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Problem 1

Let M be a k × k real symmetric matrix. Show that M is PSD if and only if there exist a real k × k matrix R

such that M = RRT . In either case, if ri denotes the ith row of R, we have

mi,j = ⟨ri, rj⟩ for 1 ⩽ i, j ⩽ k.

Proof. If M = RRT for some R, the for all v ∈ Rk, xTMx = xTRRTx = ∥RTx∥2 ⩾ 0. Conversely, since M is

symmetric, spectral theorem gives a decomposition A = QTDQT . Define D1/2 to be the diagonal matrix with

D
1/2
i,i =

√
Di,i. Define R ∶=D1/2Q and we have M = (D1/2Q)T (D1/2Q) = RRT .

Note that the claim can be generalized: M is PSD of ran n ⩽ k if and only if there exists a k × k matrix R with rank

n such that M = RRT .

Problem 2

Let µ be a Borel measure on Rn that assigners positive measure to open sets in Rn. Let m ∶ Rn ×Rn → R be

continuous with ∫
Rn
∫
Rn
∣m(x, y)∣2 dµ(x) dµ(y) <∞. Show that TFAE:

(1) For all p ⩾ 1, for all z(1), ..., z(p) ∈ Rn, and for all β1, ..., βp ∈ R, we have

p

∑
i,j=1

βiβjm(z(i), z(j)) ⩾ 0.

(2) For all f ∈ L2(µ), we have

∫
Rn
∫
Rn
f(x)f(y)m(x, y) dµ(x) dµ(y) ⩾ 0.

Proof. We first assume (1). Let ϵ > 0, f ∈ L2(µ) be given. Since simple functions are dense in L2, there exists

a (compactly supported, L2-integrable) g =
n

∑
i=1
ci1Ei with ∥f − g∥2 < ϵ. Since the support of g is compact, m is

uniformly continuous on supp(g) [support of g], so there exists δ > 0 such that

∥(x1, y1) − (x2, y2)∥ < δ Ô⇒ ∣m(x1, y1) −m(x2, y2)∣ <
ϵ

µ(supp(g))
for (xi, yi) ∈ supp(g).

By compactness supp(g) can be covered by finitely many balls B̃1, ..., B̃k with radii δ/2. By recursively deleting

the overlapping parts (i.e., define B1 ∶= B̃1 and Bi ∶= B̃i/⋃i−1
j=1Bi), we may assume that supp(g) is a union of

finitely many disjoint sets, each with “radius” ⩽ δ/2.
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Let b1, ..., bk be any points in B1, ...,Bk, respectively, and define

ℓ(x, y) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m(bi, bj) if x = bi, y = bj for some i, j

0 otherwise.

Having crafted all recipes, we now bound the integral in (2). We first approximate f by g:

∣∬ f(x)f(y)m(x, y) −∬ g(x)g(y)m(x, y)∣ = ∣∫ f(x)f(y)m(x, y) − ∫ f(x)g(y)m(x, y)

+∬ f(x)g(y)m(x, y) −∬ g(x)g(y)m(x, y)∣

⩽∬ ∣f(x)∣∣f(y) − g(y)∣∣m(x, y)∣ +∬ ∣f(x) − g(x)∣∣g(y)∣∣m(x, y)∣

⩽ ∫ ∣f(y) − g(y)∣ [∫ ∣f(x)∣∣m(x, y)∣ dµ(x)] dµ(y) + ...

⩽ ∫ ∣f(y) − g(y)∣ ⋅ ∥f∥2 ⋅ (∫ ∣m(x, y)∣2 dµ(x))
1/2

dµ(y) + ...

⩽ ∥f∥2∥f − g∥2 (∬ ∣m(x, y)∣2 dµ(x)dµ(y))
1/2

+ ∥g∥2∥f − g∥2 (∬ ∣m(x, y)∣2 dµ(x)dµ(y))
1/2

< 3ϵ∥f∥2 (∬ ∣m(x, y)∣2 dµ(x)dµ(y))
1/2

(2.1)

if we WLOG assume ϵ < ∥f∥2 so that ∥f∥2 + ∥g∥2 < 3∥f∥2.

