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1 Mathematical Induction

1.1 The Principle of Induction

Theorem 1.1.1. Let a be a natural number, and let P (n) be a statement about n for each integer

n ⩾ a. If

(1) P (a) is true, and

(2) for every integer k ⩾ a, P (k) Ô⇒ P (k + 1),

then P (k) is true for every integer k ⩾ a.

Problem 1.1.1 (1.2.29). Show that for n ∈ Z+,

∫
1

0
(1 − x2)ndx = 22n(n!)2

(2n + 1)2

Solution 1.1.1. Let P (n) be the statement that ∫
1

0
(1 − x2)ndx = 22n(n!)2

(2n + 1)2
.

∗ The base case P (1) is obviously true because

∫
1

0
(1 − x2)dx = [x − 1

3
x3]

1

0
= 2

3
= 22 ⋅ 12

3!

∗ Now we are at the inductive step. Assume P (k) is true, i.e., ∫
1

0
(1 − x2)kdx = 22k(k!)2

(2k + 1)2
. We

will try to show P (k + 1) is also true. We can first integrate the left hand side (LHS hereafter

and RHS for right hand side) of P (k + 1) by parts:

∫
1

0
(1 − x)k+1dx

⎡⎢⎢⎢⎢⎢⎣

u = (1 − x2)k+1 dv = dx

du = −2x(k + 1)(1 − x2)kdx v = x

⎤⎥⎥⎥⎥⎥⎦

= [x(1 − x2)k+1]
1

0
+ ∫

1

0
2x2(k + 1)(1 − x2)kdx

= 2(k + 1)∫
1

0
x2(1 − x2)kdx

= 2(k + 1)∫
1

0
[1 − (1 − x2)](1 − x2)kdx

= 2(k + 1)∫
1

0
(1 − x2)kdx − 2(k + 1)∫

1

0
(1 − x2)k+1dx

Arranging like terms gives

∫
1

0
(1 − x2)k+1dx = 2k + 2

2k + 3 ∫
1

0
(1 − x2)kdx

= 2k + 2
2k + 3

⋅ 2
2k(k!)2

(2k + 1)2
= (2k + 2) ⋅ 2

2k(k!)2

(2k + 3)(2k + 1)2

= (2k + 2)2 ⋅ 22k(k!)2

(2k + 3)(2k + 2)(2k + 1)!
= 4(k + 1)2 ⋅ 22k(k!)2

(2k + 3)!

= 22(k+1)((k + 1)!)2

(2(k + 1) + 1)2

and thus P (k + 1) true.
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∗ Since P (1) is correct and P (k) Ô⇒ P (k + 1)∀k ∈ Z, the statement is true ∀n ∈ Z. Thus,

∫
1

0
(1 − x2)ndx = 22n(n!)2

(2n + 1)2

◻
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1.2 The Principle of Strong Induction

Theorem 1.2.1. Let a be a natural number, and let P (n) be a statement about n for each integer

n ⩾ a. If

(1) P (a) is true, and

(2) for every integer k ⩾ a, if P (n) holds for all n ∈ [a, k], then P (k + 1) is also true,

then P (k) is true for every integer k ⩾ a.

Problem 1.2.1 (1.3.9). Let α = 1 +
√
5

2
and β = 1 −

√
5

2
, two roots of the quadratic equation

x2 − x − 1 = 0. Show that the nth Fibonacci number satisfies

fn =
1√
5
(αn − βn)

Solution 1.2.1. Let P (n) be the statement that fn =
1√
5
(αn − βn).

It is clear that, starting from the third term, each Fibonacci number is determined by the sum of

the two preceding terms, i.e., fn = fn−1 + fn−2 when n ⩾ 3. Therefore, the weak induction (1.1) would

no longer apply. We need a proof involving P (k − 1) ∧P (k) Ô⇒ P (k1) and we need two base cases:

P (1) and P (2).

∗ The base cases P (1) and P (2) are true because, by the equation given,

f1 =
1√
5
(1 +

√
5

2
− 1 −

√
5

2
) = 1

f2 =
1√
5

⎛
⎝
(1 +

√
5

2
)
2

− (1 −
√
5

2
)
2⎞
⎠
= 1√

5
((1 +

√
5)2

4
− (1 −

√
5)2

4
) = 1√

5
⋅ 4
√
5

4
= 1

and f1 and f2 are indeed both 1.

∗ Now, for the inductive step, assume P (n) holds for all positive integer not greater than k, among

which are P (k − 1) and P (k). So we know the following:

fk−1 =
1√
5
(αk−1 − βk−1) and fk =

1√
5
(αk − βk)

Since fk+1 = fk−1 + fk, we have

fk+1 =
1√
5
(αk−1 − βk−1) + 1√

5
(αk − βk)

= 1√
5
(αk−1 + αk) − 1√

5
(βk−1 + βk)

= 1√
5
(αk+1 − βk+1) because α,β are roots of x2 = x + 1 and thus xk+1 = xk + xk−1.

∗ Now the base case and the inductive step are both proven, and we are done with the proof. ◻

Future reference: problem 2.1.1

Problem 1.2.2 (1.3.11). Suppose that n is a positive integer. Prove, using strong induction, inte-

gration by parts, and l’Hôpital’s Rule that

∫
1

0
(− lnx)ndx = n!
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Solution 1.2.2. Let P (n) be the statement that ∫
1

0
(− lnx)ndx = n!. Clearly P (0) is true, but I’ll

use P (1) here as base case simply because I feel like anything raised to the 0th power and 0! both feel

somehow like exceptions.

∗ The base case P (1) can be easily proven, but note that this is an improper integral because ln 0

is undefined.

∫
1

0
(− lnx)dx = lim

t→0+
∫

1

t
(− lnx)dx

⎡⎢⎢⎢⎢⎢⎣

u = − lnx dv = dx

du = − 1
x

v = x

⎤⎥⎥⎥⎥⎥⎦

= lim
t→0+
[[−x lnx]1t − ∫

1

t
(−1)dx] = lim

t→0+
[1 − t − [−x lnx]1t ]

= lim
t→0+
[1 − t + t ln t] = 1 + lim

t→0+
[t ln t] = 1 + lim

t→0+
[ ln t

1
t

]

(H)= 1 + lim
t→0+
[

1
t

− 1
t2

] = 1 + lim
t→0+
(−t) = 1 = 1!

Thus the base case is correct.

∗ Now assume we have some positive integer k such that P (n) is true ∀n ∈ [1, k]. We will try to

integrate the LHS of P (k + 1):

∫
1

0
(− lnx)k+1dx = (−1)k+1 ∫

1

0
(lnx)k+1dx

⎡⎢⎢⎢⎢⎢⎣

u = (lnx)k+1 dv = dx

du = (k+1)(lnx)k
x

dx v = x

⎤⎥⎥⎥⎥⎥⎦

= (−1)k+1 lim
t→0+
∫

1

t
(lnx)k+1dx

= (−1)k+1 lim
t→0+
[[t(ln t)k+1]

1

t
− ∫

1

t
(k + 1)(lnx)kdx]

= −(−1)(k + 1) [(−1)k lim
t→0+
∫

1

t
(lnx)kdx] + (−1)k+1 lim

t→0+
[t(ln t)k+1]

1

t

= (k + 1)k! + (−1)k+1 lim
t→0+
[t(ln t)k+1]

1

t
(by induction hypothesis)

= (k + 1)! + 0 − lim
t→0+
[t(ln t)k+1]

4
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We need to pause for a second and apply l’Hôpital’s Rule k+1 times to evaluate the third term.

lim
t→0+
[t(ln t)k+1] = lim

t→0+
[(ln t)

k+1

1
t

]

(H)= lim
t→0+

⎡⎢⎢⎢⎢⎣

(k+1)(ln t)k
t

− 1
t2

⎤⎥⎥⎥⎥⎦
= −(k + 1) lim

t→0+
[t(ln t)k] = −(k + 1) lim

t→0+
[(ln t)

k

1
t

]

(H)= −(k + 1) lim
t→0+

⎡⎢⎢⎢⎢⎣

k(ln t)k−1
t

− 1
t2

⎤⎥⎥⎥⎥⎦
= (k + 1)k lim

t→0+
[t(ln t)k−1]

= ⋯ (reiterate l’Hôpital’s Rule for k + 1 times)

= (−1)k+1(k + 1)! lim
t→0+
(t) = 0

Therefore,

∫
1

0
(− lnx)k+1dx = (k + 1)!

and we have proven the inductive step.

∗ Since the base case and the inductive step are proven, we are done with the proof. ◻
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1.3 The Binomial Theorem

Definition 1.3.1 (Falling and rising factorials). Just some convenient notations: the falling and rising

factorials are defined in the two lines below, respectively.

Rising factorial: xn = x(x + 1)(x + 2)⋯(x + n − 1) =
n

∏
k=1

x + k − 1

Falling factorial: xn = x(x − 1)(x − 2)⋯(x − n + 1) =
n

∏
k=1

x − k + 1

Theorem 1.3.2 (Pascal’s Identity). If 0 < k < n + 1 then

(n + 1
k
) = ( n

k − 1
) + (n

k
).

Proof. By definition,
( n

k + 1
) + (n

k
) = n!

(k − 1)!(n − k + 1)!
+ n!

k!(n − k)!

= n! ⋅ k + n!(n − k + 1)
k!(n − k + 1)!

= (n + 1)!
k!(n + 1 − k)!

= (n + 1
k
)

Theorem 1.3.3 (Binomial Theorem). For any non-negative integer n and x, y ∈ R we have

(x + y)n =
n

∑
i=0
(n
i
)xn−iyi

Proof. Let P (n) be the statement that (x + y)n =
n

∑
i=0
(n
i
)xn−iyi. We will prove this theorem by

inducting on n.

∗ One can immediately notice that the base case P (0) is true:

(x + y)0 = 1 = (0
0
)x0y0

∗ Now, in the inductive step, we assume P (k) is true, i.e., (x + y)k =
k

∑
i=0
(k
i
)xn−1yi, and we want

to show P (k + 1) is true. Multiplying the LHS of P (k) with (x + y) gives that of P (k + 1), and

multiplying the RHS of P (k) gives

(x + y)
k

∑
i=0
(k
i
)xk−iyi = x

k

∑
i=0
(k
i
)xk−iyi + y

k

∑
i=0
(k
i
)xk−iyi

=
k

∑
i=0
(k
i
)xk+1−iyi +

k

∑
i=0
(k
i
)xk−iyi+1

= xk+1y0 + [
k

∑
i=1
(k
i
)xk+1−iyi +

k−1
∑
i=0
(k
i
)xk−iyi+1] + x0yk+1

= xk+1y0 + [
k

∑
i=1
(k
i
)xk+1−iyi +

k

∑
i=1
( k

i − 1
)xk+1−iyi] + x0yk+1

= (k + 1
0
)xk+1y0 +

k

∑
i=1
(k + 1

i
)xk+1−iyi + (k + 1

k + 1
)x0yk+1

=
k+1
∑
i=0
(k + 1

i
)xk+1−iyi

which equals the RHS of P (k + 1) and proves the induction hypothesis.
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∗ Now we’ve proven both the base case and the inductive step, and thus we’ve proven the Binomial

Theorem.

Future reference: problem 5.7.1

Problem 1.3.1 (1.4.5). Prove that

( r
m
)(m

k
) = (r

k
)( r − k

m − k
)

Solution 1.3.1.
( r
m
)(m

k
) = r!

m!(r −m)!
⋅ m!

k!(m − k)!

= r!

k!(r −m)!(m − k)!
= r!(r − k)!
k!(r −m)!(m − k)!

= r!

k!(r − k)!
⋅ (r − k)!
((r − k) − (m − k))!(m − k)!

= (r
k
)( r − k

m − k
)

◻

Problem 1.3.2 (1.4.12). Prove the General Leibniz Rule:

(f ⋅ g)(n) =
n

∑
i=0
(n
i
)f (n−i)g(i)

where f and g are both functions of x.

Solution 1.3.2. Let P (n) be the statement that (f ⋅ g)(n) =
n

∑
i=0
(n
i
)f (n−i)g(i). We will approach this

proof by (weak) induction.

∗ The base case is obviously true by the first-order product rule:

(f ⋅ g)(1) = f ⋅ g(1) + f (1) ⋅ g =
1

∑
i=0
(1
i
)f (1−i) ⋅ g(i)

∗ For the inductive step, we want to show P (k) Ô⇒ P (k+1). Taking derivatives of both sides of

P (k) should give us both sides of P (k+1), respectively. Now suppose (f ⋅g)(k) =
k

∑
i=0
(k
i
)f (k−i)⋅g(i),

7
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then

(f ⋅ g)(k+1) = d

dx
[

k

∑
i=0
(k
i
)f (k−i) ⋅ g(i)]

=
k

∑
i=0
(k
i
)f (k−i) ⋅ g(i+1) +

k

∑
i=0
(k
i
)f (k−i+1) ⋅ g(i)

=
k+1
∑
i=1
( k

i − 1
)f (k−i+1) ⋅ g(i) +

k

∑
i=0
(k
i
)f (k−i+1) ⋅ g(i)

= [( k

(k + 1) − 1
)f (k−(k+1)+1) ⋅ g(k+1) +

k

∑
i=1
( k

i − 1
)f (k−i+1) ⋅ g(i)]

+ [
k

∑
i=1
(k
i
)f (k−i+1) ⋅ g(i) + (k

0
)f (k+1) ⋅ g(0)]

=f ⋅ g(k+1) + [
k

∑
i=1
( k

i − 1
)f (k−i+1) ⋅ g(i) +

k

∑
i=1
(k
i
)f (k−i+1) ⋅ g(i)] + f (k+1) ⋅ g

=f ⋅ g(k+1) +
k

∑
i=1
[( k

i − 1
) + (k

i
)] f (k−i+1) ⋅ g(i) + f (k+1) ⋅ g

=f ⋅ g(k+1) +
k

∑
i=1
(k + 1

i
)f (k−i+1) ⋅ g(i) + f (k+1) ⋅ g

=
k+1
∑
i=0
(k + 1

i
)f ((k+1)−i) ⋅ g(i)

hence proven the inductive step.

∗ With the base case and inductive step both proven, we have just proven the General Leibniz

Rule. ◻

Problem 1.3.3 (1.4.16, Vandermonde’s Identity). Prove that, given a ⩾ n ⩾ 0 and b ⩾ n ⩾ 0,
n

∑
i=0
(a
i
)( b

n − i
) = (a + b

n
)

Solution 1.3.3–1. Different from before, this time we will use induction on b to approach this proof.

Let P (b) be the statement that
n

∑
i=0
(a
i
)( b

n − i
) = (a + b

n
).

∗ The base case P (0) is clearly true because

n

∑
i=0
(a
i
)( 0

n − i
) =

n−1
∑
i=0
(a
i
)( 0

n − i
) + (a

n
) = (a

n
)

since (x
y
) = 0 when x < y by definition.

∗ Now, for the inductive step, assume that P (k) holds, i.e.,
n

∑
i=0
(a
i
)( k

n − i
) = (a + k

n
). We want to

show that P (k+1) is also true. We will approach this by applying the induction hypothesis and

8
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Pascal’s Identity.

