanation is that there are much more factors that influence

the number of fatalities. For example, “big” airline disasters and “small” ones both count as one, whereas the

fatalities are drastically different (e.g. PAL434 killed person, whereas JAL123 killed 520 and Tenerife killed 583

(two flights)).

Problem 7

Let n be a positive integer and let cn be the number of boolean functions f ∶ {−1,1}n → {−1,1} that are

linear threshold functions. Use an inductive argument and prove the lower bound

cn ⩾ 2n(n−1)/2.

Proof. The base case c1 = 4 ⩾ 20 is trivial. Since

2(n+1)n/2 = 2n(n−1)/22n,

it suffices to prove that a k-variable linear threshold function f ∶ {−1,1}k → {−1,1} can be uniquely extended to

2k linear threshold functions defined on {−1,1}k+1.

Define H1 ∶= {−1,1}k × {−1} and H2 ∶= {−1,1}k × {1} so that H1,H2 are both k-dimensional hypercubes whereas

they together form a (k + 1)-dimensional hypercube.

For any f given above, let H1 be its corresponding (k−1)-dimensional hyperplane Pk−1. For each point in v ∈H2,

we can define a k-dimensional hyperplane, Pk, containing both Pk−1 and the point v. We then shift the plane

slightly so that it no longer contains v, and the corresponding linear threshold function fv satisfies

(1) fv(x) = f(x) for all x ∈H1,

(2) fv(v) = 1 (before the perturbation, fv(v) = 0), and

(3) fv(x) = −1 for all x ∈H2/{v}.

Note that every edge (i.e., a line segment connecting two points in H2 that are distance 1 apart) of H2 is parallel

to H1. Therefore, each v ∈ H2 corresponds to a unique (k + 1)-variable linear threshold function. That is, each

k-variable linear threshold function can be extended in ∣H2∣ = 2k ways. This proves the claim.

Problem 8

Let a > 0. Let X(1), ...,X(k) ∈ Rn be i.i.d. Gaussian random vectors with mean ae1 (where e1 ∶= (1,0, ...,0) ∈
Rn) and identity covariance matrix. Let X(k+1), ...,X(2k) ∈ Rn be i.i.d. Gaussian random vectors with mean

−ae1. As in perceptron, define

B ∶=max
i⩽2k
∥X(i)∥

and

Θ ∶=min{∥w∥ ∶ yi ⟨w,X(i)⟩ ⩾ 1 for all i} .
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(If such w does not exist, instead define Θ ∶=∞.)

Define y1 = ... = yk ∶= 1 and yk+1 = ... = y2k ∶= −1. Estimate EB and E(1/Θ) in terms of a.

Solution. Since B and Θ are both nonnegative, we use EB = ∫
∞

0
P(B > t) dt and EΘ = ∫

∞

0
P(Θ > t) dt.

Firstly,

P(B > t) ⩽
2k

∑
i=1

P(∣X(i)∣ > t) = 2kP(∣X(1)∣ > t) ⩽ 2kP(∣X(1)1 ∣ > t) = 2kP(∣N (a,1)∣ > t),

so viewing ∣N (a,1)∣ as a “folded” Gaussian random variable and splitting R into (−∞,0] and (0,∞), we have

EB ⩽ 2k∫
∞

0
P(∣N (a,1)∣ > t) dt

= 2k∫
0

−∞
P(N (a,1) < t) dt + 2k∫

∞

0
P(N (a,1) > t) dt

= 2k∫
0

−∞
∣t∣fN (a,1)(t) dt + 2k∫

∞

0
tfN (a,1)(t) dt

⩽ 2ka + 2ka = 4ka.

For an estimation of Θ, note that by independence

P(yi⟨w,X(i)⟩ ⩾ 1 for all i) = [P(y1⟨w,X(1)⟩ ⩾ 1)]
2k
= [P(⟨w,X(1)⟩ ⩾ 1)]

2k

= [P(⟨w/∥w∥,X(1)⟩ ⩾ ∥w∥−1)]
2k
⩽ [P(⟨e1,X(1)⟩ ⩾ ∥w∥−1)]

2k

= [P(N (a,1) ⩾ ∥w∥−1)]2k = [∫
∞

∥w∥−1
fN (a,1)(t) dt]

2k

.

If ∥w∥−1 ⩾ a, then ∥w∥ ⩽ 1/a, and

P(yi⟨w,X(i)⟩ ⩾ 1 for all i) ⩽ [∫
∞

∥w∥−1
fN (a,1)(t) dt]

2k

⩽ [∫
∞

a
fN (a,1)(t) dt]

2k

= 2−2k.

Thus P(min ∥w∥ > 1/a) ⩽ 2−2k, so

P(1/Θ ⩾ a) = P(Θ ⩽ 1/a) = P(min ∥w∥ ⩽ 1/a)

= 1 − P(min ∥w∥ > 1/a) ⩾ 1 − 2−2k.

Using Markov’s inequality we have

E(1/Θ) ⩾ aP(1/Θ ⩾ a) ⩾ a − a2−2k.
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