On the other hand, approximating m by ℓ gives

∣∬ g(x)g(y)m(x, y) −∬ g(x)g(y)ℓ(x, y)∣ ⩽∬ ∣g(x)∣∣g(y)∣∣m(x, y) − ℓ(x, y)∣ dµ(x)dµ(y)

⩽ ∥g∥22 (∬ ∣m(x, y) − ℓ(x, y)∣2 dµ(x)dµ(y))
1/2

< ∥g∥22 (∬
supp(g)2

∣m(x, y) − ℓ(x, y)∣ dµ(x)dµ(y))
1/2

< ∥g∥22
⎛
⎝

k

∑
i,j=1

ϵ2

µ(supp(g))2
µ(Bi)µ(Bj)

⎞
⎠

1/2

⩽ ∥g∥22
ϵ

µ(supp(g))
⎛
⎝

k

∑
i,j=1

µ(Bi)µ(Bj)
⎞
⎠

1/2

⩽ ∥g∥22
ϵ

µ(supp(g))
µ(

k

⋃
i=1
Bi)1/2µ(

k

⋃
j=1

Bj)1/2

= ϵ∥g∥22 < 4ϵ∥f∥22 (2.2)

where we again assume ϵ < ∥f∥2 so ∥g∥22 < 4∥f∥22. Combining the two inequalities above,

∣∬ f(x)f(y)m(x, y) −∬ g(x)g(y)ℓ(x, y)∣ < 4ϵ∥f∥22 + 3ϵ∥f∥2 (∬ ∣m(x, y)2∣)
1/2

.

By assumption,

∬ g(x)g(y)ℓ(x, y) dµ(x)dµ(y) =∬
supp(g)2

g(x)g(y)ℓ(x, y) dµ(x)dµ(y)

=
k

∑
i,j=1

µ(Bi)µ(Bj)m(bi, bj) ⩾ 0.
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Therefore ∫
Rn
∫
Rn
f(x)f(y)m(x, y) dµ(x)dµ(y) ⩾ 0, as claimed.

Conversely, let z(1), ..., zp ∈ Rn and β1, ..., βp ∈ R be given. Define

fn(x) ∶=
p

∑
i,j=1

βi
µ(B(z(i),1/n)

1B(z(i),1/n)(x).

By definition,

0 ⩽∬ fn(x)fn(y)m(x, y) =
p

∑
i,j=1

βiβj

µ(B(z(i),1/n)µ(B(z(j),1/n))∬B(z(i),1/n)×B(z(j),1/n)
m(x, y).

Let n→ 0. Since m is continuous,

lim
n→∞

1

µ(B(z(i),1/n)µ(B(z(j),1/n))∬B(z(i),1/n)×B(z(j),1/n)
m(x, y) =m(z(i), z(j)).

Therefore
p

∑
i,j=1

βiβjm(z(i), z(j)) ⩾ 0, completing the proof.

Problem 3

For each kernel function m ∶ Rn ×Rn → R below, find an inner product space C and a map φ ∶ Rn → C such

that

m(x, y) = ⟨φ(x), φ(y)⟩C for all x, y ∈ Rn.

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer’s Theorem:

(1) m(x, y) ∶= 1 + ⟨x, y⟩ for x, y ∈ Rn,

(2) m(x, y);= (1 + ⟨x, y⟩)d for x, y ∈ Rn where d is a fixed integer, and

(3) m(x, y) ∶= exp(−∥x − y∥2).

Solution. (1) Define φ ∶ Rn → Rn+1 by (x1, ..., xn)↦ (x1, ..., xn,1). Then

⟨φ(x), φ(y)⟩ = ⟨(x1, ..., xn,1), (y1, ..., yn,1)⟩ = ⟨x, y⟩ + 1.