(a + (k + 1)
n

) = (a + k
n
) + (a + k

n − 1
) (Pascal’s Identity)

=
n

∑
i=0
(a
i
)( k

n − i
) +

n−1
∑
i=0
(a
i
)( k

n − 1 − i
) (P (k))

= (a
n
)(k

0
) +

n−1
∑
i=0
(a
i
)( k

n − i
) +

n−1
∑
i=0
(a
i
)( k

n − 1 − i
)

= (a
n
)(k + 1

0
) +

n−1
∑
i=0
(a
i
) [( k

n − i
) + ( k

n − 1 − i
)]

= (a
n
)(k + 1

0
) +

n−1
∑
i=0
(a
i
)(k + 1

n − i
) (Pascal’s Identity)

=
n

∑
i=0
(a
i
)(k + 1

n − i
)

This concludes the proof of the inductive step.

∗ We have proven the base case, the inductive step, and thus Vandermonde’s Identity. ◻

Solution 1.3.3–2. Consider the binomial expansion of (1 + x)a+b. By the Binomial Theorem,

the coefficient of xn is (a + b
n
).

Also notice that (1 + x)a+b = (1 + x)a ⋅ (1 + x)b, and we can apply the Binomial Theorem to both

terms separately.

(1 + x)a+b = (1 + x)a ⋅ (1 + x)b = (
a

∑
i=0
(a
i
)xi)

⎛
⎝

b

∑
j=0
(b
j
)xj⎞
⎠

Now if we try to find the coefficient of xn again, we can start by checking the case where i = 0 and

j = n, then i = 1 and j = n − 1, and so on, until x = n and j = 0. Each case has coefficient (a
i
)( b

n − i
),

and we know their sum is (a + b
n
) as previously shown. Therefore,

n

∑
i=0
(a
i
)( b

n − i
) = (a + b

n
)

hence proven. ◻
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2 Arithmetic

2.1 Divisibility and the GCD

Problem 2.1.1. [2.1.6] Let fn denoteh the nth Fibonacci number. Prove, using induction, that

gcd(fn, fn+1) = 1 for all n ∈ Z+.

Solution 2.1.1. As mentioned in solution for problem 1.2.1, our base case involves two terms, f1 and

f2.

∗ The base case is true because f1 = f2 = 1 and gcd(f1, f2) = gcd(1,1) = 1.

∗ Now assume gcd(fk, fk+1) = 1 is a true statement. Then gcd((fk + fk+1), fk+1) = 1 is also true.

Since fk+2 = fk + fk+1, our inductive step is also proven.

∗ Therefore, each pair of consecutive Fibonacci numbers is co-prime.

2.2 The Division Algorithm

Problem 2.2.1 (2.2.3). Prove that if n is a perfect square then n musc have the form 4k or 4k + 1

where k ∈ N.

Solution 2.2.1. Since n is a perfect square, n =m2 for some m ∈ N>

∗ If m ≡ 0 (mod 4), then ∃p ∈ N such that m = 4p and n = 16p2 = 4(4p2).

∗ If m ≡ 1 (mod 4), then ∃p ∈ N such that m = 4p + 1 and n = 16p2 + 8p + 1 = 4(4p2 + 2p) + 1.

∗ If m ≡ 2 (mod 4), then ∃p ∈ N such that m = 4p + 2 and n = 16p2 + 16p + 4 = 4(4p2 + 4p + 1).

∗ If m ≡ 3 (mod 4), then ∃p ∈ N such that m = 4p + 3 and n = 16p2 + 24p + 9 = 4(4p2 + 6p + 2) + 1.

We see n always has the form 4k and 4k + 1 regardless of its residue class. ◻

2.3 Euclid’s Algorithm

Definition 2.3.1 (Euclid’s Algorithm). Given x > y and x, y ∈ Z+, the following process is called

Euclid’s Algorithm:
x = yq1 + r1 0 ⩽ r1 < b

b = r1q2 + r2 0 ⩽ r2 < r1

r1 = r2q3 + r3 0 ⩽ r3 < r2

⋮ ⋮

ri−2 = ri−1qi + ri 0 ⩽ ri < ri−1

ri−1 = riqi+1 + ri+1 ri+1 = 0

Since the sequence (rn) is strictly decreasing, it will eventually reach 0, as shown by the last line

above. The last non-zero remainder, ri, satisfies ri = gcd(x, y).

Future reference: theorem 2.4.1, Euclid’s Algorithm for Polynomials

10
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2.4 Z Combination of Two Integers

Theorem 2.4.1. Suppose x, y ∈ Z are not both zero, then ∃a, b ∈ Z such that

ax + by = gcd(x, y)

Proof. We will first show that this statement holds true ∀x, y ∈ Z+. Without loss of generality (WLOG

hereafter), assume a > b. Recall the remainder rn in Euclid’s Algorithm. It follows that r1 is a Z

combination of x and y since r1 = x − yq1. Then, ri+1 can always be obtained by a Z combination of

ri−1 and qi since ri+1 = ri−1 − riqi+1. Thus rn is always obtainable using a Z combination of x and y,

and the statement holds ∀x, y ∈ Z+.

If x ∈ Z− and y ∈ Z+ then −x ∈ Z+ and from the case above we know ∃a1, b1 ∈ Z such that

a1(−x) + b1y = gcd(−x, y).

Since gcd(−x, y) = gcd(x, y) and a1(−x) = (−a1)x, we have

(−a1)x + b1y = gcd(x, y)

Likewise if x ∈ Z+ and y ∈ Z−.

If x = 0 and y ∈ Z+ then gcd(x, y) = y = 0 ⋅ x + 1 ⋅ y.

If x = 0 and y ∈ Z− then gcd(x, y) = y = 0 ⋅ x + (−1) ⋅ y.

Likewise for the two cases given y = 0.

Future reference: Bézout’s Identity, theorem 4.2.1, theorem 5.3.8

Theorem 2.4.2 (Bézout’s Identity). Let x and y be integers with gcd(x, y) = d. Then ∃a, b ∈ Z such

that ax + by = d. More generally, all integers of the form ax + by are multiples of d.

Proof. The first part is already proven in theorem 2.4.1. The second part is more obvious. Since

gcd(x, y) = d, we have d ∣ x and d ∣ y. It follows that any Z combination of two multiples of d will still

be a multiple of d, and we are done with the proof.

2.5 The Fundamental Theorem of Arithmetic

Theorem 2.5.1 (Fundamental Theorem of Arithmetic, FTA). Each positive integer greater than 1

can be uniquely factorized.

Proof. Suppose not, then there exists some positive integer x such that it can be prime factorized in

at least two different ways:

x =
k

∏
i=1

pi and x =
ℓ

∏
i=1

qi where pi < pi+1

WLOG, assume k ⩽ ℓ. Since p1 ∣ x, there exists some qm such that p1 ∣ qi. However, to divide qm, p1
has to either equal to 1 or qm, but any prime number is greater than 1. Therefore p1 = qm. Rearrange

the indexes of the rest of q’s so that they are now named q2, q3,⋯, qj . Similar to p1 = qm, there exists

another qn such that p2 = qn. Since k ⩽ ℓ, each prime number in the p-prime factorization is equal to

some prime number in the q-factorization. With proper rearrangement, we have shown that
k

∏
i=1

pi =
k

∏
i=1

qi

11
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Therefore,
x

∏k
i=1 pi

= x

∏k
i=1 qi

Ô⇒ 1 =
ℓ

∏
i=k+1

qi

which is clearly impossible, given that each prime number is greater than 1. Therefore, the assumption

that there exists a positive integer greater than 1 that can be prime factorized in more than one way

is false, and we’ve proven the FTA.

Theorem 2.5.2. There are infinite prime numbers.

Proof. Suppose not, then we can list all the prime numbers, which we call p1, p2,⋯, pn. Then consider

the number x = 1+
n

∏
i=1

pi. If x is prime then we immediately have a contradiction that suggests prime

numbers are infinite. If not, then it must be a multiple of some pk that’s on the list of “all” prime

numbers. Now consider the following equation:

x −
n

∏
i=1

pi = 1

Since both x and
n

∏
i=1

pi are multiples of pk, it follows that pk ∣ 1 which is clearly a contradiction.

Therefore the assumption that prime numbers are finite must be false and we are done with the

proof.

12
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3 Complex Numbers, Sets, and Functions

3.1 Complex Numbers

Some basic concepts...

∗ R(a + bi) = a;I(a + bi) = b; ∣a + bi∣ =
√
a2 + b2

∗ R(z),I(z), ∣z∣ ∈ R

∗ (a + bi) + (c + di) = (a + c) + (b + d)i

∗ (a + bi)(c + di) = (ac − bd) + (ad + bc)i

∗ Conjugate: z = a + bi Ô⇒ z = a − bi

∗ z1 ⋅ z2 = z2 ⋅ z1

∗ ∣z1 ⋅ z2∣ = ∣z1∣ ⋅ ∣z2∣

∗ z1 ⋅ z2 = z1 ⋅ z2

∗ z ⋅ z = ∣z∣2

∗ Polar form: r(cos θ + i sin θ)

Some important formulas:

Proposition 3.1.1 (Euler’s Formula).

eiθ = cos θ + iθ ∀θ ∈ R

Proposition 3.1.2 (DeMoivre’s Theorem). Given z ∈ C in polar form,

z = r(cos θ + i sin θ) ⇐⇒ zn = rn(cos(nθ) + i sin(nθ))

Future reference: theorem 3.2.2, problem 5.5.1

13
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3.2 Roots of Unity

Definition 3.2.1. Given n ∈ Z+, an nth root of unity is a z ∈ C such that zn = 1. The set of all nth

roots of unity is denoted as

µn = {z ∈ C ∶ zn = 1} .

Theorem 3.2.2. Suppose n ∈ Z+ and let ζ = e2πi/n. Then

µn = {ζk ∶ k ∈ Z} .

Proof. To prove the equality, it suffices to show that µn ⊆ {ζk ∶ k ∈ Z} and {ζk ∶ k ∈ Z} ⊆ µn, respec-

tively. The second statement is obvious. Since ζ is given as an nth root of unity, we already know

ζn = 1. All we need to show is that ∀k ∈ Z, ζk ∈ µn, i.e., (ζk)n = 1. A tiny amount of rearrangement

gives

(ζk)n = ζkn = (ζn)k = 1k = 1

which proves that {ζk ∶ k ∈ Z} ⊆ µn. Now look at the first statement. By definition, we know that

∀z ∈ µn, z
n = 1. If we express z in polar form as reiθ, then by DeMoivre’s Theorem,

1 = zn = rneinθ

which immediately suggests r = 1 and nθ = 2πk for some k ∈ Z. This is exactly the same k that we are

looking for since

z = reiθ = e2πki/n = (e2πi/n)k = ζk

which proves that µn ⊆ {ζk ∶ k ∈ Z}. Therefore µn = {ζk ∶ k ∈ Z}.

Definition 3.2.3. A complex number z has order d if zd = 1 and z ≠ 1 for all 0 ⩽m < d. A primitive
nth root of unity is a z ∈ µn of order n. A primitive nth root of unity is a z ∈ µn of order n.

(Example: z1 = eπi/5 = e2πi/10 is a primitive 10th root of unity but z2 = e2πi/5 = e4πi/10 isn’t because

(z2)5 = e2πi = 1.)

Theorem 3.2.4. Suppose z is a root of unity of order d. Then for any k ∈ Z,

zk has order d/gcd(d, k)

Proof. Let d0 = d/gcd(d, k) and k0 = k/gcd(d, k). It follows that

gcd( d

gcd(d, k)
,

k

gcd(d, k)
) = gcd(d0, k0) = 1.

Clearly, kd0 =
kd

gcd(d, k)
= dk0. Therefore,

(zk)d0 = zkd0 = zdk0 = (zd)k0 = 1

and zk is a (d0)th root of unity. Now we need to show that zk is a primitive (d0)th root of unity, i.e.,

no positive integer smaller f < d0 satisfy (zk)f = 1.

Suppose there exists such f ∈ Z+ such that f < d0 and (zk)f = 1. Then since z(kf) = 1, it follows

that kf is a multiple of d. Dividing both kf and d by gcd(d, k) we have d0 ∣ k0f . However, we know

14



3.2 Roots of Unity YQL’s Notes: Intro to Abstract Algebra

that gcd(d0, k0) = 1, so d0 ∣ f , which suggests d0 ⩽ f , contradiction. Therefore if z is a root of unity of

order d, zk is a root of unity of order d/gcd(d, k).

Future reference: problem 3.2.1, prob 4.1.1

Problem 3.2.1 (3.2.18, old version). Suppose p is a prime number. Show that there are pn − pn−1

primitive pn-th roots of unity.

Solution 3.2.1. Let ζ = e2πi/p
n . Clearly ζ is a primitive pn-th root of unity. The set of all pn-th

roots of unity has pn distinct elements:

µpn = {ζk ∶ 1 ⩽ k ⩽ pn}

However, not all of these elements are primitive pn-th root of unity. By theorem 3.2.2, ζk is a primitive

pn-th root of unity if and only if k and pn are co-prime. Since p is a prime number, the only case

when k and pn aren’t co-prime is when p ∣ k. There are pn/p = pn−1 such numbers between 1 and

pn. Excluding these non-primitive roots of unity, we therefore have pn − pn−1 primitive pn-th roots of

unity.

Future reference: 4.4.1
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3.3 Operations on Sets

Proposition 3.3.1 (De Morgan’s Laws). For any sets A and B,

(A ∪B)C = AC ∩BC

(A ∩B)C = AC ∪BC

Proposition 3.3.2 (Distributive laws). For any sets A, B, and C, we have

A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C)

A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)

3.4 Functions

Definition 3.4.1. Let f ∶X → Y be a function.

∗ f is injective if for every x1, x2 ∈X,

x1 ≠ x2 Ô⇒ f(x1) ≠ f(x2)

or, rephrased by the contrapositive,

f(x1) = f(x2) Ô⇒ x1 = x2

∗ f is surjective if for every y ∈ Y there exists some x ∈X such that f(x) = y.

∗ f is bijective if it is injective and surjective‘

Definition 3.4.2. For any set X define the identity function idX ∶X →X by idX(x) = x.

Definition 3.4.3. Suppose f ∶ X → Y is a function. A function g ∶ Y → X is called an inverse of f

it it satisfies both relations

f ○ g = idY g ○ f = idX

Or, equivalently,

f(f−1(y)) = y ∀y ∈ Y and f−1(f(x)) = x ∀x ∈X

Future reference: theorem 3.4.4

Theorem 3.4.4. A function f ∶X → Y is invertible if and only if it is bijective.

Proof. For the Ô⇒ it suffices to show that if f is invertible then it is both injective and surjective.

Suppose f is invertible then there exists an f−1 ∶ Y →X. Then,

f(x1) = f(x2) Ô⇒ f−1(f(x1)) = f−1(f(x2)) (Definition of a function)

Ô⇒ x1 = x2 (Property of inverse function)

which shows f is injective. Now, because we know

f(f−1(y)) = y ∀y ∈ Y

from definition 3.4.3, f is indeed surjective.

16
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Now for the ⇐Ô direction, assume that f is bijective. Then for every y ∈ Y , there is an unique x

such that f(x) = y. Now define g ∶ Y →X as the following:

For every y ∈ Y , let g(y) ∈X be the unique element such that f(g(y)) = y

It follows that ∀y ∈ Y, f(g(y)) = y. Therefore f ○ g = idY . Now combining the two functions, f(x) and

f(g(y)), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) = y

f(g(y)) = y
Ô⇒ g(y) = x Ô⇒ g(f(x)) = x Ô⇒ g ○ f = idX

By definition 3.4.3, we’ve shown g is an inverse of f . ⇐Ô direction done as well.

Problem 3.4.1 (3.4.14). Suppose we have functions f ∶ A→ B and g ∶ B → C.

(a) Prove that if f and g are both injective then so is g ○ f .

(b) Prove that if f and g are both surjective then so is g ○ f .

(c) It follows from the previous two parts that if f and g are bijective then so is g○f . Is the converse

g ○ f bijective Ô⇒ f and g bijective

true? Prove or give a counterexample.

Solution 3.4.1. Note that g ○ f is a composite function that maps elements from A to C.

1. By definition of injecrtivity, g(f(a)) = g(f(b)) Ô⇒ f(a) = f(b) since g is injective, and

f(a) = f(b) Ô⇒ a = b since f is injective. Therefore

(g ○ f)(a) = (g ○ f)(b) ⇐⇒ g(f(a)) = g(f(b)) Ô⇒ a = b

hence g ○ f is injective.

2. Since g is surjective, it follows that for each c ∈ C, there exists some b ∈ B such that g(b) = c. But

we also know f is surjective, and by definition there also exists some a ∈ A such that f(a) = b.

Therefore ∀c ∈ C,∃a ∈ A such that (g ○ f)(a) = g(f(a)) = c. Hence we’ve shown that g ○ f is

surjective.

3. False. Consider the functions
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f ∶ R+ → R, f(x) = x

g ∶ R→ R+, g(x) = ∣x∣
Ô⇒ g ○ f ∶ R+ → R+, (g ○ f)(x) = ∣x∣

in which case f is NOT surjective, g is NOT injective, but g ○ f is bijective.

Problem 3.4.2 (3.4.19). Define a function f ∶ Z+ ×Z+ → Z+ by the formula

f(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a
b
) if a ⩾ b

(b
a
) if b < a

Determine if f is injective, surjective, both, or neither.

17
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Solution 3.4.2. Suppose a ⩽ b, we have (a
b
) = ( a

a − b
), which implies f(a, b) = f(a, a− b) even though

the ordered pairs ⟨a, b⟩ and ⟨a, a − b⟩ are not necessarily equal. Therefore f is not injective.

Notice that ∀a ∈ Z+, we always have (a
1
) = a. Therefore, it we fix b = 1, f(a, b) surjects the entire

Z+. Thus, f is surjective.

Problem 3.4.3 (3.4.20). Define a function f ∶ Z+ ×Z+ → Z+ by the formula

f(a, b) = (a + b
b
).

Determine if f is injective, surjective, both, or neither.

Solution 3.4.3. Similar to the previous question, since (a + b
a
) = (a + b

b
), we have f(a, b) = f(b, a)

even though the ordered pairs ⟨a, b⟩ and ⟨b, a⟩ are not necessarily equal. Therefore f is not injective.

In this problem, f is not surjective either because the only occasions when (a + b
b
) = 0 is a + b = b

or b = 0, both of which are impossible given a, b ∈ Z+. Therefore the image of f does not include 1,

and f is neither injective nor bijective.

3.5 Image and Preimage

Definition 3.5.1. Suppose f ∶X → Y is a function and A ⊆X, B ⊆ Y .

(1) The image of A under f is the set

f(A) = {f(a) ∶ a ∈ A}

(2) The preimage of B under f is the set

f−1(B) = {x ∈X ∶ f(x) ∈ B}

Problem 3.5.1 (3.5.5-8).

1. Suppose B ⊂ Y . Prove or give a counterexample to each of the inclusions

B ⊂ f(f−1(B)) f(f−1(B)) ⊂ B.

2. Suppose f is surjective, and B ⊂ Y . Prove that f(f−1(B)) = B.

3. Suppose A ⊂X. Prove or give a counterexample to each of the inclusions

A ⊂ f−1(f(A)) f−1(f(A)) ⊂ A.

4. Suppose f is injective, and A ⊂X. Prove that f−1(f(A)) = A.

Solution 3.5.1.

1. The first inclusion is false and the second is true.

For the first one, consider X = {0}, Y = {0,1}, B = {1}, and the identity function idX ∶ X → Y .

Then, f−1(B) = ∅ since no x ∈ X satisfy f(x) = 1. It follows that f(f−1(B)) = f(∅) = ∅, and

B ⊄ ∅. Hence we’ve found a counterexample.

The other inclusion, however, is correct. By definition, for all element x ∈ f−1(B), we always

have f(x) ∈ B. Therefore f(f−1(B)) ⊂ B. ◻

18
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2. We have shown that f(f−1(B)) ⊂ B regardless of the surjectivity of f . Therefore it suffices to

show that f is surjective Ô⇒ B ⊂ f(f−1(B)).

Choose an arbitrary b ∈ B. Since f is surjective, there exists x ∈ X such that f(x) = b. Thus

x ∈ f−1(B) . Substituting b by f(x), we have b = f(x) ∈ f(f−1(B)). Since b is chosen arbitrarily,

B ⊂ f(f−1(B)) and thus f(f−1(B)) = B. ◻

3. The first inclusion is true and the second is false.

The first inclusion always holds. For a ∈ A, it is always true that a ∈ f−1(f(A)) since f(a) = f(a).

As a counterexample to the second inclusion, consider X = {0,1},A = {0}, Y = {0}, and

f ∶ X → Y defined by f(0) = f(1) = 0. Then, f(A) = {0}, and f−1(0) = {0,1}. Clearly

{0,1} ⊄ {0}. Hence this is a counterexample.

4. We have shown that f−1(f(A)) ⊂ A regardless of the injectivity of f . Therefore it suffices to

show that f is injective Ô⇒ f−1(f(A)) ⊂ A.

Choose an arbitrary x ∈ f−1(f(A)). By definition f(x) ∈ f(A). Therefore there exists a ∈ A

such that f(a) = f(x). Since f is injective, by (contrapositive) definition we know a = x. Hence

if x ∈ f−1(f(A)) then x ∈ A, i.e., f−1(f(A)) ⊂ A. Therefore if f is injective then f−1(f(A)) = A.

◻

Problem 3.5.2 (old version only).

(a) Suppose that A,B ⊂X, and that f is injective. Prove that

f(A) ⊂ f(B) Ô⇒ A ⊂ B.

(b) Show that the previous claim is false if we omit the hypothesis that f is injective.

(c) Suppose that C,D ⊂ Y , and that f is surjective. Prove that

f−1(C) ⊂ f−1(D) Ô⇒ C ⊂D.

(d) Show that the previous claim is false if we omit the hypothesis that f is surjective.

Solution 3.5.2.

(a) Suppose f(A) ⊂ f(B). Choose arbitrary a ∈ A. We immediately know f(a) ∈ f(A) and

f(a) ∈ f(B) as well since f(A) ⊂ f(B). By definition, given f(a) ∈ f(B), there exists b ∈ B

such that f(b) = f(a). However, because f is injective, f(b) = f(a) implies b = a and thus a ∈ B.

Therefore if f(A) ⊂ f(B) then A ⊂ B. ◻

(b) Counterexample: consider A = X = {0,1}, B = {0}, Y = {0}, and f ∶ X → Y defined by

f(0) = f(1) = 0. Then we have f(A) = {0} and f(B) = {0}. Thus f(A) ⊆ f(B). However,

A = {0,1} ⊄ {0} = B.

(c) Suppose f−1(C) ⊂ f−1(D). Choose an arbitrary c ∈ C. Since f is surjective, there exists x ∈ X

such that f(x) = c. Therefore x ∈ f−1(C). Since f−1(C) ⊂ f−1(D), it follows that x ∈ f−1(D) as

well. Then, again, by definition, f(x) = c ∈D. Hence C ⊂D. ◻
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(d) Counterexample: consider X = {0}, C = Y = {0,1}, D = {0}, and idX ∶X → Y . Then

f−1(C) = {0} and f−1(D) = {0}. We have f−1(C) ⊆ f−1(D) but clearly C = {0,1} ⊄ {0} =D.

Problem 3.5.3 (3.5.9). Suppose f−1(f(A)) = A holds for every A ⊂X. Prove that f is an injection.

Solution 3.5.3. Again, showing f−1(f(A)) = A is equivalent to showing both f−1(f(A)) ⊂ A and

A ⊂ f−1(f(A)). Since we’ve shown that the latter is true regardless of the injectivity of f , it suffices

to show f−1(f(A)) ⊂ A Ô⇒ f is injective.

Suppose f is not injective. Then there exist x1, x2 ∈X such that x1 ≠ x2 but f(x1) = f(x2). If we

let A = {x1} then we have {x1, x2} = f−1(f(A)) but {x1, x2} ⊄ A. Contradiction. (Likewise if we let

A = x2.) Hence if f−1(f(A)) = A holds for every A ⊂X then f is injective. ◻
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4 Congruences and the Ring Z/nZ

4.1 Equivalence Relations and Partitions

Definition 4.1.1. Let X be a set and let R be a relation on X. We say that R is an equivalence
relation if it satisfies the following three properties:

(1) Reflexivity: every a ∈X satisfies aRa.

(2) Symmetry: for a, b ∈X, aRb implies bRa.

(3) Transitivity: for a, b, c ∈X, aRb ∧ bRc Ô⇒ aRc.

Definition 4.1.2. Let X be a set and let R be an equivalence relation on X. For any a ∈ X define

the equivalence class of a by

[a]R = {x ∈X ∶ aRx}

Definition 4.1.3. Fix a positive integer n. The congruence modulo n is defined as

a ≡ b (mod n) ⇐⇒ n ∣ a − b

Definition 4.1.4. Let X be any set. A partition of X is a collection C of subsets of X with the

following properties:

(1) For every x ∈X there is a B ∈ C such that x ∈ B

(2) Every B ∈ C is nonempty.

(3) For sets B,B′ ∈ C, either B = B′ or B ∩B′ = ∅.

The elements B ∈ C are called blocks of partition.

Example 4.1.1. C = {[0]3, [1]3, [2]3} is a partition of Z where [x]3 denotes the equivalence class of

x modulo 3.

(1) Each integer belongs to either [0]3, [1]3, or [2]3.

(2) None of the blocks are empty.

(3) Clearly [1]3, [2]3, [3]3 are different, and the intersection between any two of the three is ∅.

Problem 4.1.1 (4.1.16). Define a relation ∼ on µ10 by

z1 ∼ z2 ⇐⇒ (the order of z41) = (the order of z42)

Verify that ∼ is an equivalence relation, and determine the associated partition of µ10.

Solution 4.1.1. Clearly ∼ satisfies reflexivity as z41 always has the same order as itself. It satisfies

symmetry because the symbol = is reflexive. It also satisfies transitivity because the symbol = is

transitive.
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Now let’s determine the partition. Let ζ = e2πi/10. Then

µ10 = {ζ, ζ2,⋯, ζ10}

Below is a diagram that shows the order of each ζk ∈ µ10 as well as that of (ζk)4. Recall theorem

3.2.4 that if z is a root of unity of order d then zk has order d/gcd(d, k).

Roots ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

Order of ζk 10 5 10 5 2 5 10 5 10 1

Order of (ζk)4 5 5 5 5 1 5 5 5 5 1

Therefore, the partition for this question would be

C = {{ζ5, ζ10} ,{ζ, ζ2, ζ3, ζ4, ζ6, ζ7, ζ8, ζ9}}
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4.2 The Chinese Remainder Theorem

Theorem 4.2.1 (Chinese Remainder Theorem). If we are given m,n ∈ Z+ and c, d ∈ Z. If gcd(m,n) =

1, then there is a (actually, infinitely many) z ∈ Z satisfying

z ≡ c (mod m) and z ≡ d (mod n)

Proof. Since gcd(m,n) = 1, there is a Z-combination of m and n such that am + bn = 1 according to

Euclid and theorem 2.4.1. Multiplying this Z combination by c − d, we have

(c − d)(am + bn) = (ca − da)m + (cb − db)n = c − d

(da − ca)m + (db − cb)n = d − c

(da − ca)m + c = (cb − db)n + d

Note that

(da − ca)m + c ≡ c (mod m) and (cb − db)n + d ≡ d (mod n)

and we’ve found a z ∈ Z satisfying the requirement given by the question. In fact, any element from

the set {z + kmn, k ∈ Z} satisfies the modulo relations, that’s what I mean by the parenthesis in the

question.

Problem 4.2.1 (4.2.4). Find all z ∈ Z such that

z ≡ 1 (mod 5) and z ≡ 2 (mod 7) and z ≡ 3 mod 9

Solution 4.2.1. First we find a number a that satisfies a ≡ 1 (mod 5) and 7 ⋅ 9 ∣ a. Similarly, we will

then find b, a multiple of 5 × 9 = 45, that satisfies y ≡ 2 (mod 7). Finally, we will find c, a multiple of

5 ⋅ 7 = 35 that satisfies c ≡ 3 (mod 9). Note that a and a+ b+ c have the same remainder when divided

by 5 because b + c is a multiple of 5. Likewise for b and c regarding remainders when divided by 7

and 9. After reducing three congruence modulo relations to two, the question becomes significantly

easier. The smallest positive a, b, c are

a = 63 ⋅ 2 = 126, b = 45 ⋅ 3 = 135, and c = 35 ⋅ 6 = 210

Adding them together yields 126 + 135 + 210 = 471. Since 471 > 5 ⋅ 7 ⋅ 9 = 315, the smallest positive z

that satisfies all three congruence modulo relation is 471 − 315 = 156, and all z ∈ Z that satisfies these

relation can be expressed as the elements of the set

{156 + 315k ∶ k ∈ Z}

4.3 Arithmetic in Z/nZ

Definition 4.3.1. For any n ∈ Z+ define Z/nZ as

Z/nZ = {[a]n ∶ a ∈ Z}

Definition 4.3.2. Fix an n ∈ Z+. Define addition and multiplication in Z/nZ by

[a]n + [b]n = [a + b]n and [a]n ⋅ [b]n = [ab]n
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Example 4.3.1. An extremely good application of Z/nZ is to determine the remainders when divided

by certain numbers. For example, we will find the remainder when 3624 is divided by 11:

[3624]11 = [3 ⋅ 103 + 6 ⋅ 102 + 2 ⋅ 10 + 4]11

= [3]11 ⋅ 10311 + [6]11 ⋅ 10211 + [2]11 ⋅ [10]111 + [4]11 ⋅ [10]011

= [3]11 ⋅ [−1]311 + [6]11 ⋅ [−1]211 + [2]11 ⋅ [−1]111 + [4]11 ⋅ [−1]011

= −[3]11 + [6]11 − [2]11 + [4]11

= [−3 + 6 − 2 + 4]11

= [5]11

which shows exactly why the way to find the remainder when divided by 11 is by finding the difference

between sums of alternate digits.

Proposition 4.3.3 (The Pigeonhole Principle). Suppose we are given finite sets A and B with

cardinality ∣A∣ and ∣B∣, respectively. Let f ∶ A→ B be a function.

(1) If f is injective then ∣A∣ ⩽ ∣B∣.

(2) If f is surjective then ∣A∣ ⩾ ∣B∣.

(3) If f is bijective then ∣A∣ = ∣B∣.

(4) If ∣A∣ = ∣B∣, then f is injective ⇐⇒ f is surjective.