(2) Define φ ∶ Rn → R(n+1)
d

by (x1, ..., xn)↦ (x1, ..., xn,1)⊗d, where ⊗ takes vectors of lengths m and k and

outputs a vector of length mk:

(v1, ..., vm)⊗ (w1, ...,wk) ∶= (v1w1, ..., v1wk, v2w1, ..., vmw1, ..., vmwk).

Then ⟨u⊗d, v⊗d⟩ = ⟨u, v⟩d, so ⟨φ(x), φ(y)⟩ = ⟨(x1, ..., xn,1), (y1, ..., yn,1)⟩d = (⟨x, y⟩ + 1)d.

(3) We note that exp(−∥x − y∥2) = exp(−∥x∥2 − ∥y∥2 + 2 ⟨x, y⟩) = exp(−∥x∥2) exp(−∥y∥2)
∞
∑
d=0

(2 ⟨x, y⟩)d

d!
. To

this end, using (2), we define φ ∶ Rn →⊗∞d=0Rnd

by

φ(x) ∶= exp(−∥x∥2) (1,
√
21/1! ⋅ x,

√
22/2! ⋅ x⊗2,

√
23/3! ⋅ x⊗3, ...)

with inner product

⟨{ui}∞i=1,{vj}∞j=1⟩ ∶=
∞
∑
d=0
⟨ud, vd⟩
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where ⟨ud, vd⟩ uses the standard inner product in Rnd

. Then from (2)

⟨φ(x), φ(y)⟩ = exp(−∥x∥2 − ∥y∥2)
∞
∑
d=0

2d

d!
⟨x⊗d, y⊗d⟩

= exp(−∥x∥2 − ∥y∥2)
∞
∑
d=0

2d ⟨x, y⟩d

d!
=

= exp(−∥x∥2 − ∥y∥2) exp(2 ⟨x, y⟩) = exp(−∥x − y∥2).

Problem 4

Show that the set of conjunctions is contained in the set of linear threshold functions.

Proof. Let let I, J ⊂ {1, ..., n} and let f ∶ {0,1}n → {0,1} be the corresponding boolean conjunction:

f(x1, ..., xn) ∶=∏
i∈I
xi∏

j∈J
(1 − xj).

We define w ∈ Rn by wk = 1 if k ∈ I, wk = −1 if k ∈ J , and wk = 0 otherwise, and we define t to be the cardinality

of I. Then

⟨x,w⟩ =∑
i∈I
xi −∑

j∈J
xj ⩽ ∣I ∣

with equality attained if and only if∑
i∈I
xi = ∣I ∣ and ∑

j∈J
xj = 0, that is, xi = 1 for all i ∈ I and xj = 0 for all j ∈ J .

This is equivalent to saying f(x1, ..., xn) = 1.

Problem 5

Let X be a real-valued random variable and let X1,X2, ... be independent copies of X. Let a < b and suppose

P(a ⩽X ⩽ b) > 3/4. For n ∈ N, let Yn be a median of X1, ...,Xn. Show that

P(a ⩽ Yn ⩽ b) ⩾ 1 −
n

∑
j=⌊n/2⌋

(n
j
)αj

where α ∶= P(X ∉ [a, b]).
Show additionally that

P(a ⩽ Yn ⩽ b) ⩾ 1 − (1 + o(1))
√
π√
2n

2nα⌊n/2⌋

1 − α
⩾ 1 − (4α)⌊n/2⌋ ⋅O(1).

Proof. If Yn ∉ [a, b], then either Yn < a or Yn > b. That is, either at least ⌊n/2⌋ samples are < a or at least ⌊n/2⌋
are > b. Such events are a subset of “at least ⌊n/2⌋ samples are < a or > b” which translates to the RHS.

Problem 6

Explain why taking the expected value of the inequality for the average number of mis-classifications of

Adaboost does not guarantee PAC learning.
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Solution. The probability distribution P is not given, so we do not know the exact distribution of X, and so we

cannot compute P(g(X) ≠ f(X)) as required in PAC’s definition. Instead we can only analyze empirical risk as

stated in the notes.