Future reference: Chinese Remainder Theorem II, proposition 4.5.2, problem 5.1.2, theorem 4.6.11

Theorem 4.3.4 (Chinese Remainder Theorem II). If gcd(m,n) = 1, then the function

f ∶ Z/mnZ→ Z/mZ ×Z/nZ

defined by f([z]mn) = ([z]m, [z]n) is a well-defined bijection.

Proof. Suppose [x]mn = [y]mn, then

x ≡ y (mod mn) Ô⇒ x ≡ y (mod m) and x ≡ y (mod n)

i.e., [x]m = [y]m and [x]n = [y]n, and we have shown that

f([x]mn) = f([y]mn) Ô⇒ ([x]m, [x]n) = ([y]m, [y]n)

Thus f is well-defined.

Knowing ∣Z/mnZ∣ =mn = ∣Z/mZ∣ ⋅ ∣Z/nZ∣, in order to prove f is a bijection, it suffices to show f is

injective by proposition 4.3.3. Consider a, b such that [a]mn ≠ [b]mn. Then either a ≢ b (mod m) or

a ≢ b (mod n) (or both). In either case, ([a]m, [a]n) ≠ ([b]m, [b]n). Therefore f is injective and thus

bijective.

Future reference: proposition 4.6.5

Problem 4.3.1 (4.3.16, old version). Call a function well-defined if x = y Ô⇒ f(x) = f(y).
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(1) Consider the function f ∶ Z/3Z→ Z/9Z by f([a]3) = [a3]9. Show this function is well defined.

(2) Consider the function f ∶ Z/3Z→ µ9 by f([a]3) = e2πia
3/9. Show this function is defined.

Solution 4.3.1.

(1) If [x]3 = [y]3 then x ≡ y (mod 3). Therefore there exists k ∈ Z such that y = x + 3k. Then,

[y3]
9
= [(x + 3k)3]

9
= [x3 + 9x2k + 27xk2 + 27k3]

9

= [x3 + 9(x2k + 3xk2 + 3k3)]
9

= [x3]
9

Therefore f is well-defined.

(2) Just like the previous part, suppose [x]3 = [y]3 then ∃k ∈ Z such that y = x + 3k. Then by (1),

if we denote xk + 3xk2 + 3k3 as n,

e2πiy
3/9 = e2πi(x

3+9n)/9 = e2πix
3/9 ⋅ e2nπi = e2πix

3/9

which shows f is well-defined.
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4.4 Rings and the Units of Z/nZ

Definition 4.4.1. A ring is a ordered triplet (R,+, ⋅) where R is a set and

+ ∶ R ×R → R

⋅ ∶ R ×R → R

are functions with the following properties:

(1) a + b = b + a for all a, b ∈ R

(2) (a + b) + c = a + (b + c) for all a, b, c ∈ R

(3) There exists an additive identity, 0R, such that a + 0R = a for all a ∈ R

(4) For every a ∈ R, there exists an element −a ∈ R such that a + (−a) = 0R

(5) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) for all a, b, c ∈ R

(6) For all a, b, c ∈ R,
a ⋅ (b + c) = a ⋅ b + a ⋅ c

(a + b) ⋅ c = a ⋅ c + b ⋅ c

Proposition 4.4.2. A ring is closed under both addition and multiplication, i.e., for a, b ∈ R, we have

a + b ∈ R and ab ∈ R.

Usually, “let R be a ring” is a shorthand version of saying “let (R,+, ⋅) be a ring. Both are correct.

Different from addition and multiplication in R, the following do NOT need to be satisfied in order

for R to be a ring:

∗ a ⋅ b = b ⋅ a. Counterexample:
⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

0 0

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦
but
⎡⎢⎢⎢⎢⎢⎣

0 0

0 1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎥⎦

∗ The existence of a multiplication identity and multiplicative inverses. Counterexample: the set

of even integers.

∗ Cancellation law: a ⋅ b = a ⋅ c Ô⇒ b = c. Counterexample:

[2]6 ⋅ [4]6 = [2]6 ⋅ [1]6 but [4]6 ≠ [1]6

Definition 4.4.3. A commutative ring R is a ring that satisfies ab = ba for all a, b ∈ R.

Definition 4.4.4. A ring with 1 is a ring with multiplicative identity: ∃1R ∈ R such that a ⋅ 1R =

a = 1R ⋅ a for all a ∈ R.

Several propositions that might be helpful:

Proposition 4.4.5. For every a ∈ R and the additive identity, 0R, we have a ⋅ 0R = 0 = 0 ⋅ aR.

Proposition 4.4.6. A ring has a unique additive identity.
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Proposition 4.4.7. Each a ∈ R has a unique additive inverse.

Back to new concepts:

Definition 4.4.8. Let R be a ring with 1. An element a ∈ R is called a unit if there exists a−1, called

the multiplicative inverse of a, such that a ⋅ a−1 = 1 = a−1 ⋅ a.

The set of all units in R is denoted as R×.

More propositions...

Proposition 4.4.9. If a set R has a multiplicative identity, it has a unique one.

Proposition 4.4.10. If a ∈ R has a multiplicative inverse, then it has a unique one.

Future reference: problem 4.4.2

Proposition 4.4.11. Cancellation law applies if the canceled term is a unit. In other words, if a, b ∈ R

and c ∈ R×, then

ca = cb ⇐⇒ a = b and ac = bc ⇐⇒ a = b

Future reference: Euler’s Theorem

Example 4.4.1. Examples of R×: R× = R ∖ {0}; C× = C ∖ {0};, Z× = {−1,1};

Mn(R)× = {A ∈Mn(R) ∶ det(A) ≠ 0}, where Mn(R) denotes the set of all n×n matrices with entries

from R.

Theorem 4.4.12. Fix any n ∈ Z, the set of all units of the ring Z/nZ is

(Z/nZ)× = {[a]n ∶ gcd(a,n) = 1}

Proof. First thing first, [1]n is always the unit for Z/nZ by the definition of a multiplication identity.

Now, if [a]n ∈ (Z/nZ)×, then there exists a [b]n ∈ Z/nZ such that [a]n ⋅ [b]n = [1]n.

Note that all elements of [a]n can be written in the form of pn+ a and all elements of [b]n can be

written in the form of qn + b, where p, q ∈ Z. Then,

[a]n ⋅ [b]n = [ab]n

= [(pn + a)(qn + b)]n

= [pqn2 + pbn + qan + ab]n

= [n(pqn + pb + qa)]n + [ab]n

= [ab]n

If [ab]n = [1]n, then n ∣ ab− 1 which immediately implies gcd(a,n) ∣ ab− 1. However, gcd(a,n) clearly

divides a and ab as well. To both divide ab − 1 and ab, we conclude that gcd(a, b) = 1, which finishes

the proof.

Future reference: problem 4.4.1, Fermat’s Little Theorem, problem 4.5.1, Euler’s Theorem

Corollary 4.4.12.1. If p is prime then

(Z/pZ)× = {[1]p, [2]p,⋯, [p − 1]p}

Future reference: problem 4.4.2
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Problem 4.4.1 (4.4.23, old version). Suppose p is a prime and n ∈ Z+. Find a formula for ∣(Z/pnZ)×∣.

Solution 4.4.1. By theorem 4.4.12, all elements a ∈ (Z/pnZ) satisfy gcd(a, pn) = 1. By problem

3.2.1, we know that there are pn − pn−1 such a’s. Therefore ∣(Z/pnZ)×∣ = pn − pn−1.

Future reference: proposition 4.6.10

Problem 4.4.2 (4.4.28, old version). Prove Wilson’s Theorem: p is a prime if and only if

(p − 1)! ≡ −1 (mod p)

Solution 4.4.2. When p = 2, this statement is obviously true since 1! = 1 and 1 ≡ −1 (mod 2). Now,

besides 2, all prime numbers are odd, thus all p − 1 are even. Note that

p−1
∏
i=1
[i]n = [1]n ⋅ [p − 1]n ⋅

p−2
∏
i=2
[i]n = [p − 1]n ⋅

p−2
∏
i=2
[i]n

= [−1]n ⋅
p−2
∏
i=2
[i]n

By corollary 4.4.12.1, since P is a prime, [i]n ∈ (Z/nZ)× for all i between 1 and p − 1. Then, by

proposition 4.4.10, each [j]n has a unique multiplicative inverse [k]n. Moreover, [j]n itself is the

unique multiplicative inverse of [k]n. Therefore, since (Z/pZ)× ∖ {[1]n, [p − 1]n} has p − 3 elements,

these elements will form p − 3
2

pairs, each of which has a product of [1]n. Their product is, of course,

still [1]n. Since
p−1
∏
i=1
[i]n = [−1]n ⋅ [1]n = [−1]n

we have proven Wilson’s Theorem. ◻
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4.5 Fermat’s Little Theorem

Proposition 4.5.1. Let R be a ring with 1. If a, b ∈ R× then ab ∈ R×.

Proof. We will prove a stronger statement: that ab ∈ R× and ab−1 = b−1a−1. Two lines are enough.

(ab)(b−1a−1) = abb−1a−1 = a(bb−1)a−1 = a(1R)a−1 = aa−1 = 1R

(b−1a−1)(ab) = b−1a−1ab = b−1(a−1a)b = b−1(1R)b = b−1b = 1R

Future reference: proposition 4.5.2, Fermat’s Little Theorem, Euler’s Theorem

Proposition 4.5.2. Let R be a ring Z/nZ where n ∈ Z+. Define a function

multu ∶ R× → R×

by multu([x]n) = [u]n ⋅ [x]n. This is well defined by proposition 4.5.1. For any u ∈ R×, multu is a

bijection.

Proof. Since the domain and the codomain are the same, they have equal cardinality. Part (4) of

the The Pigeonhole Principle suggests that to prove multu is a bijection, it suffices to show it is an

injection, i.e., for 0 ⩽ x1, x2 ⩽ n − 1,

[x1]n ≠ [x2]n Ô⇒ multu([x1]n) ≠multu([x2]n)

Since u ∈ R×, we know gcd(u,n) = 1. Note that

multu([x1]n) = [x1]n ⋅ [u]n = [ux1]n and

multu([x2]n) = [x2]n ⋅ [u]n = [ux2]n

If [x1]n ≠ [x2]n, then x1 ≠ x2 and ux1 ≠ ux2. If we assume [ux1]n = [ux2]n then n ∣ (ux1−ux2). Since

gcd(n,u) = 1, it must be the case that n ∣ (x1 − x2) which is a contradiction, given that x1 ≠ x2 and

0 ⩽ x1, x2 ⩽ n − 1. Therefore the assumption that x1 ≠ x2 and multu(x1) =multu(x2) is false, and the

function is indeed injective and bijective.

Future reference: Fermat’s Little Theorem, Euler’s Theorem

Theorem 4.5.3 (Fermat’s Little Theorem). Suppose p is a prime and gcd(a, p) = 1 (or p ∤ a), then

ap−1 ≡ 1 (mod p)

Future reference: problem 4.5.1

Proof. Since gcd(a, p) = 1, by theorem 4.4.12, [a] ∈ (Z/pZ)×. Define a function

mult[a] ∶ (Z/pZ)× → (Z/pZ)× by mult[a]([x]) = [a][x].

By proposition 4.5.2, mult[a] is a bijection. Therefore, the multiplication by [a] permutes the elements

of (Z/pZ)×. In other words each element of (Z/pZ)× appears exactly once as image and exactly once

as preimage as well. Then,

{[1], [2],⋯, [p − 1]} = {[1a], [2a], [3a]⋯, [(p − 1)a]}
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It follows that
p−1
∏
i=1
[i] =

p−1
∏
i=1
[ai] Ô⇒ [(p − 1)!] = [a(p−1)] ⋅ [(p − 1)!]

Proposition 4.5.1 shows that the products of units are units. Since p is a prime, [(p− 1)!] is therefore

a product of units for Z/pZ. Thus [(p − 1)!] has a multiplicative inverse. Multiplying both sides of

the equation with this inverse, we have

[(p − 1)!] ⋅ [(p − 1)!]−1 = [a(p−1)] ⋅ [(p − 1)!] ⋅ [(p − 1)!]−1

[1] = [ap−1]

and we’ve proven Fermat’s Little Theorem.

Future reference: Euler’s Theorem

Problem 4.5.1 (4.5.6). Let p be a prime.

(1) Suppose 0 < k < p. Prove (p
k
) ≡ 0 (mod p).

(2) Deduce (x + y)p ≡ xp + yp (mod p) for all x, y ∈ Z

(3) Use (2) to prove np ≡ n (mod p) for all n ∈ Z+.

(4) Use (3) to give a new proof of the Fermat’s Little Theorem.

Solution 4.5.1.

(1) Rewrite (p
k
) as

(p
k
) = p!

k!(p − k)!
Clearly p divides the numerator. However, since p is prime, k ∤ p for all k ∈ (0, p). Therefore p

does not divide the numerator, and (p
k
) is a multiple of p, i.e., (p

k
) ≡ 0 (mod p).

(2) Apply binomial theorem to (x + y)p:

(x + y)p =
p

∑
i=0
(p
i
)xp−iyi = xp +

p

∑
i=1
(p
i
)xp−1yi + yp

Since (p
k
) ≡ 0 (mod p) for all i ∈ (0, k) by (1), p divides the second term. Thus

(x + y)p ≡ xp + yp (mod p)

(3) Since we are trying to prove np ≡ n (mod p) for all n ∈ Z+, the base case would be n = 1:

1p = 1 so 1p ≡ 1 (mod p).

Now for the inductive step, assume kp ≡ k (mod p) for some k ∈ Z+. By (2), we have

(k + 1)p ≡ kp + 1p ≡ kp + 1 (mod p)

which finishes the proof of the inductive step.

Therefore, np ≡ n for all n ∈ Z+.
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(4) For convenience purposes, we will denote [x]p as [x]. Then we can rewrite the statement of (3)

as

[n]p = [n]

Fermat’s Little Theorem states that for all n ∈ Z, if gcd(n, p) = 1 then [n]p−1 = [1]. By theorem

4.4.12, we have n ∈ Z/pZ. Therefore there exists a multiplicative inverse of [n] which we will

denote as [n]−1. Multiplying both sides of the equation above by [n]−1 yields

[n]p ⋅ [n]−1 = [n] ⋅ [n]−1

[n]p−1 ⋅ [n] ⋅ [n]−1 = [1]

[n]p−1 = [1]

since [n] ⋅ [n]−1 = 1. Therefore we’ve proven Fermat’s Little Theorem using a different method.
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4.6 Isomorphism and Euler’s Totient Function

Definition 4.6.1. Suppose S and T are rings. The product ring S × T is the ring whose elements

are ordered pairs (s, t) with s ∈ S and t ∈ T . Addition and multiplication in S × T are defined by

(s1, t1) + (s2, t2) = (s1 + s2, t1 + t2)

(s1, t1) ⋅ (s2, t2) = (s1 ⋅ s2, t1 ⋅ t2)

Proposition 4.6.2. If S and T are rings with 1, then the product ring S × T is again a ring with 1.

Proof. If S and T are both rings with 1 then for any s ∈ T and t ∈ T we have

(s, t) ⋅ (1S ,1T ) = (s ⋅ 1S , t ⋅ 1T ) = (s, t).

Therefore (1S ,1T ) = 1S×T . Hence proven.

Future reference: proposition 4.6.8

Definition 4.6.3. Suppose R and S are rings. A function f ∶ R → S is a ring homomorphism if

for all a, b ∈ R,
f(a + b) = f(a) + f(b)

f(a ⋅ b) = f(a) ⋅ f(b)

Definition 4.6.4. A ring isomorphism is a bijective ring homomorphism.

Example 4.6.1. Consider the function f ∶ Z→ Z/nZ defined by f(x) = [x]n. Clearly, for a, b ∈ Z,

f(a + b) = [a + b]n = [a]n + [b]n = f(a) + f(b)

f(a ⋅ b) = [a ⋅ b]n = [a]n ⋅ [b]n = f(a) ⋅ f(b)

But f is not bijective since f(0) = f(n). Thus f is a ring homomorphism but not ring isomorphism.

Proposition 4.6.5. Suppose a, b ∈ Z and gcd(a, b) = 1. Then the function

f ∶ Z/abZ→ Z/aZ ×Z/bZ

defined by f ([x]ab) = ([x]a, [x]b) is a ring isomorphism.

Proof. We first show that f is a ring homomorphism:

f([x]ab + [y]ab) = f([x + y]ab) = ([x + y]a, [x + y]b) = ([x]a, [x]b) + ([y]a, [y]b) = f([x]ab) + f([y]ab)

f([x]ab ⋅ [y]ab) = f([x ⋅ y]ab) = ([x ⋅ y]a, [x ⋅ y]b) = ([x]a, [x]b) ⋅ ([y]a, [y]b) = f([x]ab) ⋅ f([y]ab)

Then, by Chinese Remainder Theorem II, we also know that f is a bijection. Hence f is a ring

isomorphism.

Future reference: theorem 4.6.11

Proposition 4.6.6. Suppose R and S are rings with 1, and f ∶ R → S is a ring isomorphism satisfying

f(1R) = 1S . Then for every r ∈ R,

r ∈ R× ⇐⇒ f(r) ∈ S×
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Proof. To show Ô⇒ , suppose r ∈ R×, then there exist a r−1 such that rr−1 = 1R. Since f is a

ring isomorphism, it follows that f(1R) = 1S Ô⇒ f(r) ⋅ f(r−1) = 1S . Therefore f(r) ∈ S has a

multiplicative inverse, i.e., f(r) ∈ S×.

To show ⇐Ô , suppose f(r) ∈ S×. Then it has a multiplicative inverse which we call

(f(r))−1 ∈ S×. Since f is a ring isomorphism, f is bijective and thus surjective. Therefore there exists

an element r′ ∈ R such that f(r′) = (f(r))−1. Then, by the definition of ring homomorphism,

1S = f(r) ⋅ (f(r))−1 = f(r) ⋅ f(r′) = f(rr′)

which implies rr′ = 1R. Therefore r ∈ R×.

Proposition 4.6.7. Suppose R and S are rings with 1, and f ∶ R → S is a ring isomorphism satisfying

f(1R) = 1S . Then f restricted to R× is a bijection f ∶ R× → S×.

Future reference: theorem 4.6.11

Proposition 4.6.8. Suppose S and T are rings with 1. Then (S × T )× = S× × T ×. In other words,

for s ∈ S and t ∈ T , (s, t) is a unit in S × T if and only if s ∈ S× and T ∈ T ×.

Proof. We will first show Ô⇒ , i.e., (s, t) ∈ (S×T )× Ô⇒ s ∈ S× and t ∈ T ×. Suppose (s, t) ∈ (S×T )×,

then there exist s′ ∈ S and t′ ∈ T such that (s, t) ⋅ (s′, t′) = 1S×T . As shown in proposition 4.6.2,

1S×T = (1S ,1T ). Therefore ss′ = 1S Ô⇒ s ∈ S× and tt′ = 1T Ô⇒ t ∈ T ×.

The ⇐Ô direction is just obvious. If s ∈ S× and t ∈ T × then there exist s−1 ∈ S and t−1 ∈ T such

that ss−1 = 1S and tt−1 = 1T . Then

(s, t) ⋅ (s−1, t−1) = (ss−1, tt−1) = (1S ,1T ) = 1S×T

which suggests (s, t) ∈ (S × T )×.

Future reference: theorem 4.6.11

Having introduced the basics of ring homomorphism and isomorphism, now we can move to Euler’s

totient function, also known as Euler’s φ function, which addresses a simple question: given a positive

integer n, how many positive integers less than n are co-prime with n?

Definition 4.6.9 (Euler’s totient function). Define Euler’s totient function φ ∶ Z+ → Z+ by φ(n) =

∣(Z/nZ)×∣.

Proposition 4.6.10. By problem 4.4.1, if p is a prime and n ∈ Z+, then ∣(Z/nZ)×∣ = pn − pn−1.

Theorem 4.6.11. Suppose a, b ∈ Z+ are co-prime. Then φ(ab) = φ(a) ⋅ φ(b).

Proof. The function f ∶ Z/abZ → Z/aZ × Z/bZ defined by f([x]ab) = ([x]a, [x]b) is a ring isomor-

phism by proposition 4.6.5. In addition, since f([1]ab) = ([1]a, [1]b), by proposition 4.6.7 we know f

restricted to (Z/abZ)× is a bijection f ∶ (Z/abZ)× → (Z/aZ ×Z/bZ)×. Therefore,

φ(ab) = ∣(Z/abZ)×∣

= ∣(Z/aZ ×Z/bZ)×∣ (bijection ⇐⇒ same cardinality, proposition 4.3.3)

= ∣(Z/aZ)× × (Z/bZ)×∣ (Proposition 4.6.8)

= ∣(Z/aZ)×∣ ⋅ ∣(Z/bZ)×∣ (This holds because both sets are finite)

= φ(a) ⋅ φ(b)
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which completes the proof.

Future reference: theorem 4.6.1

Problem 4.6.1 (4.6.11). Suppose n ∈ Z+ has prime factorization n =
s

∏
i=1

peii = p
e1
1 pe22 ⋯p

es
s . Show that

φ(n) = n ⋅
s

∏
i=1
(1 − 1

pi
)

Solution 4.6.1. Notice that after being prime factorized, n is now expressed as the product of s

pairwise co-prime positive integers, each equaling to a prime raised to some positive power. Therefore,

φ(n) =
s

∏
i=1

φ (peii ) = φ (p
e1
1 ) ⋅ φ (p

e2
2 )⋯φ (p

es
s )

=
s

∏
i=1
(peii − p

ei−1
i ) = (pe11 − p

e1−1
1 ) (pe22 − p

e2−1
2 )⋯ (pess − pes−1s ) (by proposition 4.6.10)

=
s

∏
i=1
(peii (1 −

1

pi
)) = (pe11 (1 −

1

p1
))(pe122 (1 − 1

p2
))⋯(pess (1 −

1

ps
))

= (
s

∏
i=1

peii ) ⋅
s

∏
i=1
(1 − 1

pi
) = n ⋅

s

∏
i=1
(1 − 1

pi
)

Hence proven. ◻
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4.7 Euler’s Theorem

Recall that proposition 4.5.2 states that, given a congruence ring Z/nZ where n ∈ Z+, the function

multu ∶ (Z/nZ)× → (Z/nZ)×

defined by multu([x]n) = [u]n ⋅ [x]n is a bijection. Euler extended Fermat’s Little Theorem a little

bit, but the main idea are exactly the same: the bijection multu and the permutation of elements in

(Z/nZ)× that can be used for cancellation.

Theorem 4.7.1 (Euler’s Theorem). (Euler, 1736) Suppose a ∈ Z and n ∈ Z+ such that gcd(a,n) = 1.

Then

aφ(n) ≡ 1 (mod n)

Proof. Very similar to the proof of Fermat’s Little Theorem.

Since gcd(a,n) = 1, we know [a] ∈ (Z/nZ)× by theorem 4.4.12. Define a function

mult[a] ∶ (Z/nZ)× → (Z/nZ)× by mult[a]([x]) = [a][x].

By proposition 4.5.2, mult[a] is a bijection. Therefore, the multiplication by [a] permutes the elements

of (Z/nZ)×. In other words each element of (Z/nZ)× appears exactly once as image and exactly once

as preimage as well, i.e., if we denote the set of all elements in (Z/nZ)× as

(Z/nZ)× = {[u1], [u2],⋯, [uφ(n)]} ,

then

{[a] ⋅ [u1], [a] ⋅ [u2],⋯, [a] ⋅ [uφ(n)]} = {[u1], [u2],⋯, [uφ(n)]} .

Multiplying all of the elements in the first set together, multiplying all of the elements in the

second set together, and then setting the results equal to one another, we have

[a]φ(n)
φ(n)

∏
i=1
[ui] =

φ(n)

∏
i=1
[ui].

Proposition 4.5.1 claims that products of units are still units. Therefore
φ(n)

∏
i=1
[ui] ∈ (Z/nZ)× and

cancellation law for units holds, and

[a]φ(n) = [1], i.e., aφ(n) ≡ 1 (mod n).

Remark. If p is a prime then φ(p) = p − 1, which is exactly what Fermat’s Little Theorem is about.
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5 Polynomial Arithmetic

5.1 Integral Domains and Fields

Definition 5.1.1. The trivial ring is the ring {0} consisting of a single element, 0, with addition

and multiplication defined by 0 + 0 = 0 and 0 ⋅ 0 = 0.

∗ The trivial ring is a ring with 1 since 0 ⋅ a = a = a ⋅ 0 for every a ∈ {0}.

∗ Let R be a ring with 1. If 1R = 0R, then R is the trivial ring.

Definition 5.1.2. An integral domain R is a nontrivial commutative ring with 1, such that for all

a, b ∈ R,

ab = 0R Ô⇒ a = 0R ∨ b = 0R

Contrapositive:

a ≠ 0R ∧ b ≠ 0R Ô⇒ ab ≠ 0R

Definition 5.1.3. (Not in lecture notes) In a ring R, a non-zero element a ∈ R is called a left zero
divisor if there exists another non-zero element b ∈ R such that ab = 0R. Likewise for the definition

of a right zero divisor. An integral domain is a ring without zero divisors.

Definition 5.1.4. (Not in lecture notes) Let R be a ring. A nilpotent element of R is an element

x ∈ R such that there exists an n ∈ N and xn = 0.

Remark. Being nilpotent is different from being a zero divisor.

If x ∈ R is nilpotent then x is a zero divisor. This is because xn = 0 Ô⇒ x ⋅ xn−1 = 0.

However, a zero divisor might not be nilpotent. For example, in Z/6Z,2 and 3 are both zero

divisors but neither are nilpotent.

Example 5.1.1.

∗ The rings Z,Q,R, and

mathbbC are integral domains.

∗ The ring Z/12Z isn’t. For example, [3]12 ⋅ [4]12 = [0]12, in which case [3]12 and [4]12 are both

zero divisors of Z/12Z.

∗ The ring M2(R) isn’t. First, it is not commutative. Second,

⎡⎢⎢⎢⎢⎢⎣

1 0

0 0

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

0 0

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎥⎦

Theorem 5.1.5 (Cancellation law). Let R be an integral domain and suppose ab = ac for some

a, b, c ∈ R. If a ≠ 0R then b = c.

Proposition 5.1.6. A ring R ≠ {0} is an integral domain if and only if the cancellation law holds in

R.
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Proof.

Ô⇒ : for a, b, c ∈ R, if ab = ac and a ≠ 0, then ab−ac = a(b−c) = 0. Since a ≠ 0 and R is an integral

domain, b − c = 0. Thus b = c.

⇐Ô : for a, b ∈ R, if ab = 0 but a ≠ 0, then by cancellation law ab = a ⋅ 0 Ô⇒ b = 0. Therefore at

least one element between the two is 0. Thus R is an integral domain.

Definition 5.1.7. A field is a nontrivial commutative ring with 1 in which every nonzero element

has a multiplicative inverse.

In other words, if F is a nontrivial commutative ring with 1 then F is a field if and only if

F × = F ∖ {0}.

Proposition 5.1.8. If F is a field then F is an integral domain.

Proof. We will denote 0F as 0 for simplicity. Suppose x, y ∈ F and xy = 0. If x = 0 or y = 0 (or both)

then we are immediately done.

Suppose x ≠ 0 and y ≠ 0, there must exist an x−1 since F is a field. Then,

xy = 0 Ô⇒ x−1xy = x−10 Ô⇒ y = 0

which contradicts y ≠ 0. Therefore it is impossible for both x and y to be nonzero. Thus F is an

integral domain.

Future reference: theorem 5.1.16

Proposition 5.1.9. Z/pZ is a field (and, of course, integral domain) if and only if p is a prime since

this is the only occasion in which Z/pZ has no zero divisors.

Future reference: Gauss’s Lemma I

Definition 5.1.10. Let R be a ring. We will denote the ring of polynomials with coefficients in R

as R[x]. Similarly, R[x],Q[x],Z[x], and C[x] are the rings with real, rational, integer, and complex

coefficients, respectively. (Of course there are more!)

Definition 5.1.11. If F is a field, then we denote by F (x) the field of rational functions with

coefficients in F :

F (x) = {a(x)
b(x)

∶ a, (x), b(x) ∈ F [x] and b(x) ≠ 0}

Proposition 5.1.12. Suppose

f(x) =
n

∑
i=0

aix
i = anxn + an−1xn−1 +⋯ + a1x + a0

then we call n the degree of f , denoted as deg(x). By convention, the zero polynomial has degree

−∞. Therefore the set of all degrees of f(x) ∈ R[x] is {−∞} ∪Z⩾0.

Future reference: Division Algorithm for polynomials

Definition 5.1.13. Let R be a commutative ring with 1 and suppose a(x), b(x) ∈ R[x]. We say a(x)

divides b(x), and write a(x) ∣ b(x), if there is a q(x) ∈ R[x] such that b(x) = a(x) ⋅ q(x).
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Proposition 5.1.14. Suppose f(x), g(x) ∈ R[x]. If all coefficients of f and g are in an integral

domain, then

deg(f ⋅ g) = deg(f) + deg(g)

Future reference: problem 5.1.1, Division Algorithm for polynomials, proposition 5.4.4, Eisenstein’s

Criterion

Remark. The converse is not always true. For example, (Z/12Z)[x] is not an integral domain, but

it can sometimes still satisfy deg(f ⋅ g) = deg(f) ⋅ deg(g) where f(x), g(x) ∈ Z/12Z. If we let

f(x) = [3]x5 + [1] and g(x) = [5]x2 + [1],

then
([3]x5 + [1])([5]x2 + [1]) = [15]x7 + [3]x5 + [5]x2 + [1]

= [3]x7 + [3]x5 + [5]x2 + [1]

deg(f ⋅ g) = 7,deg(f) = 5, and deg(g) = 2

Of course, sometimes the degree equation can be false. For example, if we change change g(x) to

([4]x2 + [1]), then
([3]x5 + [1])([4]x2 + [1]) = [12]x7 + [3]x5 + [4]x2 + [1]

= [3]x5 + [4]x2 + [1]

which results in a 5th degree function because the product of the coefficients of f ’s and g’s leading

terms equals [0]. If this product does not equal [0], then deg(f ⋅g) = deg(f)+deg(g) holds even when

f(x), g(x) ∈ R[x] that’s not an integral domain.

Proposition 5.1.15. If R is an integral domain and a(x), b(x) ∈ R[x] with b(x) ≠ 0, then

a(x) ∣ b(x) Ô⇒ deg(a) ⩽ deg(b)

Remark. b(x) ≠ 0 is important here because, by definition, if b(x) = p(x) = 0 then

a(x) ⋅ p(x) = b(x) Ô⇒ a(x) ∣ b(x), but a(x) can be of any degree.