Problem 7

Show that the Sauer-Shelah lemma is sharp for all n, d. That is, find F with d ∶= VCdim(F) such that

∣F ∣ =
d

∑
i=0
(n
i
).

Proof. Let n, d be given. Following the hint, we define F as the collection of functions f ∶ {0,1}n → {0,1} of the

following form:

f(x) =∏
i∈I
xi∏

j∉I
(1 − xj)

where I ⊂ {1, ..., n} with ∣I ∣ ⩽ d. It is clear that different I ’s give rise to different functions, so ∣F ∣ =
d

∑
i=0
(n
i
). It

remains to verify that VCdim(F) = d. Clearly any set of size d is shattered by F . If B ⊂ {0,1}n is one such set

and g ∶ B → {0,1}, then the function

f(x) = f(x1, ..., xn) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x) if x ∈ B

0 otherwise

is a valid Boolean function mapping at most d inputs to 1 and is therefore in F . Conversely, if B′ ⊂ {0,1}n has

> d elements, the constant function 1 on B′ cannot be extended to any function in F . Therefore VCdim(F) = d,

and we are done.

Problem 8

Show that both notions of ϵ-net agree up to changing the constant ϵ in the following sense. Let A be a metric

space, P a probability law on A, Ω the collection of balls with arbitrary center and radius. Assume there exist

a, b, c1, c2 > 0 such that c1ra ⩽ P(B(x, r)) ⩽ c2rb for all x ∈ A, r > 0. Then S is a measure theoretic ϵ-net for Ω

if and only if there is an ϵ′-net for Ω with respect to the metric d on A.

Proof. We first show (ϵ-net⇒measure theoretic ϵ-net). Let {xi}i∈I be an ϵ-net and letB(x, r) ∈ Ω. By assumption

c1ϵ
a ⩽ P(B(x, ϵ)) ⩽ c2ϵb, (*)

so if P(B) > c2ϵb, it is guaranteed that the radius of B > ϵ. Then by definition of ϵ-net there exists xi ∈ {xi}
whose distance to the center of the ball is < ϵ.
Conversely, if {xi} is a measure theoretic “c1ϵa-net”, by assumption, if P(B) > c1ϵa there exists xi ∈ B. By (*)

this means that for every ball with radius ϵ, there exists some xi within distance ϵ from the center of the ball.

Since the centers are arbitrary we see ⋃
i∈I
B(xi, ϵ) covers A, completing our proof.
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Problem 9

For any f ∈ F , show that

VCdim(F) = VCdim(D(f)).

Proof. For convenience we denote VCdim(F) by d. Let B ⊂ A be a set with cardinality b shattered by F , and let

φ ∶ B → {0,1} be any Boolean function. We define a function g0 ∶ B → {0,1} by

g0(b) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(b) if φ(b) = 0

1 − f(b) if φ(b) = 1.

By doing so, (f∆g0)(b) = 1 if and only if φ(b) = 1. Since F shatters B, we can extend g0 to a Boolean function

g ∈ F on A. Thus φ ≡ (f∆g)∣
B

, B is shattered by D(f), and VCdim(D(f)) ⩾ d = VCdim(F).
Conversely, suppose C ⊂ A is shattered by D(f). Let ψ ∶ C → {0,1} be any Boolean function. By assumption

there exists g ∈ F with (f∆g)∣
C
≡ ψ. We claim that this implies g∣

C
= f ∣

C
∆ψ. This can be easily verified via

brute force:

f ψ g f∆ψ

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

Of course, g∣
C

is a Boolean function on C, so by assumption there exists ψ′ ∈ F such that g∣
C
= (f∆ψ′)∣

C
. From

this we see ψ′∣
C
= ψ, so indeed ψ admits an extension with domain on all of A. Therefore whatever is shattered

by D(f) is also shattered by F , i.e., VCdim(D(f)) ⩽ d = VCdim(F).
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