Theorem 5.1.16. If R is an integral domain, then so is R[x].

Proof. To prove R[x] is an integral domain, we want to show that for f(x), g(x) ∈ R, if

f(x) ⋅ g(x) = 0, then they cannot both be nonzero.

First, f(x) and g(x) has the form

f(x) =
m

∑
i=0

aix
i = amxm + am−1xm−1 +⋯ + a1x + a0

g(x) =
n

∑
i=0

bix
i = bnxn + bn−1xn−1 +⋯ + b1x + b0

and the only case in which such polynomials equal 0 is when all coefficients are 0.

Suppose both f(x) and g(x) are nonzero, then both have nonzero term with lowest degree. (For

example, the nonzero term with lowest degree of the polynomial x7 + 5x6 + 8x4 is 8x4.) Suppose such

term of f(x) is ajx
j and such term of g(x) is bkx

k. Now look at the term xj+k in the polynomial

f(x) ⋅ g(x). The coefficient of this term is the sum of a bunch of ab’s such that the index number
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of a plus the index number of b equals j + k. Among all these ab’s, only ajbk ≠ 0 because for every

other ab, either the index number of a is smaller than j or that of b is smaller than k, but all of these

a’s and b’s are zero because we’ve said ajx
j and bkx

k are the two nonzero terms with lowest degree.

Therefore the term xj+k has coefficient ajbk, which is nonzero by the contrapositive of the defnition

of integral domain. Now that we’ve have a nonzero coefficient in f(x) ⋅ g(x), we are done with the

proof. If f(x) ≠ 0 and g(x) ≠ 0, then f(x) ⋅ g(x) ≠ 0. R[x] is an integral domain. Hence proven.

Future reference: problem 5.1.1, Fundamental Theorem of Arithmetic for Polynomials, Gauss’s

Lemma I

Problem 5.1.1 (5.1.16). Prove that every finite integral domain is a field.

Solution 5.1.1–1. From the hint provided in the text: let R be an integral domain. Choose a nonzero

element r ∈ R and consider the function multr ∶ R → R. First of all, since the function maps R to R,

the cardinality of domain equals that of the codomain, i.e., ∣R∣ = ∣R∣. Since we are given that R is a

finite integral domain, by the The Pigeonhole Principle, showing multr is injective implies multr is

bijective.

Now suppose f(x) = f(y) for some x, y ∈ R. Then

rx = ry Ô⇒ rx − ry = 0 Ô⇒ r(x − y) = 0

We’ve set r to be nonzero, but R is an integral domain, so (x− y) must equal 0, i.e., x = y. Therefore

f(x) = f(y) Ô⇒ x = y and f is an injection and, more generally, a bijection.

Also, since R is an integral domain and f is a bijection, there exists some s such that f(s) = rs = 1.

Therefore r has a multiplicative inverse. Since we’ve chosen r randomly, we’ve shown every nonzero

r ∈ R has a multiplicative inverse, i.e., R is a field. Hence proven. ◻

Solution 5.1.1–2. Alternative solution: again, consider any nonzero element r ∈ R. Then the set

{rk ∶ k ∈ Z⩾0} = {1, r, r2, r3,⋯}

must contain a finite amount of distinct elements since R is finite. Therefore there exists m and n

such that 0 < m < n and rm = rn, and we have rm ⋅ 1 = rm = rn = rm ⋅ rn−m. (Of course, we denote

1R as 1.) In an integral domain, since r is nonzero, we claim r2 is nonzero, and if we assume rj is

nonzero then rj+1, a product of nonzero elements r and rj , is also nonzero. Therefore all element in

the set above are nonzero by induction. By Cancellation law we have

rm ⋅ rn−m = rm ⋅ 1 Ô⇒ rn−m = 1

Finally, since rn−m = r ⋅ rn−m−1, we’ve found a multiplicative inverse of r. Therefore for any nonzero

r ∈ R, there exists a multiplicative inverse, and R is a field. ◻

Problem 5.1.2 (5.1.17). Show that if R is an integral domain then R× = R[x]×, i.e., the units in

R[x] are precisely the units in R, viewed as constant polynomials.

Solution 5.1.2. To show R× = R[x]×, it suffices to show both R× ⊆ R[x]× and R[x]× ⊆ R×.
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The first one is obvious since for all a ∈ R×, f(x) = a is a zero-degree polynomial as well as a unit

of R[x].

Now look at the second statement. Suppose f(x), g(x) ∈ R[x]×, then f(x) ⋅ g(x) = 1, which has

degree 0. By theorem 5.1.16, we know R is an integral domain implies R[x] also is. By proposition

5.1.14 we have

deg(f ⋅ g) = 0 = deg(f) + deg(g) Ô⇒ deg(f) = deg(g) = 0

Then both f(x) and g(x) are constants, and their product is 1. Therefore these constants are units

of R, and we’ve also shown R[x]× ⊆ R[x]. ◻
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5.2 The Division Algorithm for Polynomials

Theorem 5.2.1 (Division Algorithm for polynomials). Suppose F is a field and a(x), b(x) ∈ F [x]

with b(x) ≠ 0. Then there are unique q(x), r(x) ∈ F [x] such that

a(x) = b(x)q(x) + r(x) and deg(r) < deg(b)

Proof. The proof consists of two parts: showing q(x) and r(x) exists and proving they are unique

given each ordered pair of ⟨a(x), b(x)⟩.

∗ First we show such q(x) and r(x) exist. Define S ⊆ F [x] by

S = {a(x) − b(x)r(x) ∶ q(x) ∈ F [x]}

There will be polynomials with least degree. Pick one and we’ll call it r0(x) = a(x)− b(x)q0(x).

Now we need to show deg(r0) < deg(b). Suppose not, i.e., deg(r0) ⩾ deg(b), and we expand

r0(x) and b(x) as

r0(x) =
m

∑
i=0

rix
i = rmxm + rm−1xm−1 +⋯ + r1x + r0

b(x) =
n

∑
i=0

bix
i = bnxn + bn−1xn−1 +⋯ + b1x + b0

with rm, bn ≠ 0. Then deg(r0) = m,deg(b) = n, and m ⩾ n. Since bn ≠ 0, by the definition of a

field, both bn and its reciprocal are in F , and since a field (or more generally, a ring) is closed

under multiplication, rm
bn
∈ F as well. Now consider the polynomial

r0(x) −
rm
bn

xm−n ⋅ b(x) = a(x) − b(x)q0(x) −
rm
bn

xm−n ⋅ b(x)

= a(x) − b(x) ⋅ [q0(x) −
rm
bn

xm−n]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

also a polynomial in F [x]

and we see that r0(x) −
rm
bn

xm−n ⋅ b(x) is in the set S. Now rewrite the second term:

rm
bn

xm−n ⋅ b(x) = rm
bn

xm−n ⋅ (bnxn + bn−1xn−1 +⋯ + b1x + b0)

= rmxm + rm
bn

xm−n ⋅ (bn−1xn−1 +⋯ + b1x + b0)

= rmxm +
n−1
∑
i=0

rmbi
bn

xm−n+i

Therefore the term rmxm gets canceled in the polynomial r0(x)−
rm
bn

xm−n ⋅b(x), and the degree of

this new polynomial has degree strictly less than m = deg(r0), contradicting the assumption that

r0(x) has the lowest degree among all polynomials in S. Therefore there exists a “remainder”

polynomial r(x) that satisfies deg(r) < deg(b).

∗ Now for uniqueness. Suppose for a(x), b(x) ∈ F [x] we have q(x), r(x), q′(x), r′(x) ∈ F [x] such

that
a(x) = b(x)q(x) + r(x) deg(r) < deg(b)

a(x) = b(x)q′(x) + r′(x) deg(r′) < deg(b)
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Then
0F = a(x) − a(x) = b(x) ⋅ [q(x) − q′(x)] + [r(x) − r′(x)]

r(x) − r′(x) = b(x) ⋅ [q′(x) − q(x)]

Since all of the polynomials involved are in a field (or more generally, an integral domain), by

proposition 5.1.14 we have

deg(r − r′) = deg(b) + deg(q′ − q)

By assumption we know deg(r) < deg(b) and deg(r′) < deg(b). Therefore deg(r − r′) < deg(b).

If the degree equation above holds true then deg(q′ − q) < 0. By proposition 5.1.12, the only

possible case is when deg(q′ − q) = −∞ and q′(x)− q(x) = 0F . Then deg(r− r′) must also be −∞,

meaning r(x) = r′(x), which finishes the proof.

Problem 5.2.1 (5.2.2). For each field F and each pair a(x), b(x) ∈ F [x], find q(x), r(x) ∈ F [x] such

that a(x) = b(x)q(x) + r(x) and deg(r) < deg(b).

(1) F = Q, a(x) = x5 + 2x2 − 2, b(x) = x3 + 7x + 1.

(2) F = Z/13Z, a(x) = x3 + x2 + 1b(x) = x + 11.

Solution 5.2.1.

(1) q(x) = x2 + 7, r(x) = x2 − 49x + 5.

(2) q(x) = x2 − 10x + 6, r(x) = 0. Note that since a(x), b(x), q(x), r(x) ∈ Z/13Z, we have [−110x] =

[6x] and [65x] = [0]. There are infinitely many ways to write q(x) and r(x).

+x2 −7
x3 +7x+1 ) x5 +2x2 −2

x5 +7x3 +x2

−7x3 +x2 −2
−7x3 −49x −7

x2 −49x +5

+x2 −10x +6
x +11 )x3 +x2 +1

x3 +11x2

−10x2 +1
−10x2 −110x

+[6x] +1
+6x +66

+[0]
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5.3 Euclid’s Algorithm for Polynomials

Definition 5.3.1. A greatest common divisor d(x) ∈ F [x] of a(x), b(x) ∈ F [x] satisfies the following:

(1) d(x) is a common divisor of a(x) and b(x), and

(2) if f(x) ∈ F [x] is a common divisor of a(x) and b(x) then f(x) ∣ d(x).

Definition 5.3.2 (Euclid’s Algorithm for Polynomials). This is very similar to Euclid’s Algorithm

except that now we are dealing with two polynomials instead of two integers. Suppose F is a field and

we have two nonzero polynomials a(x), b(x) ∈ F [x]. The following process is called Euclid’s Algorithm

for Polynomials:
a(x) = b(x)q1(x) + r1(x) deg(r1) < deg(b)

b(x) = r1(x)q2(x) + r2(x) deg(r2) < deg(r1)

r1(x) = r2(x)q3(x) + r3(x) deg(r3) < deg(r2)

⋮

rn−2(x) = rn−1(x)qn(x) + rn(x) deg(rn) < deg(rn−1)

rn−1x = rn(x)qn+1(x) + rn+1(x)

Since the degrees of the remainder polynomials is strictly decreasing, eventually it will reach −∞, i.e.,

we will eventually come to a zero polynomial rn+1(x). The last nonzero polynomial remainder, rn(x),

satisfies rn(x) = gcd (a(x), b(x)).

Remark. Greatest common divisors of polynomials are not unique. See the definition of associate

below.

Definition 5.3.3. Nonzero polynomials a(x), b(x) ∈ F [x] are ‘me if gcd (a(x), b(x)) = 1F .

Definition 5.3.4. Two polynomials a(x), b(x) ∈ F [x] are associate if there is a λ ∈ F × such that

a(x) = λ ⋅ b(x). The notation is a(x) ∼ b(x).

Example 5.3.1. Suppose a(x) = x5 + 2x2 + 3x + 1 and b(x) = x4 + 2x3 + 4 are members of Z/7Z[x].

By the algorithm we have

x5 + 2x2 + 3x + 1 = (x4 + 2x3 + 4)(x − 2) +(4x3 + 2x2 − x + 2)

x4 + 2x3 + 4 = (4x3 + 2x2 − x + 2)(2x + 3) +(3x2 − x + 5)

4x3 + 2x2 − x + 2 = (3x2 − x + 5)(−x + 5) +(−5x + 5)

3x2 − x + 5 = (−5x + 5)(5x + 1)

The last nonzero remainder polynomial, −5x+5, is a GCD of a(x) and b(x). However it is not unique.

Multiplying −5x + 5 with any elements of (Z/7Z)× yields other GCDs. For example,

4 ⋅ (−5x + 5) = −20x + 20 = x − 1

is a GCD. Note that the multiplicative of 4 in Z/7Z is 2. Suppose a(x) = a′(x)(−5x + 5) and b(x) =

b′(x)(−5x + 5) then

a(x) = [2 ⋅ a′(x)][4 ⋅ (−5x + 5)] and b(x) = [2 ⋅ b′(x)][4 ⋅ (−5x + 5)].
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It is customary, though not essential, to make the GCD monic (with leading coefficient 1). Therefore

in this example we say gcd (a(x), b(x)) = x − 1.

Proposition 5.3.5. The relation ∼ is an equivalence relation on the set F [x].

Proof.

∗ Reflexivity: a(x) = 1F ⋅ a(x) Ô⇒ a(x) ∼ a(x).

∗ Symmetry: If a(x) ∼ b(x) then there exists λ ∈ F × such that a(x) = λ ⋅ b(x). Then λ−1, the

multiplicative inverse of λ, saatisfies b(x) = λ−1a(x) and thus b(x) ∼ a(x).

∗ Transitivity: if a(x) ∼ b(x) and b(x) ∼ c(x) then there exist λ1, λ2 ∈ F × such that a(x) = λ1b(x)

and b(x) = λ2c(x). Since λ1λ2 is in F × as well, a(x) = (λ1λ2) ⋅ c(x) shows a(x) ∼ c(x).

Proposition 5.3.6. Given polynomials a(x), b(x) ∈ F [x] we have

a(x) ∼ b(x) ⇐⇒ a(x) ∣ b(x) and b(x) ∣ a(x)

Proposition 5.3.7. Suppose a(x), b(x) ∈ F [x]. If d(x) is a GCD of a(x) and b(x), then so is every

associate of d(x).

Theorem 5.3.8. Given a(x), b(x) ∈ F [x], gcd (a(x), b(x)) can be expressed as a F [x]−linear combi-

nation of a(x) and b(x).

Proof. Similar to the proof of theorem 2.4.1.

Future reference: problem 5.3.1, proposition 5.4.5.

Definition 5.3.9. A least common multiple m(x) ∈ F [x] of a(x), b(x) ∈ F [x] satisfies the following:

(1) m(x) is a common multiple of a(x) and b(x), and

(2) if f(x) ∈ F [x] is a common multiple of a(x) and b(x) then m(x) ∣ f(x).

Problem 5.3.1 (5.3.12). Find polynomials s(x), t(x) ∈ Z/13Z[x] satisfying

(6x5 + x + 2) ⋅ s(x) + (3x4 − x2 + 1) ⋅ t(x) = 1.

or show no such polynomials exist.

Solution 5.3.1. First, we define a(x) = 6x5+x+2 and b(x) = 3x4−x2+1 and apply Euclid’s Algorithm

to a(x) and b(x):
a(x) = b(x)(2x) +(2x3 − x + 2)

b(x) = (2x3 − x + 2)(8x) +(7x2 − 3x + 1)

2x3 − x + 2 = (7x2 − 3x + 1)(4x − 2) +(2x + 4)

7x2 − 3x + 1 = (2x + 4)(10x + 11) +9

2x + 4 = 9(6x − 1)
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from which we conclude that 9 is a GCD of a(x) and b(x). Since 9 ⋅ 3 = 27 = 1 in Z/13Z, they are

associate and 1 is a GCD of a(x) and b(x). Therefore by theorem 5.3.8 there exists s(x) and t(x)

such that

a(x)s(x) + b(x)t(x) = 1.

Now rearranging each term in the algorithm above:

2x3 − x + 2 = a(x) − (2x)b(x)

7x2 − 3x + 1 = b(x) − (8x)(2x3 − x + 2)

= b(x) − (8x)[a(x) − (2x)b(x)]

= (−8x)a(x) + (16x2 + 1)b(x)

= (−8x)a(x) + (3x2 + 1)b(x)

2x + 4 = (2x3 − x + 2) − (4x − 2)(7x2 − 3x + 1)

= a(x) − (2x)b(x) − (4x − 2)[(−8x)a(x) + (3x2 + 1)b(x)]

= (32x2 − 16x + 1)a(x) + (−12x3 + 6x2 − 6x + 2)b(x)

= (6x2 − 3x + 1)a(x) + (x3 + 6x2 − 6x + 2)b(x)

9 = 7x2 − 3x + 1 − (10x + 11)(2x + 4)

= (−8x)a(x) + (3x2 + 1)b(x) − (10x + 11)[(6x2 − 3x + 1)a(x) + (x3 + 6x2 − 6x + 2)b(x)]

= (−60x3 − 36x2 + 15x − 11)a(x) + (−10x4 − 71x3 − 3x2 + 46x − 21)b(x)

= (5x3 + 3x2 + 2x + 2)a(x) + (3x4 + 7x3 − 3x2 + 7x + 5)b(x)

1 = 3 ⋅ 9

= 3(5x3 + 3x2 + 2x + 2)a(x) + 3(3x4 + 7x3 − 3x2 + 7x + 5)b(x)

= (2x3 − 4x2 + 6x + 6)a(x) + (9x4 − 5x3 + 4x2 − 5x + 2)b(x)

Therefore we’ve found a set of s(x) and t(x) that satisfy the equation a(x)s(x) + b(x)t(x) = 1:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s(x) = (2x3 − 4x2 + 6x + 6)

t(x) = (9x4 − 5x3 + 4x2 − 5x + 2)
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5.4 Unique Factorization of Polynomials

Unless otherwise stated, let F be a field from now on.

Definition 5.4.1. Suppose a(x) ∈ F [x] is a nonconstaant polynomial.

(a) a(x) is said to be irreducible if for every factorization a(x) = s(x)t(x) with s(x), t(x) ∈ F [x],

either deg(s) or deg(d) = 0.

(b) a(x) is said to be factorizable if there exist s(x), t(x) ∈ F [x], both of which have degree > 0,

such that a(x) = s(x)t(x).

Remark. A nonconstant polynomial is either irreducible or factorizable. A constant polynomial,

however, is said to be neither irreducible or factorizable.

Proposition 5.4.2. If a(x) ∈ F [x] is irreducible and b(x) ∣ a(x), then either b(x) ∼ 1F or b(x) ∼ a(x).

Proof. Since b(x) ∣ a(x), there exists a c(x) ∈ F [x] such that a(x) = b(x)c(x). Clearly neither b(x)

nor c(x) are zero. However, since a(x) is irreducible, either b(x) or c(x) has degree 0. If b(x) has

degree 0, then b(x) = b(x)−1 ⋅ 1F which shows b(x) ∼ 1F . On the other hand, if deg(c) = 0, then

c(x) ∈ F × and a(x) ∼ b(x). By symmetry, b(x) ∼ a(x).

Future reference: Fundamental Theorem of Arithmetic for Polynomials

Proposition 5.4.3. Suppose a(x), b(x) ∈ F [x], then a(x) is irreducible ⇐⇒ b(x) is irreducible.

Proof. We first show Ô⇒ . If a(x) is irreducible then its divisors are either constant polynomials or

its associaates. Since a(x) ∼ b(x) and b(x) ∼ a(x), there exists λ ∈ F [x] such that b(x) = λ ⋅ a(x).

Then we also have a(x) = λ−1b(x).

Suppose b(x) is factorizable, i.e., there exist s(x), t(x) ∈ F [x], both of which have degree > 0, such

that s(x)t(x) = b(x). Look at a(x) again, which now equals λ−1s(x)t(x). Since deg(s) and deg(t) are

both greater than 0, so are λ−1s(x) or λ−1t(x). Now we’ve found two ways to factorize a(x) as the

product of two non-constant polynomials — a(x) = [λ−1s(x)]t(x) = [λ−1t(x)]s(x) — contradicting

a(x) being irreducible.

To show ⇐Ô , simply start by assuming b(x) is irreducible. Then repeat the same process to

show a contradiction.

Proposition 5.4.4. Each nonzero polynomial a(x) ∈ F [x] can be expressed as the product of irre-

ducible polynomials.

Proof. We will approach this proof by strong induction. Let φ(n) be the statement that each degree

n polynomial can be factorized into irreducible polynomials.

∗ Clearly φ(1) is true since a degree 1 polynomial can only be expressed as the product of one

degree 1 and one degree 0 polynomial by proposition 5.1.14

∗ Now assume for some positive integer k, φ(n) holds for all n ∈ [1, k]. Now look at degree k + 1

polynomials. If this polynomial is irreducible then we are immediately done. If not, it can be

factorized into polynomials with degrees greater than 0 but less than k+1. (Again, by proposition
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5.1.14 since the two component polynomials both have degree greater than 0 and their sum is

k + 1.) By induction hypothesis, regarless of their degrees, both component polynomials can be

factorized into a series of irreducible polynomials. Therefore all degree k + 1 polynomials can be

expressed as the product of some irreducible polynomials, hence φ(k + 1) is also true.

∗ Having proven both the base case and the inductive step, we are done with the main proof.

Future reference: Fundamental Theorem of Arithmetic for Polynomials

Proposition 5.4.5. Suppose a(x), b(x), p(x) ∈ F [x] with p(x) irreducible. Then

p(x) ∣ a(x)b(x) Ô⇒ p(x) ∣ a(x) or p(x) ∣ b(x).

Proof. WLOG we look at p(x) and a(x) first. If p(x) and its associates are the GCDs of p(x) and

a(x), then we are immediately done with p(x) ∣ a(x).

Suppose p(x) and its associates are not the GCDs, then gcd (p(x), a(x)) = 1F , i.e., p(x) and a(x)

are co-prime. By theorem 5.3.8, there exist s(x), t(x) such that p(x)s(x)+ a(x)t(x) = 1F . Therefore,

multiplying both sides by b(x) we have

p(x)b(x)s(x) + a(x)b(x)t(x) = b(x) ⋅ 1F = b(x).

Since p(x) ∣ p(x) (obviously) and p(x) ∣ a(x)b(x) as given, we conclude that p(x) ∣ b(x), which finishes

the proof.

Future reference: proposition 5.4.6

Proposition 5.4.6. A stronger version of the previous proposition:

Suppose p(x), a1(x), a2(x),⋯, an(x) ∈ F [x] with p(x) irreducible. Then

p(n) ∣
n

∏
i=1

ai(x) Ô⇒ p(n) ∣ ak(n) for some 1 ⩽ k ⩽ n.

Proof. We approach this proof by (weak) induction. Let φ(n) be the statement that if irreducible p(n)

divides the product of n irreducible polynomials then p(n) divides at least one of these polynomials.

∗ φ(1) is immediately true and φ(2) is true as shown in proposition 5.4.5.

∗ Suppose φ(k) is true and we want to show φ(k + 1) is true as well. Suppose we have k + 1

irreducible polynomials, a1(x), a2(x),⋯, ak+1(x). Their product,
k+1
∏
i=1

ai(x), can be re-written as

a1(x)⋅
k+1
∏
i=2

ai(x). If p(x) ∣ a1(x) then we are immediately done. If not, since p(x) ∣ a1(x)⋅
k+1
∏
i=2

ai(x),

by proposition 5.4.6 it must be the case that p(x) ∣
k+1
∏
i=2

ai(x). However, this term is a product of

k irreducible polynomials, and by our induction hypothesis there exists at least one irreducible

polynomial which p(x) divides. Hence φ(k) Ô⇒ φ(k + 1).

∗ Having proven both the base cases and the indcutive step, we have therefore shown that φ(n)

holds true for all all n ∈ Z+. Hence p(n) ∣
n

∏
i=1

ai(x) Ô⇒ p(n) ∣ ak(n) for some 1 ⩽ k ⩽ n.

Future reference: Fundamental Theorem of Arithmetic for Polynomials
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Theorem 5.4.7 (Fundamental Theorem of Arithmetic for Polynomials). Let a(x) ∈ F [x] be aa

nonconstant polynomial. Then there are irreducibles

p1(x), p2(x),⋯, pm(x) ∈ F [x]

whose product is a(x). If a(x) =
n

∏
i=1

qi(x) is another factorization of a(x) into irreducibles then m = n

and, after reordering q1(x), q2(x),⋯, qm(x) we have

pi(x) ∼ qi(x) for all 1 ⩽ i ⩽m = n.

Proof. The existence of p1(x), p2(x),⋯, pn(x) is proven in proposition 5.4.4. For the uniqueness of

the factorization, suppose there are two ways to factorize a(x) into irreducibles

p(x) =
m

∏
i=1

pi(x) = p1(x)p2(x)⋯pm(x)

q(x) =
n

∏
i=1

qi(x) = q1(x)q2(x)⋯qn(x)

such that m ≠ n. WLOG assume m ⩽ n. Clearly p1(x) ∣ p(x), so p1(x) ∣
n

∏
i=1

qi(x). By proposition

5.4.6 we know p1(x) dividers at least one irreducible q−polynomials. After reordering the qi(x)’s we

may assume that p1(x) ∣ q1(x). Since q1(x) is irreducible, either p1(x) ∼ 1F or p1(x) ∼ q1(x) by

proposition 5.4.2. Clearly the first case is impossible since associates of 1F are constant polynomails

— not irreducibles. Therefore p1(x) ∼ q1(x), and there exists a λ1 ∈ F × such that p1(x) = λ1q1(x).

Therefore

a(x) =
m

∏
i=1

pi(x) = λ1q1(x)
m

∏
i=2

pi(x) = q1(x)
n

∏
i=2

qi(x)

Since F is an integral domain, so is F [x] by theorem 5.1.16. Therefore cancellation law holds and

we may cancel q1(x) from both sides:

λ1

m

∏
i=2

pi(x) =
n

∏
i=2

qi(x)

Look at p2(x) on the LHS. Similar to what we’ve previously done,p2(x) divides an irreducible

q−polynomial from the RHS. After reordering, we may call this polynomail q2(x). Then p2(x) ∼ q2(x)

and there exists a λ2 ∈ F × such that p2(x) = λ2q2(x). Substitute p2(x) with λ2q2(x) and apply

cancellation law again, we have

λ1λ2

m

∏
i=3

pi(x) =
n

∏
i=3

qi(x)

Repeat this process m times and we have
m

∏
i=1

λi =
n

∏
i=m+1

qi(x) and pi(x) ∼ qi(x) for all 1 ⩽ i ⩽m.

Look at the degree of both sides. Clearly the LHS is the product of degree 0 polynomials, so it

has degree 0 aas well. If n > m then the RHS is a nonempty product of polynomials of degree > 0,

contradiction. Therefore m = n and we have proven the Fundamental Theorem of Arithmetic for

Polynomials.

Future reference: problem 5.5.1
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Problem 5.4.1 (5.4.9). Find two different ways to factor x2+x+8 ∈ Z/10Z[x] as a produict of monic

degree one polynomials.

Solution 5.4.1. Observe that in Z/10Z[x],

x2 + x + 8 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x2 + x − 2 = (x − 1)(x + 2)

x2 + x − 12 = (x − 3)(x + 4)
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5.5 Roots of Polynomials

Definition 5.5.1. Suppose a(x) ∈ F [x] and r ∈ F . We say r is a root of a(x) if a(r) = 0F .

Proposition 5.5.2. Suppose a(x) ∈ F [x] and r ∈ F . Then

r is a root ⇐⇒ (x − r) ∣ a(x)

Proof. We first show Ô⇒ . Suppose f ∈ F is a root of a(x) ∈ F [x]. We now define another polynomail

b(x) = x − r. By the division algorithm for polynomials, there exist f(x), g(x) ∈ F [x] such that

a(x) = f(x)b(x) + g(x) and deg(g) < deg(b)

Now suppose x = r. The equation becomes

a(r) = f(r)b(r) + g(r) Ô⇒ 0 = 0 ⋅ f(r) + g(r) Ô⇒ g(r) = 0

Therefore if r is a root then a(x) = (x − r)f(x).

The other direction, ⇐Ô , is obvious. If (x − r) ∣ a(x) then there exists f(x) such that a(x) =

(x − r)f(x). If x = r then a(x) = 0 ⋅ f(x) = 0. Thus r is a root.

Proposition 5.5.3. A polynomial f(x) ∈ F [x] of degree n has at most n distinct roots in F .

Proof. We approach this by induction. Let φ(n) be the statement that a polynomial f of degree n

on a field F has at most n distinct roots in F .

∗ Clearly every degree 1 polynomial has one root. Therefore φ(1) is true.

∗ Suppose φ(k) is true, i.e., every degree k polynomial has at most k distinct roots. Now look at

degree k+1 polynomials. If a(x) is of degree k+1 and r is a root of a(x), then a(x) = (a−r)b(x)

for some degree k polynomial b(x). By our induction hypothesis b(x) has at most k distinct

roots. Since a(x) = 0 if and only if a = r or b(x) = 0, a(x) has at most k + 1 roots — one from

a = r and k from roots of b(x). Hnece inductive step proven.

∗ Having proved both the base case and the inductive step, we conclude that φ(n) holds for all

n ∈ Z+, i.e., a polynomial f(x) ∈ F [x] of degree n has at most n distinct roots in F .

Proposition 5.5.4. Suppose a(x) ∈ F [x].

(a) If deg(a) = 1 then a(x) is irreducible.

(b) If deg(a) = 2 or deg(a) = 3 then a(x) is irreducible ⇐⇒ it has no roots.

Proof. Part (a) is obvious, and we will only look at part (b).

We first show Ô⇒ . If a(x) is irreducible then (x − r) does not divide a(x) for any r ∈ F , which

implies a(x) has no roots.

Now look at ⇐Ô . if a(x) has no roots, then it does not have any factor of degree 1. Suppose

a(x) = b(x)c(x). Since F is an integral domain, deg(a) = deg(b) + deg(c) by proposition 5.1.14. If
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deg(a) = 2 then the degrees of b(x) and c(x) can only be 0 and 2 or 2 and 0. If deg(a) = 3 then the

degrees of b(x) and c(x) can only be 0 and 3 or 3 and 0. In all these cases, either b(x) or c(x) has

degree 0, and thus a(x) is irreducible.

Future reference: problem 5.5.1

Remark. Look at the ⇐Ô part again. If deg(a) > 3, then it is possible to factor a degree 4

polynomial into two degree 2 irreducibles. In this case a(x) would be factorizable but still without

roots. For example, x4 + 3x2 + 2 ∈ (Z/7Z)[x] can be factorized as (x2 + 1)(x2 + 2), both of which hare

irreducible.

Theorem 5.5.5 (Rational Root Test). Suppose a polynomial

a(x) =
n

∑
i=0

aixi = anxn + an−1xn−1 +⋯ + a1x + a0 ∈ Z[x]

with an ≠ 0 has a rational root p

q
where p ∈ Z, q ∈ Z+, and gcd(p, q) = 1. Then p ∣ a0 and q ∣ an.

Proof. Plugging in x = p

q
to the polynomial yields

0 = an (
p

q
)
n

+ an−1 (
p

q
)
n−1
+⋯ + a1 (

p

q
) + a0

and multiplying both sides by qn yields

0 = anpn + an−1pn−1q +⋯ + a1pqn−1 + a0qn

Clearly q divides the LHS and the sum of all but the first term on the RHS. Therefore q ∣ anpn.

Since gcd(p, q) = 1, it follows that q ∣ an.

Similarly, p divides the LHS and the sum of all but the last term on the RHS. Therefore p ∣ a0qn.

Since gcd(p, q) = 1, it follows that p ∣ a0.

Theorem 5.5.6 (Quadratic Formula). Suppose f(x) = ax2 + bx + c ∈ F [x] with 2a ∈ F ×, and set

∆ = b2 − 4ac.

(a) If there is a δ ∈ F such that δ2 =∆, then the roots of f(x) are −b ± δ
2a

.

(b) If there is no such δ ∈ F , then f(x) has no roots in F .

Proof. The proof is done by completing the square. We focus on f(x) for now.

f(x) = ax2 + bx + c

= ax2 + 2 ⋅ a ⋅ b
2a

x + c

= ax2 + 2 ⋅ a ⋅ b
2a

x + b2

4a
+ (c − b2

4a
)

= a(x2 + 2 ⋅ b
2a

x + b2

4a2
) + (c − b2

4a
)

= a(x + b

2a
)
2

+ (c − b2

4a
)
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If f(x) = 0, then −a(x + b

2a
)
2

= c − b2

4a
. Arranging the terms gives

(x + b

2a
)
2

= −1
a
(c − b2

4a
) = b2 − 4ac

4a2

We’ve set ∆ = b2 − 4ac. If there exists δ ∈ F such that δ2 =∆, then δ =
√
b2 − 4ac. Therefore

(x + b

2a
) =
√

b2 − 4ac
4a2

= ± δ

2a
Ô⇒ x = − b

2a
± δ

2a
= −b ± δ

2a
.

Note that we need the prerequisite that 2 ≠ 0 in F , i.e., char F ≠ 2 or 2a ∈ F ×. Only by doing so can

we guarentee that the division with denominator 2a is defined.

If there is no such δ then we cannot find a root f(x) in F .

Future reference: problem 5.5.1

Problem 5.5.1 (5.5.9-14). Factor x4+1 into irreducible factors in Q[x],R[x],C[x], Z/2Z[x],Z/3Z[x],

and Z/5Z[x].

Solution 5.5.1. By completing the square, we have

x4 + 1 = (x4 + 2x2 + 1) − 2x2

= (x2 + 1)2 − 2x2

= (x2 +
√
2x + 1)(x2 −

√
2x + 1)

which is a factorization of x4+1 in R[x] into two degree 2 polynomials. By the Quadratic Formula, both

have negative determinants, which, by proposition 5.5.4, implies that both are irreducible. Then the

Fundamental Theorem of Arithmetic for Polynomials implies that x4 + 1 cannot be further factorized

in Q[x] (since the irreducible polynomials in R[x] include both irrational and rational coefficients).

Now look at factorization over C. Re-write x4 + 1 = 0 as x4 = −1. We know that −1 = eiπ. By

DeMoivre’s Theorem, x4 = −1 has 4 distinct roots:

x1 = eπi/4, x2 = e3πi/4, x3 = e5πi/4, x4 = e7πi/4

which implies

x4 + 1 = (x − eπi/4)(x − e3πi/4)(x − e5πi/4)(x − e7πi/4) ∈ C[x]

For (Z/2Z)[x], note that x4 + 1 = x4 − 1 and x2 + 1 = x2 − 1. Therefore

x4 + 1 = x4 − 1 = (x2 + 1)(x2 − 1)

= (x2 − 1)2 = (x + 1)2(x − 1)2

= (x + 1)4 ∈ (Z/2Z)[x]

For Z/3Z[x], note that x4 + 1 = x4 − 3x2 + 1. Therefore

x4 + 1 = x4 − 3x2 + 1

= (x4 − 2x2 + 1) − x2

= (x2 − 1)2 − x2

= (x2 − x − 1)(x2 + x − 1) ∈ Z/3Z[x]
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A quick examination shows no δ ∈ Z/3Z satisfies δ2 = 2, the value of ∆ for both polynomials.

Therefore we’ve factored x4 + 1 into irreducibles in Z/3Z[x].

Now for Z/5Z[x]. Note that x4 + 1 = x4. Therefore

x4 + 1 = x4 − 4 = (x2 + 2)(x2 + 3) ∈ Z/5Z[x]

A quick examination shows both polynomials have no root, and by proposition 5.5.4 they are

irreducible, so we’ve found the desired factorization of x4 + 1.
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5.6 Derivatives and Multiple Roots

Definition 5.6.1. Suppose a polynomial

f(x) =
n

∑
i=0
= aixi = anxn + an−1xn−1 +⋯ + a1x + a0.

Then its derivative, f ′(x), can be expressed as

f ′(x) =
n

∑
i=1

iaix
i−1 = nanxn−1 + (n − 1)an−1xn−2 +⋯ + 2a2x + a1.

Remark. It is always true that deg(f ′) < deg(f), since the degree n term exists in f(x) but not

f ′(x). However, it is not always true that deg(f ′) = deg(f) − 1. For example, a degree n polynomial

in Z/nZ[x] has derivative of degree no more than n − 2 since the degree n − 1 term, nanxn−1, equals

0 since n = 0 in Z/nZ. Nevertheless, if f(x) ∈ Q[x],R[x], or C[x], the equation deg(f ′) = deg(f) − 1

is always true.

Proposition 5.6.2. Suppose f(x) and g(x) are polynomials. Then

(a) (f + g)′ = f ′ + g′

(b) (f ⋅ g)′ = (f ′)g + f(g′).

Definition 5.6.3. Suppose f(x) ∈ F [x] and α ∈ F is a root of f(x).

(a) α is a root of multiplicity n if (x − α)n divides f(x) but (x − α)n+1 doesn’t.

(b) A root of multiplicity 1 and 2 are called simple root and double root, respectively.

(c) A root is either a simple root or a multiple root.

Remark. Given f(x) ∈ F [x], the following are equivalent:

(a) α is a root of multiplicity n.

(b) There exists a g(x) ∈ F [x] such that f(x) = (x − α)ng(x) and g(α) ≠ 0.

Proposition 5.6.4. Suppose f(x) ∈ F [x] has multiple root α ∈ F . Then α ∣ gcd(f, f ′).

Proof. If α is a multiple root of f(x), then there exists g(x) ∈ F [x] such that f(x) = (x − α)2g(x).

By product rule,
f ′(x) = 2(x − α)g(x) + (x − α)2g′(x)

= (x − α) (2g(x) + (x − α)g′(x))

which implies (x − α) divides f ′(x) as well.

54



5.7 Gauss’s Lemma and Eisenstein’s Criterion YQL’s Notes: Intro to Abstract Algebra

5.7 Gauss’s Lemma and Eisenstein’s Criterion

Definition 5.7.1. A polynomial f(x) =
n

∑
i=0
= aixi = anxn+an−1xn−1+⋯+a1x+a0 ∈ Z[x] is primitive

if the GCD of all coefficients is 1. (The coefficients do not necessarily need to be pairwise co-prime.)

Proposition 5.7.2. Every nonzero polynomial f(x) ∈ Q[x] can be written as the product of a nonzero

rational number times a primitive polynomial in Z[x].

Proof. I will simply show by an example here. The proof follows exactly the same way. Consider

f(x) = 4

5
x2 + 2

3
x + 2

5
.

Multiplying both sides by 3 × 5 we have

15f(x) = 12x2 + 10x + 6 = 2(6x2 + 5x + 3).

Therefore f(x) = 2

15
(6x2 + 5x + 3).

Future reference: Gauss’s Lemma II

Theorem 5.7.3 (Gauss’s Lemma I). Suppose f(x), g(x) ∈ Z[x] are primitive polynomials Then the

product f(x)g(x) is also primitive.

Proof. Suppose not, then there exists some integer d > 1 such that d divides all coefficients of the

polynomial f(x)g(x). Since d > 1, there exists a prime number p that divides d. It follows that

p divides all coefficients of f(x)g(x) as well. Now for a(x) ∈ Z[x], define ā(x) ∈ Z/pZ[x] as the

polynomial obtained by reducing all coefficients of a(x) modulo p. For example,

a(x) = 7x3 + 10x2 − 11x + 2 ∈ Z[x] p=5Ð→ ā(x) = 2x3 + 4x + 2 ∈ Z/5Z[x].

Now, since all coefficients of f(x)g(x) are multiples of p, we have f̄(x)ḡ(x) = 0. By proposition

5.1.9, Z/pZ is an integral domain, and so is Z/pZ[x] by theorem 5.1.16. Therefore either f̄(x) = 0 or

ḡ(x) = 0. In either case we have one polynomial whose coefficients are all divisible by p, contradicting

f(x) and g(x) both being primitive.

Future reference: Gauss’s Lemma II, Eisenstein’s Criterion

Theorem 5.7.4 (Gauss’s Lemma II). Suppose f(x) ∈ Z[x] is a nonconstant polynomial that can be

factored as f(x) = a(x)b(x) where a(x), b(x) ∈ Q[x]. Then there exist c(x), d(x) ∈ Z[x] such that

f(x) = c(x)d(x) and c(x) ∼ a(x), d(x) ∼ b(x)

Proof. By proposition 5.7.2, there exist primitive A(x),B(x) ∈ Z[x] and s, t ∈ Q such that a(x) =

sA(x) and b(x) = tB(x). Therefore,

f(x) = a(x)b(x) = stA(x)B(x).

Clearly st ∈ Q, and we will show in a moment that st ∈ Z as well. Now suppose st = p

q
where p ∈ Z

and q ∈ Z+. Then,

f(x) = p

q
A(x)B(x) Ô⇒ qf(x) = pA(x)B(x)
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Look at the RHS. By Gauss’s Lemma I we know that since A(x) and B(x) are both primitive, so

is A(x)B(x). Therefore the GCD of all coefficients of pA(x)B(x) is just p. Now look at the LHS.

Suppose the GCD of all coefficients of f(x) is d. Then qd = p which implies q ∣ p, and st = p

q
is indeed

an integer. Now simply take

c(x) = stA(x) = ta(x) and d(x) = B(x) = 1

t
b(x)

and we are done.

Future reference: Eisenstein’s Criterion

Theorem 5.7.5 (Eisenstein’s Criterion). Suppose polynomial

a(x) =
n

∑
i=0

aix
i = anxn + an−1xn−1 +⋯ + a1x + a0 ∈ Q[x]

has integer coefficients, and there is a prime p satisfying

(a) p divides all coefficients but an, and

(b) p2 does not a0,

then a(x) is irreducible (in Q[x]).

Proof. We will prove by contradiction. Suppose for a factorizable a(x) there exists such p satisfying

both (a) and (b) listed in the theorem. Then there exist b(x), c(x) ∈ Q[x] such that

a(x) = b(x)c(x) and 0 < deg(bo) < deg(a),0 < deg(c) < deg(a).

By Gauss’s Lemma II, we may simply assume b(x), c(x) ∈ Z[x]. Then we can expand them as

b(x) =
s

∑
i=0

bix
i = bsxs + bs−1xs−1 +⋯ + b1x + b0

c(x) =
t

∑
i=0

cix
i = ctxt + ct−1xt−1 +⋯ + c1x + c0

Then, s, t > 0, s + t = n (granted by proposition 5.1.14),a0 = b0c0, and an = bsct.

Since p ∣ a0 but p2 ∤ a0, it follows that, between b0 and c0, one is divisible by p while the other is

not. WLOG assume p ∤ b0. Also, since p ∤ an, it follows that p ∤ bs. Recall the way how we define

ā(x) given a(x) in Gauss’s Lemma I. We will use it here again. Now look at b̄(x) ∈ Z/pZ[x].

Clearly, b̄(x) is nonconstant since p ∤ bs and the term bsx
s is nonzero. Also, x does not divide

b̄(x) since p ∤ b0 and the term b0 is nonzero as well. Let q̄(x) ∈ Z/pZ[x] be an irreducible divisor of

b̄(x). Since x ∤ b̄(x) as previously shown, we know q̄(x) ≁ x (easily proven by contradiction).

Now back to a(x) and ā(x). Since ā(x) = b̄(x)c̄(x), q̄(x) divides b̄(x) implies q̄(x) ∣ ā(x). However,

since all coefficients of a(x) but an are divisible of p, we have ā(x) = anx
n. Does anx

n have any

irreducible factors that are not associates of x? A quick examination suggests no, which leads to a

contradiction. Hence we are done proving Eisenstein’s Criterion.

Remark. We say an irreducible polynomial a(x) ∈ Q[x] with integer coefficients is “Eisenstein at p”

if p is a prime that meets the Eisenstein Criterion.

56



5.7 Gauss’s Lemma and Eisenstein’s Criterion YQL’s Notes: Intro to Abstract Algebra

Problem 5.7.1 (5.7.7). Suppose p is a prime.

(a) Show that [(x + 1)
p − 1]

x
∈ Q[x] is irreducible.

(b) Use part (a) to prove that

xp − 1
x − 1

=
p−1
∑
i=0

xi = xp−1 + xp−2 +⋯ + x + 1 ∈ Q[x]

is irreducible.

Solution 5.7.1.

(a) Applying Binomial Theorem yields

[(x + 1)p − 1]
x

= 1

x
⋅ (

p

∑
i=0
(p
i
)xi − 1)

= 1

x
⋅ [(p

0
)xp + (p

1
)xp−1 +⋯ + ( p

p − 1
)x + (p

p
)1 − 1]

= 1

x
⋅ [(p

0
)xp + (p

1
)xp−1 +⋯ + ( p

p − 1
)x]

= (p
0
)xp−1 + (p

1
)xp−2 +⋯ + ( p

p − 2
)x + ( p

p − 1
)

= xp−1 + (p
1
)xp−2 +⋯ + ( p

p − 2
)x + p

which is Eisenstein at p. Hence proven. ◻

(b) Define f(x) = xp − 1
x − 1

=
p−1
∑
i=0

xi. If f(x) is factorizable, then there exist g(x), h(x) ∈ Q[x] such that

f(x) = g(x)h(x). It follows that f(x + 1) = g(x + 1)h(x + 1). Therefore we know that if f(x) is

factorizable then so is f(x + 1). However, f(x + 1) is exactly the fraction in part (a) which has

been proven irreducible. Therefore f(x) is irreducible as well. ◻

Problem 5.7.2 (5.7.8). Show that there are infinitely many integers k such that x4 + 2x2 + k is

irreducible in Q[x].

Solution 5.7.2. If we can make x4 + 2x2 + k Eisenstein at 2 then we are immediately done. To do

so, k has to be a multiple of 2 but not 4. Since the set

{2a + 2 ∶ a ∈ Z}

has infinitely many (distinct) elements, each of which is a multiple of 2 but not 4, we are done with

the proof. ◻
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